What are the top ethical issues in engineering today, and how can you incorporate these in your teaching?

In our Engineering Ethics workshop at the 2023 SEFI Conference at TU Dublin, we asked participants what they felt were the top ethical issues in engineering today. This word cloud captured their responses, and the results reveal concerns ranging from AI and sustainability to business and policy and beyond.

When incorporating ethics into a lesson or module, educators might want to find teaching resources that address a topic that’s recently been in the news or something of particular relevance to a group of students or to a project brief. But how can this be done efficiently when there are now so many teaching materials available in our Toolkits?

Fortunately, sifting through available resources in the Ethics Toolkit is now easier than ever, with the release of the new Toolkit search function. The Toolkit search allows users to:

  • Choose from a list of suggested keyword tags;
  • Search by multiple keyword tags or their own search terms;
  • Refine the search results by one of more of the following filters: engineering discipline; educational level; type of content.

It even pulls resources from across different toolkits, if so desired.

Not only will this help you discover and find materials that are right for your educational context, but the search function could even become a teaching tool in itself. For instance, you could poll students with the same question we used in the SEFI Workshop, asking them what they think the top ethical issues are in engineering today, and then design (or co-design) a lesson or activity based on their responses and supported by resources in the Toolkit. If you don’t find resources for a particular issue, that could be a great learning opportunity to0 – why might these topics not be addressed? Of course, you can always create a resource that fills a gap and submit it to be a part of the Toolkit: we would love to see a student-developed case study or activity.

Let us know how you have used the Toolkit search function, and if there are ways we could improve it. Happy searching!

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The Engineering Ethics Toolkit is a suite of interactive resourcesguidance and teaching materials that enables educators to easily introduce ethics into the education of every engineer.

We’re always pleased to see the #EngineeringEthicsToolkit featured in news articles, blogs, podcasts etc., and we’ll be keeping track of those mentions here.

Sarah Jayne Hitt talks to Neil Cooke and Natalie Wint about the EPC’s Engineering Ethics Toolkit

Educating the educators – why the UK’s engineering teachers need reskilling too 

A look at engineering ethics education and research in 2023

Ethics workshop

Using the Engineering Ethics Toolkit in your teaching

Engineering ethics in the spotlight

Seen us in the news? Let us know!

Want to feature us? Get in touch for press kits, interviews etc.


This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Dr Emma A Taylor, Royal Academy of Engineering Visiting Professor, Cranfield University and Professor Sarah Jayne Hitt, PhD SFHEA, NMITE, Edinburgh Napier University, discusses embedding ethics in engineering education through wide use of deaf awareness: a gateway to a more inclusive practice.

“An ethical society is an inclusive society”. This is a statement that most people would find it hard to disagree strongly with. As users of the EPC’s Engineering Ethics Toolkit and readers of this blog we hope our message is being heard loud and clear.

But hearing is a problem:

One in five adults in the UK are deaf, have hearing loss or tinnitus. That is 12 million adults or 20% of the population. In the broader context of‘ ‘communication exclusion’ (practices that exclude or inhibit communication), this population figure may be even larger, when including comprehension issues experienced by non-native speakers and poor communication issues such as people talking over one another in group settings such as during meetings.

This ‘communication exclusion’ gap is also visible in an education context, where many educators have observed group discussion and group project dynamics develop around those who are the most dominant (read: loudest) communicators. This creates an imbalanced learning environment with the increased potential for unequal outcomes. Even though this ‘communication exclusion’ and lack of skills is such a huge problem, you could say it’s hidden in plain sight. Identification of this imbalance is an example of ethics in action in the classroom.

Across all spheres, we suggest that becoming deaf aware is one way to begin to address communication exclusion issues. Simple and practical effective tips are already widely disseminated by expert organisations with deep in the field experience (see list of resources below from RNID). Our collective pandemic experience took us all a great step forward in seeing the benefits of technology, but also in understanding the challenges of communicating through the barriers of technology. As engineering educators we can choose to become more proactive in using tools that are already available, an action that supports a wider range of learners beyond those who choose to disclose hearing or understanding related needs. This approach is inclusive; it is ethical.

And as educators we propose that there is an even greater pressing need to amplify the issue and promote practical techniques towards improving communication. Many surveys and reports from industry have indicated that preparing students for real world work environments needs improving. Although they often become proficient in technical skills, unless they get an internship, students may not develop the business skills needed for the workplace. Communication in all its forms is rightly embedded in professional qualifications for engineers, whether EngTech, IEng, CEng or other from organisations such as the UK’s Engineering Council.

And even when skills are explicitly articulated in the syllabus and the students are assessed, much of what is already being taught is not actually being embedded into transferable skills that are effectively deployed in the workplace. As education is a training ground for professional skills, a patchy implementation of effective and active practice of communication skills in the education arena leads to variable skill levels professionally.

As engineers we are problem solvers, so we seek clarification of issues and derivation of potential solutions through identification and optimisation of requirements. The problem-solving lens we apply to technology can also be applied to finding ways to educate better communicators. The “what” is spoken about in generic terms but the “how”, how to fix and examine root causes, is less often articulated.

So what can be done? What is the practical framework that can be applied by both academics and students and embedded in daily life? And how can deaf awareness help get us there?

Our proposal is to work to embed and deploy deaf awareness in all aspects of engineering education. Not only because it is just and ethical to do so, but because it can help us see (and resolve) other issues.  But this won’t, and can’t, be done in one step. Our experience in the field shows that even the simplest measures aren’t broadly used despite their clear potential for benefit. This is one reason why blogs and toolkits like this one exist: to help educators embed resources and processes into their teaching practice.

It’s important to note that this proposal goes beyond deaf awareness and is really about reducing or removing invisible barriers that exist in communication and education, and addressing the communication problem through an engineering lens. Only when one takes a step back with a deaf awareness filter and gets the relevant training, do your eyes (and ears) open and see how it helps others. It is about improving the effectiveness of teaching and communication.

This approach goes beyond EDI principles and is about breaking barriers and being part of a broader student development approach, such as intellectual, emotional, social, and personal growth. The aim is to get students present and to be in the room with you, during the process of knowledge transfer.

As we work on making our engineering classrooms better for everyone, we are focusing on understanding and supporting students with hearing impairments. We are taking a step back and getting re-trained to have a fresh perspective. This helps us see things we might have missed before. The goal is not just to be aware but to actually improve how we teach and communicate.

We want our classrooms to be inclusive, where everyone’s needs are considered and met. It is about creating an environment where all our students, including those with hearing impairments, feel supported and included in the learning process. And stepping back and taking a whole human (“humanist”) view, we can define education as an endeavour that develops human potentialnot just an activity that produces nameless faceless quantifiable outcomes or products. As such, initiatives such as bringing forward deaf awareness to benefit broader communication and engagement provide a measurable step forward into bringing a more humanistic approach to Engineering Education.

So what can you do?

Through the EPC’s growing efforts on EDI, we welcome suggestions for case studies and other teaching materials and guidance that bring together ethics, sustainability and deaf awareness (or other issues of inclusivity).

We’re pleased to report that we are aiming to launch an EDI Toolkit project soon, building on the work that we’ve begun on neurodiversity. Soon we’ll be seeking  people to get involved and contribute resources, so stay tuned! (i.e. “If you have a process or resource that helped your teaching become more inclusive, please share it with us!”).


RNID resources list


Other resources


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This article is also available here.

Mike Murray, [Senior Teaching Fellow in Construction Management], discusses how he developed and implemented a teaching resource in the Sustainability Toolkit, and what he’s learned from integrating it into his modules over the years.

It has been said that ‘pedagogical innovation stems from very personal origins within the university teacher, who appears to seek to move towards their pedagogical ideal’ (Walder, 2014). So, please bear with me as I travel back along the path to where the story begins. 

I introduced the coursework on Developing Intercultural Competence in my Engineering and Society module in 2015, and nine years on I am unable to recall why! It may have been an epiphany. I now carry a notepad in case I forget. I travel to university by train, and this affords an opportunity to gaze through the picture frame windows at the Perthshire countryside, and to daydream. Some of my best pedagogical interventions have been developed on train journeys, and more often than not they are informed by my readings of books and papers (and highlighting, see my penchant for stationery later!) on pedagogy in higher education. So, the intervention was not a macro-level programme intervention, it was not a meso-level case of Action Research, rather it was bottom-up micro-level, a do-it-yourself, intuitive pedagogy. No permission requested, no questions asked. Indeed, many of the teaching resources in the Sustainability Toolkit fall into this category. I rather like the idea of punk, guerilla, and pirate pedagogy (Murray,2023).  However, on reflecting on the matter, I can see that my fascination with internationalising the curriculum has been a slow burner.  


“We’re all Jock Tamson’s Bairns” 

This is a colloquial conversational term used in Scotland to denote that we are all the same; we are all equal. On a global scale it suggests we are all world citizens. It has resonance with the UN Sustainable Development Goals (SDGs), and it sits comfortably in my outlook on life. It reflects my own maxim for academics in higher education- to treat each student as if they were your son, daughter, niece or nephew. That is, I have sought to reduce the power that I am granted as an expert and to see my students as co-learners travelling the same path. This is not a case of ‘sparing the rod to spoil the child’, it is not about ‘killing my students by kindness’, it is not about encouraging student to satisfice. Rather, it is a belief that universities should not be a sort of exam factory schooling that depends on many sages on the stages. I seek to introduce my students to the spirit and soul of learning, to ‘learn along the way’, to focus on the journey and not solely the destination. In these learning spaces, students can develop habits of mind consistent with lifelong learners such as curiosity about the world and other cultures and people.  

This then is an apt moment to explain the title of this blog. The quote is taken from the Scottish novelist and travel writer Robert Louis Stevenson, grandson of lighthouse builder Robert Stevenson.  For me, it says something about how we should look upon our planet and its people. Whilst it would be naively optimistic to suggest that our planet has no travel boundaries (i.e. North Korea) we all have something in common given we share space on our planets surface. This is everyone’s link to humanity. Whilst our cultures and customers may be different, we are global citizens on planet earth. 


My Internationalisation at home 

My journey to intercultural competence started long before I reached university. As a sixteen-year-old apprentice plumber attending Perth Technical College (1980-1984), I witnessed students from Uganda, Iran, and Iraq, who were enrolled on an air training course. Whilst I recall being somewhat envious of these students, thinking that they were cool and quite exotic, I know now they must have had their own issues settling into studies in a foreign country. My next exposure to international students came when I was a lecturer at North East Surrey College of Technology (1988-1992). In addition to my teaching role, I was a live in warden in a small student hostel, accommodating twelve male students each year. With students from Zimbabwe, Botswana, and Lesotho, my knowledge of the African continent was enhanced.  

In my current role at Strathclyde I was involved in a European Union (EU) Tempus project (2004-2006) to establish a MSc Construction Management programme for the Department of Civil Engineering, University of Aleppo, Syria. Visting Syria, and hosting academics and students from Syria in Scotland, was a lesson in the generous hospitality extended to guests in Muslim societies. The project also involved partner academics from universities in France and Germany and all meetings were undertaken with a great sense of collegiality and conviviality. This project conveyed a sense of ‘brotherhood’ in learning, and a mission to improve industry practice and society in Syria.  It was a great sense of personal disappointment to me when the war in Syria began in 2011, and thereafter when the UK populace voted to leave the EU in 2016. Of late, my students who hail from Syria, and the Ukraine (with refugee status) have helped my first-year students to see past the media coverage of their countries as only war-torn.  

These episodes, and others, have shaped my professional interest in internationalisation. I have a healthy disrespect for treating our international guests as “cash cows” for UK Higher Education. In 2014 I established an International Society for students in the Civil and Environmental Engineering Department, with associated annual events (Robert Burns lunch) and a social calendar with visits to engineering projects. And in 2015 I introduced the internationalisation at home coursework for my first-year students. 


Flags, Flags, Flags 

Since 2015 the coursework has involved 147 international mentors, representing sixty nationalities*. Reading the list, I imagine the flags of these countries on poles, fluttering proudly in the wind above my university campus, a symbolic image that conveys a sense of a ‘United Nations’. Given the revised coursework brief places added importance on Education for Sustainable Development (ESD) it is important to recognise the disparity that is evident in this list vis-à-vis the SDGs. There are significant complexities and contradictions in hosting internation students from countries who are at war with each other, who have opposing religious and / or political views, who hail from countries damaged by climate change because of another country’s pollution. I have to confess that to date I have avoided this arena. I have not courted conflict and sought out divergent views on global issues. I have assumed (wrongly!) that all students are somewhat neutral.  

When I heard that the Sustainability Toolkit was seeking examples of coursework that integrates ESD and the SDGs in engineering, I was eager to share this resource. Now, I hope others can learn from my experience as well as from the challenges I faced in implementing it and the lessons I’ve learned in doing so. 

*Afghanistan, Angola, Australia, Austria  Bulgaria, Brazil, Canada, China, Croatia, Democratic Republic Congo, Egypt, Ethiopia Eritrea, Estonia, Ghana, Hungary, Finland, France, Germany, Guyana, Greece, India, Indonesia, Iran, Italy, Ireland, Jordan, Kenya, Kuwait, Lebanon, Lithuanian, Luxembourg, Malawi, Malta, Malaysia Netherlands, Nepal, Nigeria, Norway, Oman, Panama, Pakistan, Poland, Qatar, Romania, Russia, Saudi Arabia, Singapore, Slovakia, South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syria, Turks and Caicos Islands, , USA, Ukraine, Venezuela, Yemen, Zimbabwe. 


Time for Reflection 

Academic writing for publication is typically peer reviewed by critical friends. The process for submitting resources to the Toolkit was no different and has been subject to a ‘review-revise-resubmit’ process. This afforded an opportunity for self-reflection and to improve the coursework brief. The revised brief bolsters the link between Intercultural Competence (IC) and ESD through more explicit cognizance of SDGs. Moreover, given the original purpose of the coursework was to improve students IC, the revised coursework has a symbiotic link to engaging students in a decolonisation of the engineering curriculum, and for them to consider social justice and climate justice in engineering practice. 



Post-Brexit, there are fewer EU students across our undergraduate programmes. Over the past nine years I have sought assistance from students studying on our MSc & PhD programmes. However, a sizeable number of these students do not have an undergraduate civil engineering qualification. With a little persuasion, I explain to these students that they only require a general tourist guidebook knowledge of their home countries buildings and infrastructure.  With the revised coursework brief putting more emphasis on the SDGs, it is to be expected that the conversations between students will become more exploratory. 

The international mentors include students from across our programmes. It is not possible to coordinate the various timetables for them to meet the first-year students in the Engineering and Society class in which the coursework is assigned. I request that each first-year group nominates a point of contact with the international mentor. As I have circa twenty-two groups each year, I adopt a hands-off approach and resolve problems as they arise. Micromanaging this process through a sign-up system may be appropriate, but it will also make a ‘rod for your own back’ and there are many other daily tasks competing for our time! 

Communication between student peers, and between the groups and their international mentors can be troublesome. Despite emphasising the need for students to read their emails daily, and for prompt responses, not all students appreciate the need for professional and collegiate behaviour. This is a perennial issue, despite emphasising to students how employers value professional behaviours. Helping students to accept their agency and become independent learners is problematic if they are treated as passive learners, abused by a banking model of learning! 

Some students may consider the task to be ‘edutainment’ and that such playful learning lacks the rigour they expected in a civil engineering degree. Feedback (reflective writing) suggests that on completion of the poster, these students tend to re-evaluate their views, signifying a shift in their personal conceptions of learning. There is much work still to be done in engineering education on finding time to consider student’s epistemic beliefs, and for them to build these into their Personal Development Plans!  


Lessons Learnt 

One key development was to introduce a session on sketching to help raise students’ self-confidence in preparing the final deliverables. Some students have graphical communications skills from school. However, there appears to be a general fear of sketching and embarrassment amongst the first-year cohorts. As an essential skill for engineers (and an important way to communicate), sketching should be more dominant throughout our programmes. 



In this example there are circa 80-100 students (20-25 groups) each year. Increasing the cohort size would not present a significant burden on the time to assess the submissions. However, a major challenge would be securing additional international mentors. The mentors receive a thank you letter for their support, and this is evidence of their own Initial Professional Development (IPD) during their studies. It is conceivable that that this may be a sufficient attraction to invite international students from other engineering disciplines (interdisciplinary) or from other faculties (transdisciplinary) such as humanities. The latter would provide an early opportunity to introduce students to the ‘liberal engineer’ with the associated knowledge of Government policy, politics, finance, and human behaviour issues.  


Suggestions for Transferability 

Whilst the poster deliverable for my module focuses on buildings and structures, this coursework could be easily replicated by other engineering disciplines.  With modification on the subjects to be sketched, there is potential to consider engineering components / artifacts / structures, such as naval vessels / aeroplanes / cars, and wide number of products and components that have particular significance to a country (i.e., Swiss Army Knife). 

No matter what adaptations you make to this or any other resource in the Sustainability Toolkit, it’s essential that we emphasise how intercultural competence informs a globally responsible approach to the role of an engineer. Using the Sustainability Toolkit to help our students develop these mindsets is a very good way to do that, and I recommend it to all educators – the wealth of the resource cannot be understated in its support to a teacher’s session design and, most importantly, to a student’s learning. 


You can find out more about getting involved or contributing to the Sustainability Toolkit here. 



Murray, M (2023). An autoethnography of becoming an innovative engineering academic- punk, pirate and guerilla pedagogy, 51st Annual Conference of the European Society for Engineering Education (SEFI), 11-14th September, TU Dublin, Ireland.  

United Nations. (2023). The Sustainable Development Goals Report: Towards a Rescue Plan for People and Planet. 

Walder. A.M (2014). The Concept of Pedagogical Innovation in Higher Education. Education Journal, 3(3):195-202.  


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This blog is also available here.

The Sustainability Toolkit was unveiled as one of three major initiatives launched together at the Engineers 2030 event on 18th March 2024, hosted at the Royal Academy of Engineering. There were a number of prestigious speakers, but the keynote that made everyone sit up most and which set the tone for the discussion for the rest of the event was by Kayley Thacker, a third year Chemical Engineer at the University of Birmingham.

Kayley has kindly given us permission to reproduce her keynote in full.



Why did you decide to be an engineer? This is a question that I’m sure follows us wherever we go, from our initial steps into university to the various stages of our careers.

Perhaps this is asked so frequently because many people are uncertain about what engineers actually do. The common assumption is that we generally fix things – whilst sometimes true, there is so much more to engineering than that. Engineers have had an impact, whether good or bad, on every aspect of our lives today, and we all have varied and profound reasons for entering this field.

At school, I was one of those people who would change their dream job every week. I went from being an author, to a baker, to a marine biologist. However, I knew I wanted a career that would constantly teach me new skills, where I would be challenged and pushed out of my comfort zone, and where I would get to work with a diverse range of people of different skill sets and backgrounds – but above all I wanted to make a difference in the world.

One day, I decided to entertain the idea of studying engineering, which seemed like an absurdity. Me, an engineering student? I was the girl who was told off for reading books during lessons, and isn’t engineering supposed to be a ‘boy’ subject anyway?

Regardless, I decided to do some more research and I was hooked. Engineering seemed like a dream – it would be both academically invigorating and would equip me with the skills to change the world. And here, I began to understand that engineering wasn’t just about fixing things – it was about understanding complex systems, innovating technology and working collaboratively across disciplines to bring about positive change. I carried this sentiment with me to university, where I started my degree in Chemical Engineering at the University of Birmingham.


University experience

My engineering degree has, for the most part, lived up to my expectations. It has certainly been a challenging journey, pushing me to the limits of my problem-solving skills. With the technical knowledge I have gained, I feel as though I am equipped with the skills to work with the current infrastructure in our society. However, there has always been something lacking – a disconnect between the theoretical concepts I am learning about and the real world.

This reflection has led me to the question: shouldn’t our education be as much about forging paths for the future as it is about understanding the constructs of the past?

Another problem that has stood out to me during my time at university is the fact that different types of engineers are taught in isolation. As a chemical engineer, I have never had the opportunity to work alongside mechanical, civil and electrical engineers for example. We aren’t even able to access the engineering building or any of its facilities! Why is it that engineers are educated separately, when we are all working alongside many other disciplines to solve the same problems? Even beyond that, the challenges we face today require a collaborative and interdisciplinary approach, one that our current system does not fully embrace.



Towards the start of my first year at university, we were told a staggering statistic rather offhandedly by our lecturer: “90% of the things we are going to learn about, we will never use in our careers.”

This is quite a bleak truth to tell to a group of wide-eyed students, eager to learn all that they can. And this has echoed throughout every module, every assignment, every new topic we are taught. Even if we don’t directly use this knowledge, why aren’t we taught the critical thinking skills that allow us to apply this learning elsewhere?

Additionally, there is a distinct lack of responsibility being taught in our courses. Why is it that ethics and responsibility are integral to the training of doctors and lawyers, but is more often than not tacked on to the end of engineering degrees?

Engineers are responsible for the construction of buildings, motorways, vehicles, the food we eat, the products and devices we use. Every day, we use things that have been desgined and created by engineers. And if we make a mistake in those designs and creations, thousands of people can be affected.

So where did the message get lost? Why does it feel as though the responsibility of an engineer is taken for granted? Shouldn’t our education be explicitly led with the responsibility we will shoulder throughout our careers?

Engineers need to be categorically trained to put people and the planet first.


Call for change

Ask yourselves, what does an engineer 5, 10, 30 years from now actually do? With the advent of tools such as AI and machine learning, would engineers be better off developing our skills beyond the fundamentals? The modern engineer not only needs to be equipped with mathematical and scientific knowhow, but also needs to be able to draw on a range of soft skills such as critical thinking, interdisciplinary collaboration and global awareness. It is clear that the traditional expectations of engineers are expanding. We need to prioritise skills that foster innovation, sustainability and ethical responsibility. These are the tools that will empower engineers to not only cope with future challenges, but to be at the forefront of finding their solutions.

Despite university education offering a wealth of interesting and complex material, there is something evidently wrong with the way engineers are being educated if the main takeaway from our education is a stark awareness of its deficiencies rather than the engaging content and skills we are taught.

It is clear that our education needs to be more grounded in the modern era if we are to solve 21st century challenges. In order to best develop our education, it is critical that students are kept in the loop and actively involved throughout the entire change process. We require an education system that is not only adaptive and responsive to the needs of students, but also one that anticipates and exceeds the evolving expectations of our society.

Reflecting on the way in which engineers have already shaped our world, we have to recognise that whilst engineers have achieved remarkable feats, their endeavours have also contributed to some of the most pressing challenges we face today.

Years ago, engineers wanted to vastly improve our lives, however they lacked the foresight of what their creations would do – they often overlooked the long-term environmental and societal impacts they would have. And even now, we have limited time to sort things out, with looming deadlines of the UN Sustainable Development Goals fast approaching.

The consequences of our actions, or rather our inactions, are undeniable, and there is a desparate need for change. Despite these challenges, we are all here today because we believe that our current systems can change, that through working together we can equip the engineers of tomorrow with the skills to protect our planet and our quality of life.



We are so fortunate to have environments such as universities available to us, to help us hit the ground running in our careers. However, the journey of an engineer does not end with a degree. The rapidly changing world requires engineers to continually adapt, learn and apply new skills, and cultivating a mindset of continuous learning and improvement must be a priority of engineering degrees. Engineers inherently solve complex problems, and the upcoming cohort needs to be equipped to see complexity in different ways, beyond equations and traditional methods.

So I’d like to return to my initial question: why did you decide to become an engineer?

Many of my peers admit that they were attracted to the degree’s prestige, and how it can be used as a launchpad into careers such as finance or business. While these are important fields, it does make you question the purpose of an engineering degree. How can we realign our focus to attract creative problem-solvers and innovators to the field of engineering? And how can degree programmes be tailored to suit the needs of an ever-changing world?

As we gather here today to both celebrate and reflect on the progress made so far, it is clear that we must embrace the strengths of our current systems and still be open to feedback and growth, ensuring that engineering education not only meets but exceeds the demands of the future.

Universities have already shown a capacity to adapt to and navigate change. For example, the rapid development of artificial intelligence over the past few years has already caused universities to question their teaching and assessment methods. The climate crisis has been an ongoing threat for decades, so why has this urgent issue not prompted a similar response? One ‘difficult to navigate’ change to our education can positively benefit thousands of upcoming engineers. Even if system change feels difficult, remember why it is so important.

I would like to end my keynote with a reminder of why we are here this afternoon. The students of today and tomorrow are the future of engineering – we are at the starting line of our careers and we need to leave university with the ability to keep up with the pace of an ever-changing world.

I am thankful for the opportunity to share my views with you, however I am just one voice. There are tens of thousands of engineering students going through the education system right now that aren’t well represented in this room. I hope that, after today, we can continue to use student voices to best inform the direction of education so that as many new engineers as possible can feel this change.

Engineering is not just a career, but a calling to enact positive change, and it is critical that upcoming engineers feel empowered to do so with the right skills and confidence to make a difference in the world.



Visit Engineers 2030, a cross-sector initiative led by the Royal Academy of Engineering, to foster a new generation of engineers who understand that their purpose is to create change for the benefit of the planet and its inhabitants. 

The Sustainability Toolkit, created by the EPC in partnership with the Royal Academy of Engineering and Siemens, was launched at the Engineering 2030 event, alongside Engineers Without Borders UK’s Reimagined Degree Map. A webinar to celebrate the launch of the Toolkit and explore its resources will be held on 28th March 2024 – register here.


This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The EPC’s Sustainability Toolkit is supported by the Royal Academy of Engineering and Siemens. This resource is designed to help engineering educators integrate sustainability-related content into teaching.


The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.


Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering and Siemens.



To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made.


Themes related to Sustainability in other EPC Toolkit resources

Please do take a look at the subset of resources from our other Toolkits that feature themes relating to sustainability.
Resource Tool type EPC Toolkit
https://epc.ac.uk/toolkit/case-study-implementing-the-use-of-homegrown-mass-timber-for-residential-housing/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-recycled-materials-and-the-circular-economy/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-balancing-safety-costs-and-the-environment-in-the-inspection-of-wind-turbine-blades/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-developing-a-decarbonisation-roadmap/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-engineers-and-public-protest/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-feasibility-of-installing-heat-pumps-at-scale-to-reach-net-zero/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-debating-the-adoption-of-nuclear-energy/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/universal-and-inclusive-co-design-of-the-built-environment-and-the-transportation-systems/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-choosing-to-install-a-smart-meter/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-industrial-pollution-from-an-ageing-pipeline-and-its-impact-on-local-communities/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-choosing-a-career-in-climate-change-geoengineering/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-business-growth-models-in-engineering-industries-within-an-economic-system/ Case study Engineering Ethics Toolkit


More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, sustainability issues and so on. For more information, see our Get involved page.


Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
The EPC has introduced a major new initiative to ensure the engineers of tomorrow can rise to the challenges of the climate emergency: The Sustainability Toolkit, produced with support from the Royal Academy of Engineering and Siemens. EPC President, Prof John Mitchell invites you to explore.


Prof John Mitchell
Professor John Mitchell, EPC President

In order to ensure that recent engineering graduates are prepared to meet the challenges of today, it is imperative that they develop a greater level of sustainability knowledge and expertise. Sustainability should become the core tenet of engineering education, training and professional practice – a view supported by research undertaken by UCL and the EPC also published by the Royal Academy of Engineering today.

A rising number of groups are advocating that engineering programmes prioritise sustainability in addition to technical knowledge in order to provide aspiring engineers with the tools and perspective they need to be successful. A plethora of areas at the policy level demonstrate this including: The Accreditation of Higher Education Programmes in engineering (AHEP, 4th edition) standards demonstrating the significance of engineering’s impact on the environment.

As part of our commitment to support EPC member institutions to integrate sustainability content in their engineering education, we’re pleased to unveil twelve guidance articles, 18 different teaching resources including five case studies, and a library of links to sustainability communities and networks that promote collaborative efforts.

The toolkit will operate as an open-access platform where users can also submit their resources for review and inclusion. Additionally, it directs users to supplementary materials curated by a team of experts.

We’d like to express our gratitude to the Sustainability Toolkit Steering Group, our Sustainability Toolkit Contributors, and our brilliant supporters, the Royal Academy of Engineering and Siemens for their unwavering assistance and backing. Chris Wise, steering group chair, has been amazing at leading by example – with his expertise and passion for embedding sustainability into the curriculum, he ensured this project reached this point seamlessly.

Sarah Jayne Hitt (Project Manager), Crystal Nwagboso (Project Manager, Research and Editorial Lead/Analyst), and Johnny Rich (Chief Executive) have also done a fantastic job of keeping everyone on course and generating excellent tools guided by the best standards.

I’m immensely proud of our collaboration with Siemens and the Royal Academy of Engineering on the new EPC Sustainability Toolkit. We’re not just shaping educational resources. We’re shaping the engineers who will shape our future.

We sincerely hope you will find these tools helpful in integrating sustainability into the classroom. Kindly let us know about your experience using them and stay tuned as we’ll be expanding the toolkit. Do get in touch or see the Toolkit for further details about submitting your own content.
This blog is also available here

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The Engineering Professors’ Council is pleased to announce the appointment of the leadership team for its Ethics Ambassadors community.

The Ethics Ambassadors community was created in March 2023, to expand and develop the work and recommendations of the Engineering Ethics Advisory Group, on their completion of Phase 2 of the Engineering Ethics Toolkit.

At its first meeting during the EAN Congress in June 2023, members formally agreed to the group’s establishment and its purpose and goals, and volunteered for various leadership roles. After a voting process, the appointments of the following individuals were confirmed:

Additional leadership roles around events, Toolkit content, and support have also been confirmed and can be seen on our Ambassadors page.

During their first year, the Ethics Ambassadors aim to promote and guide the use of the Engineering Ethics Toolkit among engineering educators, to continue its development by soliciting new resources, to seek continued funding that supports the Toolkit’s management and hosting, and to build the group’s membership.

If you are interested in joining please fill out our membership application form.


This post is also available here.

The EPC’s Engineering Ethics Toolkit is supported by the Royal Academy of Engineering. This resource is designed to help engineering educators integrate ethics content into teaching.



The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

  • Ethics Explorer: An interactive tool to help educators navigate the landscape of engineering ethics education. Start here and find your own pathway for embedding ethics.
  • Advice and guidance: A library of expertise in engineering ethics and how best to embed learning into teaching practice.
  • Case studies: Worked examples of real and hypothetical situations presenting ethical engineering challenges for use in teaching scenarios.
  • Case enhancements: Teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them.
  • Reports and studies: The latest research on ethics within engineering education and the engineering profession.
  • Blogs: Personal experience, news and updates on the Engineering Ethics Toolkit.
  • Get involved: A guide to how you can contribute to the Engineering Ethics Toolkit and community.
  • Contributor biographies: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
  • Support the Engineering Ethics Toolkit: Collaborate with us and support this important project.
  • Our supporters: We would like to thank the Royal Academy of Engineering, which has supported the Engineering Ethics Toolkit since its inception.

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts on these resources from the EPC’s Vice President.


To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made. Some of these materials are also available as PDF documents on the RAEng website.

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, ethical issues and so on. Additionally, we are looking to create ‘enhanced’ versions of each case study, including specific teaching materials such as lesson plans, presentations and worksheets. For more information, see our Get involved page.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Have you used our Engineering Ethics Toolkit in your teaching? We want to hear from you!

February 2022 saw the launch of our Engineering Ethics Toolkit, with a range of case studies and guidance articles available to help engineering educators embed ethics into their modules and curriculum.

In March 2023 we published further guidance articles and case studies, as well as enhancements on some of the classroom activities suggested within our original cases. June 2023 saw the launch of the interactive Ethics Explorer, which replaced the static engineering ethics curriculum map from 2015.

More and more engineering educators are telling us that they use these resources, and are finding them invaluable in their teaching. A brave few have contributed blogs, detailing their methods of using and adapting our case studies and classroom activities, and giving an honest appraisal of their own learning curve in teaching ethics.

We’ve heard about leaning in to your discomfort, first time fear, and letting students flex their ethical muscles.

We would love to publish more of this type of content. We want to hear your experiences, good or bad, along with tips, potential pitfalls, what you added to our content in your teaching, and what you and your students got out of the experience. If you have students who are enthusiastic about sharing their thoughts, we would love to hear from them too.

We’d like you to send us your blogs and testimonials, whether that be a couple of sentences or paragraphs, or a full article with diagrams, or anything in between.

You can submit your blog post or testimonial here, or email Wendy Attwell to discuss your submission first.

We look forward to hearing your experiences.

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website