The Engineering Professors’ Council, with support from Quanser, has started work on a Complex Systems Toolkit, aimed at helping educators to integrate complex systems concepts into their teaching.
With our Call for Contributions now live, the Complex Systems Toolkit Working Group Co-Chairs discuss why this is a vital resource and why you should get involved.

 

 

Dr. Nikita Hari,  Head of the Teaching and Research Design Support Group at the Department of Engineering Science, University of Oxford

“Engineering graduates of today are expected to design climate-resilient cities, ethically deploy AI, and weave circular-economy thinking into supply chains – and all this lives squarely in the messy realm of complex systems. Yet most engineering curricula still treat complexity as an afterthought or a niche elective. This is often misunderstood, misrepresented, or purely ignored, relegating complexity to a footnote.

The Engineering Professors’ Council’s Complex Systems Toolkit is our academic response,  aiming to bridge this gap: a freely accessible, peer-reviewed, resource hub where academics can find, curate and share ready-to-teach resources, assessment blueprints and real-world case studies mapped to AHEP learning outcomes.

By contributing, you’ll help shift ‘complexity literacy’ from the periphery to the core of engineering education, accelerate programme accreditation, and equip students with the habits of mind our profession and planet now demand.

Join us in co-authoring this collective intelligence: your lecture notes, lab briefs or reflective prompts could become the catalyst that empowers thousands of educators – and the engineers they shape – to navigate, model and steward the intricate systems that define the 21st century.”

 

Peter Martin, Director of Research and Development, Quanser

“As the UK and many countries around the world jockey for position as leaders in areas like advanced manufacturing and autonomous systems, engineers increasingly work in environments where they are required to connect different disciplines, perspectives, and skills, to understand and navigate sociotechnical systems, and to communicate complexity to diverse audiences.

The Complex Systems Toolkit is focused on supporting educators that are taking on the challenge of integrating complexity into their course modules by providing resources that cover 1) understanding complex systems, 2) the tools and techniques used by professionals, and 3) case studies that aim to bring a more holistic view to many of the Engineering disciplines.

I had the pleasure of being invited to co-chair the development team, along with several academic and industry leaders from around the UK working together to develop the toolkit for launch later this year. As the team cannot accomplish this ambitious task alone, we have recently opened a call for contributions to develop and contribute knowledge articles, guidance material, and teaching activities.

The EPC team is committed to creating a comprehensive and valuable set of resources that will accelerate the adoption of Complex Systems into modules and programmes around the world, and we would love it if you would join us in the creation and deployment of these valuable resources.”  – You can read Peter Martin’s full blog post here.

Please register your interest in developing a resource for the Complex Systems Toolkit by completing this form by 30th June 2025.

You can read more about our Call for Contributions here.

 

This post is also available here.

Background

Complex intelligent systems, systems thinking competency, and understanding complexity are all critical to engineering in the 21st century, and when integrated holistically, complex systems in engineering teaching can align with other initiatives that promote responsible engineering. Learning approaches for integrating complex systems knowledge, skills, and mindsets in engineering supports educators in their own professional development, since many may have not learned about this topic that they are now expected to teach. Accreditation frameworks increasingly refer to complex problems and systems thinking in outcomes for engineering programmes, and yet very few resources exist that support engineering educators to integrate these into their teaching in a comprehensive and effective way or indeed to upskill educators to be able to deliver this teaching.

To address this gap, a Complex Systems Toolkit is being developed by the Engineering Professors’ Council with support from Quanser. Its development is guided by a Working Group comprised of academic, industry, and professional organisation experts.

 

Register your interest

Please register your interest in developing a resource by completing this form by 30th June 2025.

If you have already registered an interest and we are expecting your submission, the deadline to submit first drafts is 8th August. Submission forms will be available soon.

If you would like to become a reviewer for the toolkit, please complete this form.

If you would like to suggest links to pages or online resources that we can add to our database of engineering education resources for complex systems teaching, please email Wendy Attwell: w.attwell@epc.ac.uk

 

The Complex Systems Toolkit Working Group seeks contributors to develop resources for inclusion in the toolkit

These resources will fit into three categories:

Read more about the specific content we are looking for (click on the arrows to expand the sections):

Submit a knowledge article

Submit a knowledge article

The Complex Systems Toolkit Working Group seeks contributors to write knowledge articles on the following subjects:

  1. Why teach / learn about Complex Systems?

This should include reference to:

    • The increasing ubiquity of complex systems
    • The need to understand complexity as a concept
    • The need for systems thinking competency among engineers
    • How complex systems are related to all engineering disciplines
  1. Why integrate Complex Systems into Engineering Education?

This should include reference to:

    • Why engineered systems require certain properties (e.g. resilience)
    • The consequences of system failures
    • Knock-on effects beyond engineering
    • Interaction with other systems (e.g. human and natural)
  1. What are Complex Systems?

This should provide a real-world explanation and include:

    • Examples of engineered systems / Engineering Complexity
    • Examples of socio-technical systems and the wider context

These articles should also connect the why (why must teaching about complex systems be present in engineering education?) to the how (how can this be done efficiently and effectively?). Through these tools, we aim to help upskill UK engineering educators so that they feel capable of and confident in integrating complex systems into their engineering teaching.

The deadline for submitting a knowledge article is 8th August 2025.

 

Step 1: Read the guidance for submitting a knowledge article

Guidance #1: Research Guidance #2: OverviewGuidance #3: PurposeGuidance #4: ContentGuidance #5: References and resourcesGuidance #6: Format

Research:

Before you begin, you may want to review knowledge articles that form a part of the EPC’s Sustainability Toolkit, since we hope that contributions to the Complex Systems Toolkit will be fairly consistent in length, style, and tone.

Knowledge articles are meant to be overviews that a reader with no prior knowledge of complex systems could refer to in order to develop a baseline understanding and learn where to look for additional information (they can reference other sources). They should be understandable to students as well: imagine that an educator might excerpt content from the article to provide their students context on a project or learning activity.

They should be approximately 500-1000 words and reference relevant open-source resources.

Overview:

The articles are meant to be able to stand on their own as a piece of knowledge on a topic; they are also meant to work alongside other articles so that taken together they form a sort of complex systems in engineering handbook.

Purpose:

Each article should inform, explain, and provide knowledge on the topics. Put yourself in the perspective of an engineering educator who is new to complex systems.

Content:

The content of the article should be organised and well developed. That is, it should be presented in a logical way and thoroughly explained.

References and resources:

Where additional explanation could be given, it might point to other resources, and where information is presented from another source, it needs to be properly referenced.

Format

Knowledge articles should follow this format:

  • Premise
  • Body of article, divided up into headed sections as necessary.
  • Conclusion (optional)
  • References: use Harvard referencing
  • Resources

Step 2: Before you submit, review this checklist

  • Does the article both make sense as a single piece of content as well as fit in with the rest of the articles to be developed?
  • Would someone new to complex systems understand the information presented and would it help them?
  • Do you need to expand on any ideas or reorganise them to make them clearer?
  • What additional resources or references have you included?
  • Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.

 

Step 3: Submitting your knowledge article

The deadline for submitting a knowledge article is 8th August 2025.

Knowledge articles should be submitted in Word file format (.doc or .docx). Any corresponding images should be submitted in either .jpeg, .jpg or .png format.

To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

You may download a PDF version of the guidelines (as outlined in Step 1) here.

Submissions forms will be available soon. Please check back.

 

Submit a guidance article

Submit a guidance article

The Complex Systems Toolkit Working Group seeks contributors to write guidance articles on the following subjects:

1. Guide to Explaining Complex Systems to students

This guidance should mirror the tone and style of resources from the Ethics and Sustainability Toolkits which provide a “how to” approach.

2. How Complex Systems relate to AHEP 4.

This should include guidance in understanding language in AHEP 4 around “complex problems” and their connection to Complex Systems.

3. How to scaffold Complex Systems learning outcomes across a curriculum

This should include good practice and examples of learning outcomes or objectives integrated in engineering curricula at different levels, either in general or in a particular engineering degree.

4. How do we assess for skills / competencies in Complex Systems?

This resource could mirror the tone and style of resources from the Ethics and Sustainability Toolkits, and could contain:

These articles should also connect the why (why must teaching about complex systems teaching be present in engineering education?) to the how (how can this be done efficiently and effectively?). Through these tools, we aim to help upskill UK engineering educators so that they feel capable of and confident in integrating complex systems into their engineering teaching.

The deadline for submitting a guidance article is 8th August 2025.

 

Step 1: Read the guidance for submitting a guidance article

Guidance #1: Research Guidance #2: Overview Guidance #3: Purpose Guidance #4: ContentGuidance #5: References and resourcesGuidance #6: Format

Research:

Before you begin, you may want to review guidance articles that form a part of the EPC’s Sustainability Toolkit, since we hope that contributions to the Complex Systems Toolkit will be fairly consistent in length, style, and tone.

Guidance articles are meant to be overviews that a reader with no prior knowledge of complex systems could refer to in order to develop a baseline understanding and learn where to look for additional information. They should be understandable to students as well: imagine that an educator might excerpt content from the article to provide their students context on a project or learning activity.

They should be approximately 1000-1500 words and reference relevant open-source resources.

Overview:

The articles are meant to be able to stand on their own as a piece of guidance on a topic; they are also meant to work alongside other articles so that taken together they form a sort of complex systems in engineering handbook.

Purpose:

Each article should inform, explain, and provide guidance on the topics. Put yourself in the perspective of an engineering educator who is new to complex systems.

Content:

The content of the article should be organised and well developed. That is, it should be presented in a logical way and thoroughly explained.

References and resources:

Where additional explanation could be given, it might point to other resources, and where information is presented from another source, it needs to be properly referenced.

Format

Guidance articles should follow this format:

  • Premise
  • Body of article, divided up into headed sections as necessary.
  • Conclusion (optional)
  • References: use Harvard referencing
  • Resources

Step 2: Before you submit, review this checklist

  • Does the article both make sense as a single piece of content as well as fit in with the rest of the articles to be developed?
  • Would someone new to complex systems understand the information presented and would it help them?
  • Do you need to expand on any ideas or reorganise them to make them clearer?
  • What additional resources or references have you included?
  • Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.

 

Step 3: Submitting your guidance article

The deadline for submitting a guidance article is 8th August 2025.

Guidance articles should be submitted in Word file format (.doc or .docx). Any corresponding images should be submitted in either .jpeg, .jpg or .png format.

To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

You may download a PDF version of the guidelines (as outlined in Step 1) here.

Submission forms will be available soon. Please check back.

Submit a teaching activity

 

Submit a teaching activity

The Complex Systems Toolkit Working Group seeks contributors to create teaching activities based on the following briefs:

1. Case Studies that, through a real-world situation, illustrate different types of complex systems, use cases for the tools that can be used to model / simulate these, techniques that promote development and use of systems architecture, and effects such as tradeoffs, emergent properties, impacts, or unintended consequences. Case studies could also reference the implications for risk, security, ethics, sustainability, teamwork, and communication.

Case study topics could include:

    • Air traffic control
    • Smart agriculture
    • Autonomous driving
    • Robotics
    • Smart cities

2. Demonstrator simulations that provide examples of how systems can be modelled.

This could include:

    • Examples of simple, complicated, and complex systems
    • Interactive examples showing how well-intentioned action can lead to failure
    • Interactive examples showing the best approaches to handling complexity

3. Lesson plans, coursework and teaching activities that are useful in integrating learning around complexity, systems thinking, and complex systems.

These resources should promote active learning pedagogies and real-world teaching methods by showing how complex systems teaching can be embedded within technical problems and engineering practice. Through these resources, we aim to help upskill UK engineering educators so that they feel capable of and confident in integrating complex systems into their engineering teaching.

The deadline for submitting a teaching activity is 8th August 2025.

 

Step 1: Read the guidance for submitting a case study

Guidance #1: Research Guidance #2: Overview Guidance #3: Authenticity Guidance #4: Complexity of issue Guidance #5: Activities and resourcesGuidance #6: Educational level & AssessmentGuidance #7: Format

Research

You may develop the case in any way you see fit, but you should mimic the length, style, and tone of existing case studies found in the EPC’s Ethics Toolkit and Sustainability Toolkit. While complex systems cases may not have the same learning outcomes, the format and approach should be similar. Remember that the audience for these case studies is educators seeking to embed complex systems within their engineering teaching.

You may find the current research on good practice in writing case studies to be helpful as you develop your case. The Recipe for Creating an Ethics Case Study provides guidance that could be applied to complex systems cases.  The guidance for complex systems cases will be available soon. 

Overview

The case study should be presented as a narrative about a complex systems issue in engineering. This issue should allow students to grapple with the technical challenge as well as resulting broader concerns.

Authenticity

Case studies are most effective when they feel like they are realistic, with characters that you can identify or empathise with, and with situations that do not feel fake or staged. Giving characters names and backgrounds, including emotional responses, and referencing real-life experiences help to increase authenticity.

Complexity of issue

Many cases are either overly complicated so that they become overwhelming, or so straightforward that they can be “solved” quickly. A good strategy is to try to develop multiple dimensions of a case, but not too many that it becomes unwieldy. Additionally, complexity can be added through different parts of the case so that instructors can choose a simpler or more complicated version depending on what they need in their educational context.

Activities and resources

You should provide a variety of suggestions for activities to engage learners as well as resources to both help educators prepare and to enhance students’ learning.

Educational level and Assessment

Educational level: When writing your case study, you should consider which level it is aimed at. A Beginner-level case is aimed at learners who have not had much experience in engaging with a complex problem, and usually focuses on only one or two dimensions of a challenge. An Advanced-level case is aimed at learners who have had previous practice in engaging with complex systems, and often addresses multiple challenges. An Intermediate case is somewhere in between.

Assessment: If possible, suggest assessment opportunities for activities within the case, such as marking rubrics or example answers. 

Format

The case study should follow the following format:

  • Learning and teaching notes: This is an overview of the case and its dilemma, and how it relates to AHEP’s themes.
  • Learning and teaching resources: You should provide a list of reliable, authoritative open-source online resources that relate to the case and its issue(s). These can be from a variety of sources, such as academic institutions, journals, news websites, business, and so on. We suggest a minimum of five sources that help to provide context to the case and its issues. You may want to flag up certain resources as suggested pre-reading for certain parts of the case, if you feel that this will enrich the learning experience.
  • Summary: This sets out the case’s initial situation and characters.
  • Issue – Part one: This elaborates on the case and provides a dilemma for the character.
  • Questions and activities: This is where you provide suggestions for discussions and activities related to the case and the dilemma.
  • Further issues: Some case studies are sufficiently complex at one dilemma, but if the case requires it you can provide further parts (up to a maximum of three).
  • Further questions and activities: After each part, you should provide further suggestions for discussions and activities related to the case and the issues.
  • If possible, suggest assessment opportunities for activities within the case, such as marking rubrics or example answers.

Step 2: Before you submit, review this checklist:

  • Is there a strong narrative to the case?
  • Can the topic be addressed at both a large and small scale?
  • Are there places where technical topics could be integrated?
  • Does the case have authentic characters and situations?
  • Is there a clear dilemma in the case?
  • Does the case provide enough complexity to challenge users, but not so much that people might avoid engaging with it?
  • Are there sufficient activities and resources suggested?
  • Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.

 

Step 3: Submitting your teaching activity

The deadline for submitting a teaching activity is 8th August 2025.

To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

Case studies should be submitted in Word file format (.doc or .docx). Any corresponding images should be submitted in either .jpeg, .jpg or .png format.

You may download a PDF version of the guidelines (as outlined in Step 1) here.

Submission forms will be available soon. Please check back.

 

Deadlines

Please register your interest in developing a resource by completing this form by 30th June.

If you have already registered an interest and we are expecting your submission, the deadline to submit first drafts is 8th August. Submission forms will be available soon.

If you wish to develop materials to contribute beyond this, we will be opening the next cycle in spring 2026.

If you would like to become a reviewer for the toolkit (initially between July and October 2025), please complete this form.

If you would like to suggest links to pages or online resources that we can add to our database of engineering education resources for complex systems teaching, please email Wendy Attwell: w.attwell@epc.ac.uk

 

Additional information

In undertaking this work, contributors will become part of the growing community of educators who are helping to ensure that tomorrow’s engineering professionals have the complex systems skills, knowledge, and attributes that they need to provide a better future for us all. Contributors will be fully credited for their work on any relevant Toolkit materials, and will be acknowledged as authors should the resources be published in any form. Developing these resources will provide the chance to work with a dynamic, diverse and passionate group of people leading the way in expanding engineering teaching resources, and may help in professional development, such as preparing for promotion or fellowship. If contributors are not compensated by their employers for time spent on this type of activity, a small honorarium may be available to encourage participation.

As part of the toolkit project, we are also developing tools for collaborating with our Working Group in-house. Stay tuned for further details.

 

Learn more about the Complex Systems Toolkit

Those interested in contributing to the Complex Systems Toolkit should fill out this form and we will be in touch.

Hear from our Working Group Co-Chairs on why you should get involved.

Learn more about the Complex Systems Toolkit, here.

Learn more about the members of the Complex Systems Toolkit Working Group, here.

 

 

This post is also available here.

With nearly 15,000 views to date (as of March 2025), it’s not surprising that awareness of the Sustainability Toolkit is growing. This has also been boosted by academics and advocates including the Toolkit in their events and talks.

In the last few months, the Sustainability Toolkit has been featured at recent events both home and abroad:

We want to know about where you’re talking about the Sustainability Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year – we’d love to feature your story.

This post is also available here.

With over 60,000 views to date (as of April 2025), it’s not surprising that awareness of the Ethics Toolkit is growing. This has also been boosted by academics and advocates including the Toolkit in their events and talks.

In the last few months, the Ethics Toolkit has been featured at recent events both home and abroad:

June 2025

December 2024

November 2024

October 2024

July 2024

As academics know, it’s been “conference season” recently, with the usual rush of meetings and symposia and events that mark the beginning of summer. We’re pleased that the Engineering Ethics Toolkit has been featured at several of these, both home and abroad:

September 2023

Between February 2022 and April 2025 the Ethics Toolkit has had over 60,000 views, so we know you’re looking at it, but we also want to know where you’re talking about the Ethics Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year—we’d love to feature your story.

 

This post is also available here.

The Engineering Ethics Toolkit is a suite of interactive resources, guidance and teaching materials that enables educators to easily introduce ethics into the education of every engineer.

We’re always pleased to see the #EngineeringEthicsToolkit featured in news articles, blogs, podcasts etc., and we’ll be keeping track of those mentions here.

The latest workshops, conferences and events to feature the Ethics Toolkit

Sarah Jayne Hitt talks to Neil Cooke and Natalie Wint about the EPC’s Engineering Ethics Toolkit

Educating the educators – why the UK’s engineering teachers need reskilling too 

A look at engineering ethics education and research in 2023

Ethics workshop

Using the Engineering Ethics Toolkit in your teaching

Engineering ethics in the spotlight

Seen us in the news? Let us know!

Want to feature us? Get in touch for press kits, interviews etc.

 

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Here you’ll find a list of our events related to the Engineering Ethics Toolkit.

You can also search here for meetings of the Ethics Advisory Group, and Ethics Ambassadors.

This month marked a milestone for the engineering education community, as the EPC and E-DAP launched their practical, step-by-step Deaf Awareness Toolkit* to a wider audience for the first time.

Designed for engineers at all career stages, the toolkit offers practical training to build inclusive skills, implement meaningful measures, and encourage open participation, ultimately improving engineering outcomes through greater accessibility and communication.

 

Breaking new ground in Engineering inclusion

Hosted by EPC CEO Johnny Rich, the toolkit’s accompanying webinar ‘Being heard: How everyone benefits from deaf awareness’ (available to watch here) brought together over 50 attendees from more than 29 institutions. It marked the first time the UK engineering community has come together in this way to explore how deaf awareness can unlock stronger communication, collaboration and innovation across the sector.

The panel featured voices from RNID, the EPC, E-DAP and professionals with lived experience, offering engineers practical, experience-led guidance grounded in real-world insight—not just theory.

 

Closed captions: a simple shift, a big impact

One key takeaway is that closed captions do more than support communication. They encourage presenters to structure content more clearly, making complex ideas easier to follow. This is especially important in engineering, where technical information needs to be communicated accurately across classrooms, meetings, and fast paced R&D environments.

Lucia Capogna (E-DAP) showed just how simple this can be in practice, giving a live demonstration of how to activate captions in PowerPoint. It is a small shift that can make a big difference, and it is easier to implement than many people realise.

 

Key messages from the panel

Frankie Garforth (RNID)
Frankie addressed widespread misconceptions around deafness, hearing loss and tinnitus, reminding us that over 18 million people in the UK are affected. “You’ll know people living with this,” she said. “It’s good to support them.” She highlighted how deaf-aware technologies like closed captions can significantly improve communication – often in ways people don’t realise until they experience it first hand.

Dr. Sarah Jayne Hitt (EPC)
Sarah Jayne emphasised that some of the most impactful accessibility technologies are already freely available. Many were showcased earlier in the webinar, and others can be explored via the EPC website. These tools, she explained, complement the learning that happens through real human connection – like her own journey learning ASL from a school teacher and later embedding deaf awareness in everyday university life.

Ellie Haywood (E-DAP)
Ellie shared how she took personal responsibility to embed deaf awareness into her workplace a few years ago. Her goal: to make accessibility part of the default way her team operated, so no one would need to ask for special measures. The impact was immediate – improving team efficiency and communication well beyond the deaf community. This inclusive approach proved particularly effective in high-tech R&D projects.

 

Pilot and student feedback

E-DAP piloted the Deaf Awareness Toolkit with nearly 500 first-year students across civil, mechanical and other engineering disciplines. Feedback was overwhelmingly positive, particularly among non-native English speakers, who reported being better able to follow lectures and understand the content.

One simple innovation, using a blank PowerPoint slide during Q&A, made a big difference in helping students catch questions that might otherwise be lost in the noise of a busy classroom.

Survey responses showed nearly two-thirds of students felt neutral to strongly positive about captions and wanted to see them used more widely.

 

Resources and tools available now

The Deaf Awareness Toolkit is designed to help educators and engineers improve everyday communication and inclusion. It includes:

 

Beyond communication: safety, inclusion and culture

Deaf awareness goes beyond communication. In engineering environments, visual alarms and clear auditory cues support safety. Inclusive meeting behaviours, accessible research environments, and awareness of hearing health can all contribute to a more inclusive and effective working culture. Clear communication isn’t just a benefit for deaf individuals, it supports better outcomes for everyone.

 

The vision: One Million Engineers

This is just the beginning. Our goal is to engage one million engineers with accessibility.

With the EPC platform reaching 7,500 engineering academics across 82 institutions, and 179,000 students enrolled in those institutions, we are taking our first steps towards that vision.

Accessibility isn’t an optional extra. It’s a core part of engineering education and inclusion that we want to instil in future engineers.

 

What’s next

E-DAP and the EPC are now working together to embed deaf awareness more deeply into engineering practice and culture. Future activities will include:

 

*E-DAP’s Role as an Ally

E-DAP is an active ally to the Deaf and deaf communities. We do not speak for them, but work in partnership with experts, advocates, and individuals with lived experience to improve awareness and inclusion in engineering and education.

We collaborate with the community to learn and co-create. Our goal is to support engineering innovation by enabling better communication for everyone, and to implement inclusion in engineering through technology, tools, learning, and partnerships that embed inclusive practices and create lasting change.

A Note on Language

Language matters. Whether someone identifies as Deaf, deaf, has hearing loss or tinnitus, they are all individuals, and respectful language helps create more inclusive spaces. If you’re unsure how to phrase something, ask. It’s always better to check than assume. Helpful guidance on terminology is available from the RNID.  

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

We’ll keep you updated on the latest events associated with the Complex Systems Toolkit.

2025

The latest news and updates on the development of the Complex Systems Toolkit.

28th April 2025 – The first Review & Curation sub-group meeting takes place.

17th April 2025 – The first Curriculum & Pedagogy Content sub-group meeting takes place.

15th April 2025 – The first Technical & Simulation Content sub-group meeting takes place.

April 2025Sub-group kick-off meetings are confirmed.

24th March 2025 – The second meeting of the Complex Systems Toolkit Working Group takes place.

March 2025 – Sub-groups of the Working Group are confirmed, to work on Curriculum Pedagogy Content, Technical and Simulation Content, Review and Curation, and Launch and Outreach.

27th February 2025 – The first meeting of the Complex Systems Toolkit Working Group takes place.

February 2025 – The first official meeting of the Working Group leadership team takes place.

December 2024 – Membership of the Complex Systems Toolkit Working Group is confirmed. The Working Group comprises subject experts from academia and industry who will manage the development of the toolkit.

November 2024 – The EPC announces that the development of a Complex Systems Toolkit, which will be supported by Quanser, and is aimed at supporting educators in their teaching of the subject. A call is put out for volunteers to be members of the Working Group, content reviewers, content contributors, and toolkit ambassadors.

 

This post is also available here.

Authors: Dr. Kieran Higgins (Ulster University); Dr. Alison Calvert (Queen’s University Belfast).

Keywords: Curriculum design; Global responsibility; Sustainability; SDGs; Course design; Higher education; Pedagogy.

Who is this article for?: This article should be read by module coordinators, programme directors, and teaching teams in higher education who want to meaningfully integrate ESD into their curriculum design and delivery.

 

It’s always a struggle to get started on something new in the time- and resource-poor environment that is higher education. Sustainability can become just another box to tick rather than the world-changing priority it should be.

That’s why we have created the Education for Sustainable Development Curriculum Design Toolkit to build sustainability into the curriculum in a way that stimulates the critical reflection it needs to truly embed it within modules.

We knew there was more to ESD than simply labelling a module handbook with the SDG logos, especially when it was only SDG4 because it happens to mention education. There was a need to become familiar and comfortable with a deeper perspective on the SDGs and their related targets and indicators – without becoming intimidated by them. ESD should prepare students to tackle unforeseen challenges and navigate complex systems, rather than focusing on content alone. As higher education professionals, we recognised the inherent challenges of this.

As a result, we developed our CRAFTS (Co-Designing Reflective Approaches for the Teaching of Sustainability) model of curriculum design, based on an adaptation of Design Thinking, to provide a structured and usable, yet accessible, flexible, and not discipline-specific means of embedding and embodying ESD in the curriculum. We were then approached by AdvanceHE to develop this further into a practical, systematic resource that would empower educators to take genuine ownership of sustainability in their teaching and assessment.

The Toolkit helps tackle these issues in a straightforward way by breaking them down into five stages.

First, it shows how to analyse what stakeholders like students, employers and accrediting bodies want and need from a module when it comes to sustainability.

Then, it guides educators to map exactly what is being taught as the curriculum stands, aligning it to the SDGs and the ESD Competencies. This is a moment of real relief for many people, who discover that much of what they already do aligns perfectly with ESD.

After that, there’s a guided reflection to see where stronger integration might happen or where superficial coverage can be expanded into something more meaningful.

The redesign process helps to embed active learning and authentic assessments and finishes off with an action plan for moving forward and measuring impact for future evaluation.

We find it heartening to watch colleagues pivot from feeling like ESD is an add-on to realising it can enhance what they already do. Instead of worrying that they must become experts in every single SDG, the Toolkit reminds them that authentic engagement with a few well-chosen goals can lead to the deeper kind of learning we all aspire to provide.

This personal, reflective approach has helped academics overcome the sense that sustainability in the curriculum is an overwhelming requirement. They see it as a powerful lens through which students learn to handle uncertainty, become resilient critical thinkers and gain the confidence to tackle real-world problems.

We hope the Toolkit continues to spark conversations and encourage more creative approaches to ESD across disciplines. We don’t believe there’s a one-size-fits-all solution. It has been inspiring to see colleagues reclaim that sense of possibility and excitement, reassured that teaching for a sustainable future can be woven into what they’re already doing – just with an extra layer of intentionality and reflection.

If you’re looking for a way to bring ESD into your own classroom, we hope the Toolkit will be a reliable companion on that journey.

Dr Kieran Higgins (Lecturer in Higher Education Practice, Ulster University) and Dr Alison Calvert (Senior Lecturer in Biological Sciences, Queen’s University Belfast) have collaborated on Education for Sustainable Development projects for over 4 years, drawing on extensive and wide ranging experiences of higher education and sustainability. Their vision is of transformed global higher education curricula that empowers all graduates, regardless of discipline or career path, to become champions of a sustainable future.

 

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

Let us know what you think of our website