As academics know, it’s been “conference season” recently, with the usual rush of meetings and symposia and events that mark the beginning of summer. We’re pleased that the Engineering Ethics Toolkit has been featured at several of these, both home and abroad:

Between January and April 2024 the Ethics Toolkit had just shy of 10,000 views, so we know you’re looking at it, but we also want to know where you’re talking about the Ethics Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year—we’d love to feature your story.

Elsevier’s James Harper has just written a valuable new guidance article for the Engineering Ethics Toolkit on Why information literacy is an ethical issue in engineering. We got together with him to discuss this further.

 

James, where did your passion for this issue originate and how can the resources available for information literacy be put to use both by faculty and students?  

We live in a time marked by an unprecedented deluge of information, where distinguishing reliable and valuable content has become increasingly difficult. My concern was to help engineering educators meet the critical challenge of fostering ethical behaviour in their students in this complex world. Students are in real need of an ethical compass to navigate this information overload, and the digital landscape in particular. They need to acquire what we call ‘information and digital literacy’, specifically, learning how to research, select and critically assess reliable data. This is both a skill and a practice.  

For students, how does this skill relate to the engineering workplace? 

From observing professional engineers, it’s clear they require comprehensive insights and data to resolve problems, complete projects, and foster innovation. This necessitates extensive research, encompassing case studies, standards, best practices, and examples to validate or refute their strategies. Engineering is a profession deeply rooted in the analysis of failures in order to prevent avoidable mistakes. As a result, critical and unbiased thinking is essential and all the more so in the current state of the information landscape. This is something Knovel specifically strives to improve for the communities we serve. 

Knovel – a reference platform I’ve significantly contributed to – was initially built for practising engineers. Our early realisation was that the biggest obstacle for engineers in accessing the best available information wasn’t a lack of resources, but barriers such as insufficient digitalisation, technological hurdles, and ambiguous usage rights. Nowadays, the challenge has evolved: there’s an overload of online information, emerging yet unreliable sources like certain chatbots, and a persistently fragmented information landscape.  

How is Knovel used in engineering education? Can you share some insights on how to make the most of it? 

Knovel is distinguished by its extensive network of over 165 content partners worldwide, offering a breadth of trusted perspectives to meet the needs of a range of engineering information challenges. It’s an invaluable tool for students, especially those in project-based learning programs during their Undergraduate and Master’s studies. These students are on the cusp of facing real-world engineering challenges, and Knovel exposes them to the information practices of professional engineers. 

The platform is adept at introducing students to the research methodologies and information sources that a practising engineer would utilise. It helps them understand how professionals in their field gather insights, evaluate information, and engage in the creative process of problem-solving. While Knovel includes accessible introductory content, it progressively delves into more advanced topics, helping students grasp the complexities of decision-making in engineering. This approach makes Knovel an ideal companion for students transitioning from academic study to professional engineering practice. 

How is the tool used by educators? 

For educators, the tool offers support starting in the foundational years of teaching, covering all aspects of project-based learning and beyond. It is also an efficient way for faculty to remain up-to-date with the latest information and data on key issues. Ultimately, it is educators who have the challenge of guiding students towards reputable, suitable, traceable information. In doing so, educators are helping students to understand that where they gather information, and how they use it, is in itself an ethical issue. 

To learn more about the competence of information literacy check out our guidance article, Why information literacy is an ethical issue in engineering.

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data. 

46% of EPC members already have access to Knovel. To brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com.  

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

Get Knovel to accelerate R&D, validate designs and prepare technical professionals. Innovate in record time with multidisciplinary knowledge you can trust: Knovel: Engineering innovation in record time

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: James E. Harper, Senior Product Manager (Knovel /Elsevier).

Keywords: Information literacy; digital literacy; misleading information; source and data reliability; ethical behaviour; sustainability. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate technical information literacy into the engineering and design curriculum or module design. It will also help to provide students, particularly those embarking on Bachelor’s or Master’s research projects, with the integrated skill sets that employers are looking for, in particular, the ability to critically evaluate information. 

 

Introduction:

In an era dominated by digital information, engineering educators face the critical challenge of preparing students not just in technical skills, but in navigating the complex digital landscape with an ethical compass. This article explores how integrating information and digital literacy into engineering education is not only essential for fostering ethical behaviour but also crucial for ensuring sustainability in engineering practices. 

The intertwined nature of information and digital literacy in engineering is undeniable. Engineering practitioners need to be able to select and critically assess the reliability of the information sources they use to ensure they comply with ethical practice.  The Engineering Council and Royal Academy of Engineering’s Joint Statement of Ethical Principles underscores the need for accuracy and rigour, a core component of these literacies. Faculty members play a pivotal role in cultivating these skills, empowering students and practitioners to responsibly source and utilise information. 

 

The challenge of information overload:

One of the challenges facing trained engineers, engineering faculty and students alike is that of accessing, critically evaluating, and using accurate and reliable information.  

A professional engineer needs to gather insights and information to solve problems, deliver projects, and drive innovation. This involves undertaking as much research as possible: looking at case-studies, standards, best practices, and examples that will support or disprove what they think is the best approach. In a profession where the analysis of failures is a core competence, critical, dispassionate thinking is vital.  In fact, to be digitally literate, an ethically responsible engineer must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). 

Students, while adept at online searching, often struggle with assessing the credibility of sources, particularly information gleaned on social media, especially in their early academic years. This scenario necessitates faculty guidance in discerning reputable and ethical information sources, thereby embedding an ethical approach to information use early in their professional development. 

 

Accuracy and rigour:

Acquisition of ‘information literacy’ contributes to compliance with the Statement of Ethical Principles in several ways. It promotes the ‘accuracy and rigour’ essential to engineering. It guarantees the basis and scope of engineering expertise and reliability so that engineers effectively contribute to the well-being of society and its safety and understand the limits of their expertise. It also contributes to promoting ‘respect for the environment and public good’, not just by ensuring safety in design, drawing up safety standards and complying with them, but also by integrating the concept of social responsibility and sustainability into all projects and work practices. In addition, developing students’ capacity to analyse and assess the accuracy and reliability of environmental data enables them to recognise and avoid ‘green-washing’, a growing concern for many of them. 

 

Employability:

In the workplace, the ability to efficiently seek out relevant information is invaluable. In a project-based, problem-solving learning environment students are often confronted with the dilemma of how to refine their search to look for the right level of information from the very beginning of an experiment or research project. By acquiring this ‘information literacy’ competence early on in their studies they find themselves equipped with skills that are ‘workplace-ready’. For employers this represents a valuable competence and for students it constitutes an asset for their future employability. 

 

Tapping into specialised platforms:

In 2006 the then-CEO of Google, Eric Schmidt famously said “Google is not a truth machine”, and the recent wave of AI-powered chatbots all come with a stark disclaimer that they “may display incorrect or harmful information”, and “can make mistakes. Consider checking important information.”  Confronted with information overload and the difficulty of sifting through non-specialised and potentially unreliable material provided by major search engines, students and educators need to be aware of the wealth of reliable resources available on specialised platforms. For example, Elsevier’s engineering-focused, purpose-built platform, Knovel, offers trustworthy, curated engineering content from a large variety of providers. By giving students access to the same engineering resources and tools as professionals in the field it enables them to incorporate technical information into their work and provides them with early exposure to the industry standard. For educators, it offers support for the foundational years of teaching, covering all aspects of problem-based learning and beyond. It is also an efficient way of remaining up-to-date with the latest information and data on key issues. The extensive range of information and data available equips students and engineers with the ability to form well-rounded, critical perspectives on the various interests and power dynamics that play a role in the technical engineering challenges they endeavour to address. 

 

Conclusion:

By embedding information and digital literacy into the fabric of engineering education (such as by using this case study), we not only promote ethical behaviour but also prepare students for the challenges of modern engineering practice. These skills are fundamental to the ethical and sustainable advancement of the engineering profession. 

 

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.  

46% of EPC members already have access to Knovel.  If you don’t currently have access but would like to try Knovel in your teaching or to brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson,  susan.watson@elsevier.com. Check out this useful blog post from James Harper on exactly that topic here.

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

 

References:

 

Additional Resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

What are the top ethical issues in engineering today, and how can you incorporate these in your teaching?

In our Engineering Ethics workshop at the 2023 SEFI Conference at TU Dublin, we asked participants what they felt were the top ethical issues in engineering today. This word cloud captured their responses, and the results reveal concerns ranging from AI and sustainability to business and policy and beyond.

When incorporating ethics into a lesson or module, educators might want to find teaching resources that address a topic that’s recently been in the news or something of particular relevance to a group of students or to a project brief. But how can this be done efficiently when there are now so many teaching materials available in our Toolkits?

Fortunately, sifting through available resources in the Ethics Toolkit is now easier than ever, with the release of the new Toolkit search function. The Toolkit search allows users to:

  • Choose from a list of suggested keyword tags;
  • Search by multiple keyword tags or their own search terms;
  • Refine the search results by one of more of the following filters: engineering discipline; educational level; type of content.

It even pulls resources from across different toolkits, if so desired.

Not only will this help you discover and find materials that are right for your educational context, but the search function could even become a teaching tool in itself. For instance, you could poll students with the same question we used in the SEFI Workshop, asking them what they think the top ethical issues are in engineering today, and then design (or co-design) a lesson or activity based on their responses and supported by resources in the Toolkit. If you don’t find resources for a particular issue, that could be a great learning opportunity to0 – why might these topics not be addressed? Of course, you can always create a resource that fills a gap and submit it to be a part of the Toolkit: we would love to see a student-developed case study or activity.

Let us know how you have used the Toolkit search function, and if there are ways we could improve it. Happy searching!

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.

The EPC’s Engineering Ethics Toolkit is supported by the Royal Academy of Engineering. This resource is designed to help engineering educators integrate ethics content into teaching.

 

Contents

The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

  • Ethics Explorer: An interactive tool to help educators navigate the landscape of engineering ethics education. Start here and find your own pathway for embedding ethics.
  • Advice and guidance: A library of expertise in engineering ethics and how best to embed learning into teaching practice.
  • Case studies: Worked examples of real and hypothetical situations presenting ethical engineering challenges for use in teaching scenarios.
  • Case enhancements: Teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them.
  • Reports and studies: The latest research on ethics within engineering education and the engineering profession.
  • Blogs: Personal experience, news and updates on the Engineering Ethics Toolkit.
  • Get involved: A guide to how you can contribute to the Engineering Ethics Toolkit and community.
  • Contributor biographies: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
  • Support the Engineering Ethics Toolkit: Collaborate with us and support this important project.
  • Our supporters: We would like to thank the Royal Academy of Engineering, which has supported the Engineering Ethics Toolkit since its inception.

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts on these resources from the EPC’s Vice President.

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made. Some of these materials are also available as PDF documents on the RAEng website.

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, ethical issues and so on. Additionally, we are looking to create ‘enhanced’ versions of each case study, including specific teaching materials such as lesson plans, presentations and worksheets. For more information, see our Get involved page.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Have you used our Engineering Ethics Toolkit in your teaching? We want to hear from you!

February 2022 saw the launch of our Engineering Ethics Toolkit, with a range of case studies and guidance articles available to help engineering educators embed ethics into their modules and curriculum.

In March 2023 we published further guidance articles and case studies, as well as enhancements on some of the classroom activities suggested within our original cases. June 2023 saw the launch of the interactive Ethics Explorer, which replaced the static engineering ethics curriculum map from 2015.

More and more engineering educators are telling us that they use these resources, and are finding them invaluable in their teaching. A brave few have contributed blogs, detailing their methods of using and adapting our case studies and classroom activities, and giving an honest appraisal of their own learning curve in teaching ethics.

We’ve heard about leaning in to your discomfort, first time fear, and letting students flex their ethical muscles.

We would love to publish more of this type of content. We want to hear your experiences, good or bad, along with tips, potential pitfalls, what you added to our content in your teaching, and what you and your students got out of the experience. If you have students who are enthusiastic about sharing their thoughts, we would love to hear from them too.

We’d like you to send us your blogs and testimonials, whether that be a couple of sentences or paragraphs, or a full article with diagrams, or anything in between.

You can submit your blog post or testimonial here, or email Wendy Attwell to discuss your submission first.

We look forward to hearing your experiences.

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Sarah Junaid (Aston University); Yann Serreau (CESI); Alison Gwynne-Evans (University of Cape Town); Patric Granholm (Åland University of Applied Sciences); Kathryn Fee (Queen’s University Belfast); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Keywords: Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design

 

Using a constructive alignment tool to plan ethics teaching:

Incorporating ethics into an already-packed engineering curriculum can be an overwhelming prospect. But as more accreditation bodies are requiring engineering programmes to evidence the inclusion of ethics, this activity is becoming essential. Recently, a planning tool has been developed by a team of academics that you can use to constructively align your learning outcomes with activities and assessments that positively reinforce the inclusion of ethics.

For instance, in a year 2 Mechanical Engineering course, an existing outcome might read: “Use CAD modelling and additive manufacturing in the product development process and embed control sensors, actuators and physical hardware into a complete system.” As it is written, it contains no reference to ethics. But after comparing this outcome against language found in AHEP4, the CDIO Syllabus, and the Learning Landscape found in this Toolkit’s Ethics Explorer, you might revise it to read: “Use CAD, modelling and additive manufacturing in the product development process and embed control sensors, actuators and physical sensors to design a safe and complete system to address a societal need.” The minor changes to the language (shown in italics) ensure that this outcome reinforces the ethical dimension of engineering and encourages the ethical development of engineers. These changes also then inform the language used in activity briefs and the criteria by which students are assessed.

This tool has been used in workshops at Aston University and the 2023 SEFI conference, and is endorsed by CDIO.

Download this planning tool:

 

Engineering Ethics Teaching – Planning Tool Worksheet

Stage1: Resources – Tabulate all relevant resources and their Learning Outcomes or Programme Outcomes:

What are your Learning Outcomes for the topic you will teach? Please list them here.

Highlight the verbs in blue and the ethical topics in red; this will help highlight any potential gaps.

Program level (My module, course, class, or lecture)  

Accreditation level

 

National or Professional level ethics map or framework (optional) International level
Reference/ Source [Your University and course title] [Your national accreditation board] [e.g. codes of conduct, code of ethics, ethical principles, suggested teaching approaches] [e.g. CDIO Syllabus, ABET, Washington Accord]
Learning Outcome 1 [Write current Learning Outcome here] [Copy and paste the relevant competency here] [Copy and paste the relevant guidance here] [Copy and paste the relevant competency/skill here]
Learning Outcome 2 Enter text here Enter text here Enter text here Enter text here
Learning Outcome 3 Enter text here Enter text here Enter text here Enter text here

 

Stage 2: Re-write Learning Outcomes (LOs): 

Learning Outcomes Re-worded Learning Outcomes Rationale
LO1.

[Copy and paste LO from Stage I table here]

LO1.

[Re-write LO and highlight verbs in bold here]

[Justify your changes or if unchanged, justify why here]
LO2. LO2. Enter text here Enter text here
LO3. LO3. Enter text here Enter text here

 

Stage 3: Ethics Teaching Tools – Evidence-based tools and resources to help with teaching engineering ethics:

 

Three Examples of Ethics Teaching Models:

1. The Rest Model for Ethical Decision Making – Individual (Jones, 1991).

2. The Ethical Cycle – Problem-solving (Van de Poel & Royakkers, 2007).

3. The Innovent-E Model – Competencies – Language: French
(For access to competences in ethics contact Yann Serreau: yserreau@cesi.fr)

Note: you can use other models.

 

Stage 4: Constructive Alignment – Tabulate the LOs, activity and assessment, and ensure alignment:

My module – Learning Outcomes Learning & teaching activity Assessment
LO1.

[Copy and paste new LO from Stage II table here]

[What activity will support and prepare the student for the assessment?] [What assessment would be needed to demonstrate this new LO?]
LO2. Enter text here Enter text here Enter text here
LO3. Enter text here Enter text here Enter text here

 

 

Download this planning tool:

 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr. Jude Bramton (University of Bristol); Elizabeth Robertson (University of Strathclyde); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Keywords: Collaboration; Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.

 

How to organise class sessions:

Engineering educators can find a wealth of ethics case studies in the Engineering Ethics Toolkit. Each one focuses on different disciplines, different areas of ethics learning, and different professional situations, meaning there is almost certainly a case study that could be embedded in one of your classes.

Even so, it can be difficult to know how to organise the delivery of the session. Fortunately, Toolkit contributors Jude Bramton of the University of Bristol and Elizabeth Robertson of the University of Strathclyde have put together diagrams that demonstrate their approaches. These processes can act as helpful guides for you as you integrate an Ethics case study in one of your engineering class sessions.

 

Jude Bramton’s class session organisation looks like this:

You can read more about her approach here.

 

Elizabeth Robertson’s class session organisation looks like this:

You can read more about her approach here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Elizabeth Robertson, Teaching Fellow in the Department of Electronic and Electrical Engineering at The University of Strathclyde, discusses how we need to move past our discomfort in order to teach ethics in engineering.

 

I could wax lyrical about the importance of engineering ethics for today’s students who are tomorrow’s engineers. However, there are lots of other articles that will do it much better than I can. All I’d say in short is that as educators, we know it’s important, our graduate employers tell us it’s important, and our accrediting bodies are looking for us to include it through our curriculum because they know it’s important too.

The task for us as educators then is to demonstrate the importance of ethics to our students and to offer students a learning experience that is relevant to them at whatever stage they are and that that will also offer the most impact – but as with so many things, that is easier said than done.

 

Getting comfortable with what the toolkit is and how to use it

I have used the Engineering Ethics Toolkit since its launch, and I cannot be a bigger proponent for its usefulness for staff or its impact on students’ learning. Educators are always challenged to design sessions that are engaging, participatory and have real student impact. With its range of case studies and really useful advice and guidance documents, the Engineering Ethics Toolkit does all three.

The documentation in the toolkit contains a mix of introductory material on what ethics is and why to integrate ethics education into modules alongside practical considerations including the ‘hows’ – best practice in teaching ethics and methods for assessment and evaluation.

 

Choosing a case study for your students

The suite of broad engineering ethics case studies means that there is a case study for a range of student needs (and there are often new ones on the horizon too). In my teaching that means sometimes I use case studies that are related to discipline-specific learning the students are currently undertaking so they can pull in technical knowledge and experience they have, and in other cases I choose something totally removed in order to allow students to spend more time with the ethical dimensions of a case and not get preoccupied with the technical.

 

The case studies I’ve used

During the last academic year we used the case study ‘Glass safety in a heritage building conversion’ with my first year groups, and that’s pretty far removed from the electrical, mechanical and computer science modules they take. That decision was intentional; the aim was to get students to concentrate on the principles of ethics, stakeholder mapping, stakeholder motivations and interpersonal dynamics and not be ‘distracted’ by the technical aspects. This was one class in a module centred around a sustainable design challenge and we used the Ethics toolkit to help students develop an understanding of the importance of economic, environmental and social factors. Working with a case study not in their exact engineering field helped students see that they must look beyond the technical to understand people – be they stakeholders, end users or community members. Students worked to make decisions on actions with honesty and integrity and to respect the public good. The students engaged really well in the session and there were some vibrant discussions on which actions were ‘right’ or ‘wrong’ and vitally the students grasped how stakeholder dynamics and dynamics of power in projects can affect outcomes.

In comparison, for my third year undergraduate students I intentionally chose a case study that would link to their hardware/software project that was upcoming, and connect closely to learning in their communications module: ‘Smart homes for older people with disabilities’. This meant that alongside stakeholder mapping we identified technical factors looking into possible routes of data leaks. Students engaged so well and were actively debating possible actions to take covering ethical, technical and legal implications. It pained me every time I had to cut conversations short so we could cover the full case study – so much so that this year we’re going to try and give them longer than an hour for the process.

 

Getting comfortable with the students in the lead

I use a participatory teaching methodology often. This means starting our 50 minutes together with student reflection, having 5/10 minutes of introductory talk and then rounds of group discussions. The students are therefore in the driving seat in the classroom – students set the tone and the pace. If they are having valuable, meaningful and worthwhile discussions and demonstrating valuable ethical discussions, my plans change. This means maybe not covering all parts of the case study  maybe skipping a stage or two of discussions that were in my plans. As long as the session’s objective are met, the students can write their own journey.

 

What my sessions look like

As the song goes, we start at the very beginning as it’s a very good places to start. That means first asking the students their current understanding of what ethics is – we did this first by using a word association activity, and asked what came to mind when they hear the term ‘ethics.’ Their answers in the word cloud below demonstrate a good maturity of thought to work from in the session. We then moved on to discuss when we should consider ethics – for us as individuals, members of society and as engineers.

What they said:

Building on from our prompting questions we then introduced the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering and covering the four fundamental principles of ethics defined therein.

From there we worked with the toolkit and our case study of choice. Most case studies come in 2-4 ‘phases’, each with a bit more of the story that I’d briefly talk over, which we gave them printed and electronically. The phases often include a ‘dilemma’ for the protagonist and some questions for provoking thought and discussion or more technical work as is suitable. The questions and activity prompts that are within the case studies are invaluable to educators and students in helping design the session and for giving student groups a place to start if they are not sure how to tackle part of the story. We worked on a think-pair-share model asking individuals to think, groups to discuss, and then asking a few groups to report back to the room. One thing I want to do more of is asking different groups to role play as different stakeholders. Asking students to embed themselves in different perspectives can lead to some very valuable insights.

 

Getting comfortable in a room of differing views

Students worked in small groups with the case study and an important stage was asking groups to report back their thoughts. These were volunteered rather than cold-called and in asking for more groups to share I would prompt if anyone had a different view to make sure that a range of perspectives were heard. Though in fairness to the students they engaged so readily and enthusiastically that I often ran short of time rather than being left with ‘dead air’.

I have delivered ethics sessions to groups of 12, 30 and 100. In all cases it is important that all students feel heard and all views and perspectives respected. You need to make sure that an open, honest, and non-judgemental tone is set. This allows all students to feel they are free to ask questions and importantly share their perspectives, meaning that there is a big onus on the educator to act as a facilitator as much as a teacher.

Good facilitation is key. Some things to think about:

 

Getting comfortable with no absolutes

What is vital in running these sessions is offering some sort of conclusion when there is no ‘right’ answer. My third-year cohort knew that a class on ethics was in the schedule – that I was going to get them to answer Menti polls, work in small groups and report back to the room. These are my established teaching styles and by halfway through the semester the students are well used to it. What they weren’t prepared for was that in the end I wasn’t going to tell them a ‘right’ answer.

All the students I have worked on ethics with were somewhat disappointed when in the end they were not offered the ‘right’ answer for the ethical dilemmas posed. What I did do though was still offer them a conclusion to their learning. I point out some of the excellent examples of consideration and thought offered by groups to highlight themes from the four principles. It’s useful here too to point students to where they’ll apply their learning from the session in the short and long term. For my students their future projects all require ethics, inclusion and sustainability statements. It’s important though to also evidence where the learning will go beyond the classroom.

There are examples of cases that in hindsight there are clear cases of ‘rights’ and ‘wrongs’ (you can pull examples of fields relevant to you, often cited is the Challenger tragedy and Ford Pinto Memo). What we conclude on though is getting comfortable with a lot of decision making professionally being in the ‘middle’ – a complex space with multiple competing factors. Engineers need to work with the principles of ethics to guide us to make sound and well-informed judgements.

It’s essential that tomorrow’s graduate engineers understand that ethics is not a ‘tack on’ statement at the end of a project proposal but rather that ethics is a core part of the role of an engineer. Using the Engineering Ethics Toolkit to help integrate ethics into the core of their education today is a very good way to do that. I recommend the Engineering Ethics Toolkit to all educators – the wealth of the resource cannot be understated in its support to a teacher’s session design and, most importantly, to a student’s learning.

You can find out more about getting involved or contributing to the Engineering Ethics Toolkit here.

 

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website