We want to see ethics embedded in all engineering modules and courses, across all higher education institutions. But to see this achieved we need your help. There are many ways that you can promote the teaching of ethics within your institution and department, and we’ve listed just a few here to get you started.

 

Our toolkit resources are designed to help educators embed ethics in their teaching, even if they have no previous experience of teaching ethics. But we need educators to know that these resources exist and how to find them. We’ve provided some key talking points about the Engineering Ethics Toolkit that you can discuss with colleagues over a cup of coffee at lunchtime or some PowerPoint slides for something more formal.

Download our posters and put them up on staff noticeboards in your department. We have a poster for the Ethics Toolkit, the Ethics Explorer interactive tool, and our Ethics Ambassadors community. Spread the word!

The Engineering Ethics Toolkit is open access, and its teaching resources can be adapted to suit individual needs. We’d love for you to add us to your list of go-to resources.

Sharing on social media is a great way to spread the word about our guidance articles, case studies, case enhancements and blogs.

Often, all it takes is a bit of encouragement to give someone the confidence to start adding ethics to their teaching. We have advice on organising class sessions using our case studies; why not sit down with a couple of colleagues, get to grips with it, and make a plan?

There’s no point just talking about it: at some point you have to do it! We have advice on how to integrate ethics into a module or course, how to organise class sessions using our case studies, how to tackle tough topics, and even how to teach ethics for the first time. We’ve believe we’ve got everything you need to get started, but if you think we’re missing something, let us know.

Once you’ve got to grips with teaching ethics, you’re perfectly placed to teach your colleagues how to go about it. Tell them about your own experiences, what was easy, what was difficult, and where to find the resources they need!

Whether you feel like a seasoned pro or are still struggling to say ‘deontology debate’, we want to hear your experiences. You can submit a blog to the Toolkit, or complete our feedback form.

Our case studies are published with a CC-BY-SA Creative Commons 4.0 license, meaning that you can (and are encouraged to!) share and adapt them, making them appropriate to your specific context. If you would like to send us a link to any adapted materials that you have published, we’ll add it to our resources.

Hopefully all of your institution’s engineering students will come across engineering ethics during their course. But if there are some modules or courses that don’t currently embed ethics, you could reach out to your institution’s SU Engineering Society and offer to give a brief talk with Q&A to discuss issues such as what ethics is, why it’s important in engineering, and how engineers can make ethical decisions. This way you are introducing keen engineers to a vital subject that they might miss out on elsewhere.

Engineering curricula can do more to help students effectively develop ethical awareness, reasoning, or motivation in future engineering professionals. Whilst individual educators can (and do) make a vast difference by embedding ethics across their own engineering modules, a top down approach from the institution making ethics integration mandatory across curricula would mean that all engineering teaching staff would have to embed ethics in their courses and modules. You could make ethical practice a unique selling point of your programme!

Need some teaching activities on the fly? Check out our case studies and case enhancements for last minute classroom materials that you can use when you haven’t had time to plan in advance! If you’re ready to take a more methodical approach to planning across the year or curriculum, you can start with our Ethics Explorer, read all of our advice and guidance, pick our juiciest case studies, and peruse our personal blogs.

Our community of practice is growing steadily, and we encourage you to join, and join in.

We are seeking academics to review the various resources that are submitted to us for publication within the Engineering Ethics Toolkit. Our expectation is that we may ask you to review two or three pieces of content per year. You can apply to be a reviewer here.

We encourage academics to submit advice and guidance, personal blogs, case studies, enhancements and other teaching materials to us for publication in the Engineering Ethics Toolkit. Working with colleagues on this content spreads the word and doubles the expert value. You can find out more about submitting content for the Toolkit here.

Ready to talk ethics? Organise an informal lunch or coffee meet up with department colleagues to share experiences and good practice in teaching engineering ethics. Going to a conference? Get ready to talk ethics to anyone who will listen! We’ve got some handy talking points for you to use. Keep an eye out for opportunities to share resources and expertise.

Tell us your ideas for promoting ethics within your institution or workplace. Email w.attwell@epc.ac.uk.

This post is also available here.

Have YOU used the Engineering Ethics Toolkit? We’re trying to understand the impact that this educational resource has had since its launch in 2022. Understanding impact is key to our ability to further develop and expand the Toolkit’s reach. 

You can help us by answering a few questions (below) and by forwarding this questionnaire to anyone you know who might also have used the Ethics Toolkit. There is no deadline for submitting this form; we are interested in your ongoing experiences.

Select all that apply
Select all that apply

If you would like to submit a blog post on your experience of teaching ethics or using the Engineering Ethics Toolkit, you can do so here.

As academics know, it’s been “conference season” recently, with the usual rush of meetings and symposia and events that mark the beginning of summer. We’re pleased that the Engineering Ethics Toolkit has been featured at several of these, both home and abroad:

Between January and April 2024 the Ethics Toolkit had just shy of 10,000 views, so we know you’re looking at it, but we also want to know where you’re talking about the Ethics Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year—we’d love to feature your story.

 

This post is also available here.

Elsevier’s James Harper has just written a valuable new guidance article for the Engineering Ethics Toolkit on Why information literacy is an ethical issue in engineering. We got together with him to discuss this further.

 

James, where did your passion for this issue originate and how can the resources available for information literacy be put to use both by faculty and students?  

We live in a time marked by an unprecedented deluge of information, where distinguishing reliable and valuable content has become increasingly difficult. My concern was to help engineering educators meet the critical challenge of fostering ethical behaviour in their students in this complex world. Students are in real need of an ethical compass to navigate this information overload, and the digital landscape in particular. They need to acquire what we call ‘information and digital literacy’, specifically, learning how to research, select and critically assess reliable data. This is both a skill and a practice.  

For students, how does this skill relate to the engineering workplace? 

From observing professional engineers, it’s clear they require comprehensive insights and data to resolve problems, complete projects, and foster innovation. This necessitates extensive research, encompassing case studies, standards, best practices, and examples to validate or refute their strategies. Engineering is a profession deeply rooted in the analysis of failures in order to prevent avoidable mistakes. As a result, critical and unbiased thinking is essential and all the more so in the current state of the information landscape. This is something Knovel specifically strives to improve for the communities we serve. 

Knovel – a reference platform I’ve significantly contributed to – was initially built for practising engineers. Our early realisation was that the biggest obstacle for engineers in accessing the best available information wasn’t a lack of resources, but barriers such as insufficient digitalisation, technological hurdles, and ambiguous usage rights. Nowadays, the challenge has evolved: there’s an overload of online information, emerging yet unreliable sources like certain chatbots, and a persistently fragmented information landscape.  

How is Knovel used in engineering education? Can you share some insights on how to make the most of it? 

Knovel is distinguished by its extensive network of over 165 content partners worldwide, offering a breadth of trusted perspectives to meet the needs of a range of engineering information challenges. It’s an invaluable tool for students, especially those in project-based learning programs during their Undergraduate and Master’s studies. These students are on the cusp of facing real-world engineering challenges, and Knovel exposes them to the information practices of professional engineers. 

The platform is adept at introducing students to the research methodologies and information sources that a practising engineer would utilise. It helps them understand how professionals in their field gather insights, evaluate information, and engage in the creative process of problem-solving. While Knovel includes accessible introductory content, it progressively delves into more advanced topics, helping students grasp the complexities of decision-making in engineering. This approach makes Knovel an ideal companion for students transitioning from academic study to professional engineering practice. 

How is the tool used by educators? 

For educators, the tool offers support starting in the foundational years of teaching, covering all aspects of project-based learning and beyond. It is also an efficient way for faculty to remain up-to-date with the latest information and data on key issues. Ultimately, it is educators who have the challenge of guiding students towards reputable, suitable, traceable information. In doing so, educators are helping students to understand that where they gather information, and how they use it, is in itself an ethical issue. 

To learn more about the competence of information literacy check out our guidance article, Why information literacy is an ethical issue in engineering.

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data. 

46% of EPC members already have access to Knovel. To brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com.  

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

Get Knovel to accelerate R&D, validate designs and prepare technical professionals. Innovate in record time with multidisciplinary knowledge you can trust: Knovel: Engineering innovation in record time

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: James E. Harper, Senior Product Manager (Knovel /Elsevier).

Keywords: Information literacy; digital literacy; misleading information; source and data reliability; ethical behaviour; sustainability. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate technical information literacy into the engineering and design curriculum or module design. It will also help to provide students, particularly those embarking on Bachelor’s or Master’s research projects, with the integrated skill sets that employers are looking for, in particular, the ability to critically evaluate information. 

 

Introduction:

In an era dominated by digital information, engineering educators face the critical challenge of preparing students not just in technical skills, but in navigating the complex digital landscape with an ethical compass. This article explores how integrating information and digital literacy into engineering education is not only essential for fostering ethical behaviour but also crucial for ensuring sustainability in engineering practices. 

The intertwined nature of information and digital literacy in engineering is undeniable. Engineering practitioners need to be able to select and critically assess the reliability of the information sources they use to ensure they comply with ethical practice.  The Engineering Council and Royal Academy of Engineering’s Joint Statement of Ethical Principles underscores the need for accuracy and rigour, a core component of these literacies. Faculty members play a pivotal role in cultivating these skills, empowering students and practitioners to responsibly source and utilise information. 

 

The challenge of information overload:

One of the challenges facing trained engineers, engineering faculty and students alike is that of accessing, critically evaluating, and using accurate and reliable information.  

A professional engineer needs to gather insights and information to solve problems, deliver projects, and drive innovation. This involves undertaking as much research as possible: looking at case-studies, standards, best practices, and examples that will support or disprove what they think is the best approach. In a profession where the analysis of failures is a core competence, critical, dispassionate thinking is vital.  In fact, to be digitally literate, an ethically responsible engineer must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). 

Students, while adept at online searching, often struggle with assessing the credibility of sources, particularly information gleaned on social media, especially in their early academic years. This scenario necessitates faculty guidance in discerning reputable and ethical information sources, thereby embedding an ethical approach to information use early in their professional development. 

 

Accuracy and rigour:

Acquisition of ‘information literacy’ contributes to compliance with the Statement of Ethical Principles in several ways. It promotes the ‘accuracy and rigour’ essential to engineering. It guarantees the basis and scope of engineering expertise and reliability so that engineers effectively contribute to the well-being of society and its safety and understand the limits of their expertise. It also contributes to promoting ‘respect for the environment and public good’, not just by ensuring safety in design, drawing up safety standards and complying with them, but also by integrating the concept of social responsibility and sustainability into all projects and work practices. In addition, developing students’ capacity to analyse and assess the accuracy and reliability of environmental data enables them to recognise and avoid ‘green-washing’, a growing concern for many of them. 

 

Employability:

In the workplace, the ability to efficiently seek out relevant information is invaluable. In a project-based, problem-solving learning environment students are often confronted with the dilemma of how to refine their search to look for the right level of information from the very beginning of an experiment or research project. By acquiring this ‘information literacy’ competence early on in their studies they find themselves equipped with skills that are ‘workplace-ready’. For employers this represents a valuable competence and for students it constitutes an asset for their future employability. 

 

Tapping into specialised platforms:

In 2006 the then-CEO of Google, Eric Schmidt famously said “Google is not a truth machine”, and the recent wave of AI-powered chatbots all come with a stark disclaimer that they “may display incorrect or harmful information”, and “can make mistakes. Consider checking important information.”  Confronted with information overload and the difficulty of sifting through non-specialised and potentially unreliable material provided by major search engines, students and educators need to be aware of the wealth of reliable resources available on specialised platforms. For example, Elsevier’s engineering-focused, purpose-built platform, Knovel, offers trustworthy, curated engineering content from a large variety of providers. By giving students access to the same engineering resources and tools as professionals in the field it enables them to incorporate technical information into their work and provides them with early exposure to the industry standard. For educators, it offers support for the foundational years of teaching, covering all aspects of problem-based learning and beyond. It is also an efficient way of remaining up-to-date with the latest information and data on key issues. The extensive range of information and data available equips students and engineers with the ability to form well-rounded, critical perspectives on the various interests and power dynamics that play a role in the technical engineering challenges they endeavour to address. 

 

Conclusion:

By embedding information and digital literacy into the fabric of engineering education (such as by using this case study), we not only promote ethical behaviour but also prepare students for the challenges of modern engineering practice. These skills are fundamental to the ethical and sustainable advancement of the engineering profession. 

 

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.  

46% of EPC members already have access to Knovel.  If you don’t currently have access but would like to try Knovel in your teaching or to brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson,  susan.watson@elsevier.com. Check out this useful blog post from James Harper on exactly that topic here.

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

 

References:

 

Additional Resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

What are the top ethical issues in engineering today, and how can you incorporate these in your teaching?

In our Engineering Ethics workshop at the 2023 SEFI Conference at TU Dublin, we asked participants what they felt were the top ethical issues in engineering today. This word cloud captured their responses, and the results reveal concerns ranging from AI and sustainability to business and policy and beyond.

When incorporating ethics into a lesson or module, educators might want to find teaching resources that address a topic that’s recently been in the news or something of particular relevance to a group of students or to a project brief. But how can this be done efficiently when there are now so many teaching materials available in our Toolkits?

Fortunately, sifting through available resources in the Ethics Toolkit is now easier than ever, with the release of the new Toolkit search function. The Toolkit search allows users to:

  • Choose from a list of suggested keyword tags;
  • Search by multiple keyword tags or their own search terms;
  • Refine the search results by one of more of the following filters: engineering discipline; educational level; type of content.

It even pulls resources from across different toolkits, if so desired.

Not only will this help you discover and find materials that are right for your educational context, but the search function could even become a teaching tool in itself. For instance, you could poll students with the same question we used in the SEFI Workshop, asking them what they think the top ethical issues are in engineering today, and then design (or co-design) a lesson or activity based on their responses and supported by resources in the Toolkit. If you don’t find resources for a particular issue, that could be a great learning opportunity to0 – why might these topics not be addressed? Of course, you can always create a resource that fills a gap and submit it to be a part of the Toolkit: we would love to see a student-developed case study or activity.

Let us know how you have used the Toolkit search function, and if there are ways we could improve it. Happy searching!

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Integration tools

Listed below are links to tools designed to support educators ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline
Engineering for One Planet Framework Learning Outcomes Curriculum Development  Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD Curriculum Development  General
University College Cork’s Sustainable Development Goals Toolkit Curriculum Development  General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development  General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide Other Learning Activities  Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes Other Learning Activities  Engineering-specific
Siemens Engineering Curriculum Materials Other Learning Activities  Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes Other Learning Activities  General
VentureWell’s Tools for Design and Sustainability Other Learning Activities  Engineering-specific
AskNature’s Biomimicry Toolbox Other Learning Activities  Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities  Engineering-specific
Siemens Xcelerator Academy Other Learning Activities  Engineering-specific

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.

The EPC’s Engineering Ethics Toolkit is supported by the Royal Academy of Engineering. This resource is designed to help engineering educators integrate ethics content into teaching.

 

Contents

The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

  • Ethics Explorer: An interactive tool to help educators navigate the landscape of engineering ethics education. Start here and find your own pathway for embedding ethics.
  • Advice and guidance: A library of expertise in engineering ethics and how best to embed learning into teaching practice.
  • Case studies: Worked examples of real and hypothetical situations presenting ethical engineering challenges for use in teaching scenarios.
  • Case enhancements: Teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them.
  • Reports and studies: The latest research on ethics within engineering education and the engineering profession.
  • Blogs: Personal experience, news and updates on the Engineering Ethics Toolkit.
  • Get involved: A guide to how you can contribute to the Engineering Ethics Toolkit and community.
  • Contributor biographies: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
  • Support the Engineering Ethics Toolkit: Collaborate with us and support this important project.
  • Our supporters: We would like to thank the Royal Academy of Engineering, which has supported the Engineering Ethics Toolkit since its inception.

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts on these resources from the EPC’s Vice President.

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made. Some of these materials are also available as PDF documents on the RAEng website.

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, ethical issues and so on. Additionally, we are looking to create ‘enhanced’ versions of each case study, including specific teaching materials such as lesson plans, presentations and worksheets. For more information, see our Get involved page.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Have you used our Engineering Ethics Toolkit in your teaching? We want to hear from you!

February 2022 saw the launch of our Engineering Ethics Toolkit, with a range of case studies and guidance articles available to help engineering educators embed ethics into their modules and curriculum.

In March 2023 we published further guidance articles and case studies, as well as enhancements on some of the classroom activities suggested within our original cases. June 2023 saw the launch of the interactive Ethics Explorer, which replaced the static engineering ethics curriculum map from 2015. Since then the Toolkit has continued to grow.

More and more engineering educators are telling us that they use these resources, and are finding them invaluable in their teaching. A brave few have contributed blogs, detailing their methods of using and adapting our case studies and classroom activities, and giving an honest appraisal of their own learning curve in teaching ethics.

We’ve heard about leaning in to your discomfort, first time fear, and letting students flex their ethical muscles.

We would love to publish more of this type of content. We want to hear your experiences, good or bad, along with tips, potential pitfalls, what you added to our content in your teaching, and what you and your students got out of the experience. If you have students who are enthusiastic about sharing their thoughts, we would love to hear from them too.

We’d like you to send us your feedback, testimonials or blogs, whether that be a couple of sentences or paragraphs, or a full article with diagrams, or anything in between.

If you have just a few minutes, please complete our questionnaire.

If you have more to say, you can submit a blog post about your experiences.

We look forward to hearing from you.

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Sarah Junaid (Aston University); Yann Serreau (CESI); Alison Gwynne-Evans (University of Cape Town); Patric Granholm (Åland University of Applied Sciences); Kathryn Fee (Queen’s University Belfast); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Keywords: Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design

 

Using a constructive alignment tool to plan ethics teaching:

Incorporating ethics into an already-packed engineering curriculum can be an overwhelming prospect. But as more accreditation bodies are requiring engineering programmes to evidence the inclusion of ethics, this activity is becoming essential. Recently, a planning tool has been developed by a team of academics that you can use to constructively align your learning outcomes with activities and assessments that positively reinforce the inclusion of ethics.

For instance, in a year 2 Mechanical Engineering course, an existing outcome might read: “Use CAD modelling and additive manufacturing in the product development process and embed control sensors, actuators and physical hardware into a complete system.” As it is written, it contains no reference to ethics. But after comparing this outcome against language found in AHEP4, the CDIO Syllabus, and the Learning Landscape found in this Toolkit’s Ethics Explorer, you might revise it to read: “Use CAD, modelling and additive manufacturing in the product development process and embed control sensors, actuators and physical sensors to design a safe and complete system to address a societal need.” The minor changes to the language (shown in italics) ensure that this outcome reinforces the ethical dimension of engineering and encourages the ethical development of engineers. These changes also then inform the language used in activity briefs and the criteria by which students are assessed.

This tool has been used in workshops at Aston University and the 2023 SEFI conference, and is endorsed by CDIO.

Download this planning tool:

 

Engineering Ethics Teaching – Planning Tool Worksheet

Stage1: Resources – Tabulate all relevant resources and their Learning Outcomes or Programme Outcomes:

What are your Learning Outcomes for the topic you will teach? Please list them here.

Highlight the verbs in blue and the ethical topics in red; this will help highlight any potential gaps.

Program level (My module, course, class, or lecture)  

Accreditation level

 

National or Professional level ethics map or framework (optional) International level
Reference/ Source [Your University and course title] [Your national accreditation board] [e.g. codes of conduct, code of ethics, ethical principles, suggested teaching approaches] [e.g. CDIO Syllabus, ABET, Washington Accord]
Learning Outcome 1 [Write current Learning Outcome here] [Copy and paste the relevant competency here] [Copy and paste the relevant guidance here] [Copy and paste the relevant competency/skill here]
Learning Outcome 2 Enter text here Enter text here Enter text here Enter text here
Learning Outcome 3 Enter text here Enter text here Enter text here Enter text here

 

Stage 2: Re-write Learning Outcomes (LOs): 

Learning Outcomes Re-worded Learning Outcomes Rationale
LO1.

[Copy and paste LO from Stage I table here]

LO1.

[Re-write LO and highlight verbs in bold here]

[Justify your changes or if unchanged, justify why here]
LO2. LO2. Enter text here Enter text here
LO3. LO3. Enter text here Enter text here

 

Stage 3: Ethics Teaching Tools – Evidence-based tools and resources to help with teaching engineering ethics:

 

Three Examples of Ethics Teaching Models:

1. The Rest Model for Ethical Decision Making – Individual (Jones, 1991).

2. The Ethical Cycle – Problem-solving (Van de Poel & Royakkers, 2007).

3. The Innovent-E Model – Competencies – Language: French
(For access to competences in ethics contact Yann Serreau: yserreau@cesi.fr)

Note: you can use other models.

 

Stage 4: Constructive Alignment – Tabulate the LOs, activity and assessment, and ensure alignment:

My module – Learning Outcomes Learning & teaching activity Assessment
LO1.

[Copy and paste new LO from Stage II table here]

[What activity will support and prepare the student for the assessment?] [What assessment would be needed to demonstrate this new LO?]
LO2. Enter text here Enter text here Enter text here
LO3. Enter text here Enter text here Enter text here

 

 

Download this planning tool:

 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website