Case study example: Water wars: managing competing water rights

Activity: Assessment. This example demonstrates how the questions provided in Assessing ethics: Rubric can be used to assess the competencies stipulated at each level.

Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).

Related content:

 

Water wars: managing competing water rights 

This example demonstrates how the questions provided in the accompanying rubric can be used to assess the competencies stipulated at each level. Although we have focused on ‘Water Wars’ here, the suggested assessment questions have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma. 

Year 1 

Personal values: What is your initial position on the issue? Do you see anything wrong with how DSS are using water? Why, or why not?

Professional responsibilities: What ethical principles and codes of conduct are relevant to this situation?

Ethical principles and codes of conduct can be used to guide our actions during an ethical dilemma. How does the guidance provided in this case align/differ with your personal views? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What are the moral values involved in this case and why does it constitute an ethical dilemma? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What role should an engineer play in influencing the outcome? What are the implications of not being involved? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Year 2 

Formulate a moral problem statement which clearly states the problem, its moral nature and who needs to act. (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Stakeholder mapping: Who are all the stakeholders in the scenario? What are their positions, perspective and moral values?

Stakeholder  Perspectives/interests  Moral values 
Data Storage Solutions (DSS)  Increasing production in a profitable way; meeting legal requirements; good reputation to maintain/grow customer base.  Accountability; sustainability (primarily economic). 
Farmers’ union  Represent farmers who suffer from economic implications associated with costly irrigation.  Accountability; environmental sustainability; justice. 
Farm  The farm (presumably) benefits from DSS using the land.  Ownership and property; environmental sustainability; justice. 
Local Green Party  Represent views of those concerned about biodiversity. May be interested in opening of green battery plant.  Human welfare; environmental sustainability; justice. 
Local Council  Represent views of all stakeholders and would need to consider economic benefits of DSS (tax and employment), the need of the university and hospital, as well as the needs of local farmers and environmentalists. May be interested in opening of green battery plant.  Human welfare and public health; trust; accountability; environmental sustainability; justice. 
Member of the public  This may depend on their beliefs as an individual, their employment status and their use of services such as the hospital and university. Typically interested in low taxes/responsible spending of public money. May be interested in opening of green battery plant.  Human welfare; trust; accountability; environmental sustainability; justice. 
Stakeholders using DSS data storage  Reliable storage. They may also be interested in being part of an ethical supply chain.  Trust; privacy; accountability; autonomy. 
Non-human stakeholders  Environmental sustainability. 

 

What are some of the possible courses of action in the situation. What responsibilities do you have to the various stakeholders involved? What are some of the advantages and disadvantages associated with each? (Reworded from case study.)

What are the relevant facts in this scenario and what other information would you like to help inform your ethical decision making? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

 

 

Year 2/Year 3  

(At Year 2, students could provide options; at Year 3 they would evaluate and form a judgement.) 

Make use of ethical frameworks and/or professional codes to evaluate the options for DSS both short term and long term. How do the uncertainty and assumptions involved in this case impact decision making?

Option  Consequences  Intention  Action 
Keep using water  May lead to expansion and profit of DSS and thus tax revenue/employment and supply. 

Reputational damage of DSS may increase. Individual employee piece of mind may be at risk. 

Farmers still don’t have water and biodiversity still suffers which may have further impact long term. 

Intention behind action not consistent with that expected by an engineer, other than with respect to legality  Action follows legal norms but not social norms such as good will and concern for others. 
Keep using the water but limit further work  May limit expansion and profit of DSS and thus tax revenue/employment and supply. 

Farmers still don’t have water and biodiversity still suffers and may have further impact long term. This could still result in reputation damage. 

Intention behind action partially consistent with that expected by an engineer.  Action follows legal norms but only partially follow social norms such as good will and concern for others. 
Make use of other sources of water  Data storage continues. 

Potential for reputation to increase. 

Potential increase in cost of water resulting in less profit potentially less tax revenue/employment. 

Farmers have water and biodiversity may improve.

Alternative water sources may be associated with the same issues or worse. 

Intention behind action seems consistent with that expected by an engineer. However, this is dependent upon 

whether they chose to source sustainable water with less impact on biodiversity etc. 

This may be dependent on the degree to which DSS proactively source sustainable water. 
Reduce work levels or shut down  Impact on profit and thus tax revenue/employment and supply chain. Farmers have water and biodiversity may improve. 

May cause operational issues for those whose data is stored. 

Seems consistent with those expected of engineer. Raises questions more generally about viability and feasibility of data storage.  Action doesn’t follow social norms of responsibility to employees and shareholders. 
Investigate other cooling methods which don’t require as much water/don’t take on extra work until another method identified. 
May benefit whole sector. 

May cause interim loss of service. 

 

This follows expectations of the engineering profession in terms of evidence-based decision making and consideration for impact of engineering in society.  It follows social norms in terms of responsible decision making. 

 

Downloads:

Assessing ethics: Guidance

Assessing ethics: Rubric

Assessing ethics: Case study assessment example: Water Wars

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).

Keywords: Assessment; Accreditation, AHEP, Competencies; Curriculum design; Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.

Related content:

 

Guidance

Premise:

As engineering educators, it is uncommon that we were taught or assessed on ethical thinking within our own degree programmes. Although we may be able to think of plenty of ethical scenarios from our own experience, we may not necessarily be able to identify the best way to assess the ability of a student to engage in ethical thinking in a systematic and robust manner, something which is critical for both the evaluation of learning and teaching (as explained further here).

Furthermore, the complex, ill-structured nature of ethical dilemmas, which often involve a variety of diverse stakeholders, perspectives and cultural norms, necessitates an ability to navigate tensions and compromise. This results in situations in which multiple possible courses of action can be identified, meaning that there is not one single ‘good’ or ‘correct’ answer to ethical questions posed.

It is also necessary to evidence that students are able to meet the criteria outlined by accreditation bodies. Within the UK context, it is the Engineering Council (EC) that is responsible for providing the principal framework which guides engineering course content and sets accreditation threshold standards of competence through AHEP, the Accreditation of Higher Education Programs, as part of The UK Standard for Professional Engineering Competence (UKSPEC).

The knowledge, skills and attributes expected of engineering graduates constantly shifts, and since the advent of AHEP in 2004 there has been increased focus on strengthening design, and consideration for economic, ethical, environmental, legal, and social factors.

In-keeping with a need to assess engineering ethics in a robust manner, this article provides step-by-step considerations for designing assessment and is primarily intended to be used in conjunction with an existing ethics case study, such as those available through the EPC’s Engineering Ethics Toolkit (we later make use of the existing ‘Water Wars’ case study to exemplify the points made).

The guidance and accompanying rubric have been designed in a way that encourages students to grapple with the numerous tensions involved in ethical decision making, and the focus is thus on assessment of the decision-making process as opposed to the ‘answer’ given, the decision made or the outcome of the scenario.

 

Assessment purpose:

The first consideration is the year group you are assessing, and the competencies they have already acquired (for example in the case of Level 5 and Level 6 students). You may want to consider the (partial) learning outcome (LO) as defined by AHEP4 LO8 (Table 1). Whilst this shouldn’t act to limit what you choose to assess, it is a good place to start in terms of the level of ability your students should be demonstrating.

Note that the Engineering Council (EC) claim “This fourth edition of AHEP has reduced the total number of learning outcomes in order to focus attention on core areas, eliminate duplication and demonstrate progression between academic levels of study”. They are thus interested in the differences between level. You are recommended to make this explicit in module specification and associated assessment description. Key differentiations are shown in Table 1. For example, at Level 5 you may be more interested in students’ abilities to identify an ethical situation, whereas at Level 6 you may want them to be able to reason through options or make a judgement.

Table 1: AHEP4 Learning Outcomes

Year 1
(Level 4)
Year 2
(Level 5)
Year 3
(Level 6)
M Level
(Level 7)
LO8 Apply ethical principles and recognise the need for engineers to exercise their responsibilities in an ethical manner and in line with professional codes of conduct. Identify ethical concerns and make reasoned ethical choices informed by professional codes of conduct. Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct. Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct (MEng).
Interpretation Awareness of issues, obligations, and responsibilities; sensitising students to ethical issues. Ability to resolve practical problems; identify ethical issues and to examine opposing arguments. Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments. Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments.

 

The final row in Table 1 provides our interpretation of the LO, making use of language similar to that within the EPC’s Ethics Learning Landscape. We believe this is more accessible and more easily operationalised.

The following steps outline the process involved in designing your assessment. Throughout we make reference to an existing EPC case study (Water Wars) to exemplify the points made.

1.) The first consideration is how much time you have and how much of the case study you want to use. Many of the case studies have multiple stages and could be spread over several sessions depending on time constraints.

2.) Linked to this is deciding whether you want to assess any other LOs within the assessment. For example, many of the case studies have technical elements. Furthermore, when using reports, presentations, or debates as methods of assessment you may also want to assess communication skills. Whatever you decide you should be careful to design the assessment in such a way that assesses LO8 in a robust manner, whereby the student could not pass the element without demonstrating they have met the individual LO to the required level (this is a key requirement to meet AHEP4). For example, in an assessment piece where ethics is worth 50% of the grade, a student could still pass the element as a whole (with 40%) by achieving high scores in the other grading criteria without the need to demonstrate their ability to meet LO8.

3.) Once you are aware how much of a case study you have time for and have decided which LOs (other than LO8) you are assessing, you should start to determine which questions are aligned with the level of study you are considering and/or the ability of the students (for example you may query whether students at Level 5 have already developed the skills and competencies suggested for Level 4). At each level you can make use of the accompanying rubric to help you consider how the relevant attributes might be demonstrated by students. As an example, please refer to the accompanying document where we provide our thoughts about how we would assess Water Wars at Levels 4-6.

4.) Once you have selected questions you could look to add any complementary activities or tasks (that do not necessarily have to be assessed) to help the students broaden their understanding of the problem and ability to think through their response. For example, in the Water Wars case study, there are multiple activities (for example Part 1, Q3 and Part 2, Q3, Q4, Q6, Q7) aimed at helping students understand different perspectives which may help them to answer further ethical questions. There are also technical questions (for example Part 1, Q5) which help students understand the integrated nature of technical and social aspects and contextualise scenarios.

5.) Once you have selected your questions you will need to make a marking rubric which includes details of the weightings given for each component of the assessment. (This is where you will need to be careful in selecting whether other LOs are assessed e.g., communication, and whether a student can pass the assessment/module without hitting LO8). You can then make use of the guidance provided in terms of expectations at a threshold and advanced level, to write criteria for what is expected at each grade demarcation.

Although we have focused on ‘Water Wars’ here, the suggested assessment questions within the accompanying rubric have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma.

 

Other considerations:

As acknowledged elsewhere within the toolkit (see here), there are “practical limits on assessment” (Davis and Feinerman, 2012) of ethics, including demands on time, pressure from other instructors or administrators, and difficulty in connecting assessment of ethics with assessment of technical content. These are some other considerations you may wish to make when planning assessment.

‱ Number of students and/or marking burden: With large student numbers you may be more inclined to choose a group assessment method (which may also be beneficial in allowing students to share perspectives and engage in debate), or a format which is relatively quick to mark/allows automated marking (e.g. a quiz). In the case of group work it is important to find a way in which to ensure that all students within each group meet the LO in a robust manner. Whilst assessment formats such as quizzes may be useful for assessing basic knowledge, they are limited in their ability to ensure that students have developed the higher-level competencies needed to meet the LO at output level.

‱ Academic integrity: As with any LO there is a need to ensure academic integrity. This may be particularly difficult for large cohorts and group work. You may wish to have a range of case studies or ensure assessment takes place in a controlled environment (e.g. an essay/report under exam conditions). This is particularly important at output level where you may wish to provide individual assessment under exam conditions (although competencies may be developed in groups in class).

‱ Logistics/resourcing: Many of the competencies associated with ethics are heavily linked to communication and argumentation, and answers tend to be highly individual in nature. Role play, debates, and presentations may therefore be considered the most suitable method of assessment. However, their use is often limited by staffing, room, and time constraints. Many of these methods could, instead, be used within class time to help students develop competencies prior to formal assessment. You may also choose to assess ethics in another assessment which is more heavily resourced (for example design projects or third year projects).

‱ Staged assessment: The ethical reasoning process benefits from different perspectives. It may therefore be desirable to stage assessment in such a way that individuals form their own answer (e.g. a moral problem statement), before sharing within a group. In this way a group problem statement, which benefits from multiple perspectives and considerations, can be formed. Similarly, individuals may take the role of an individual stakeholder in an ethical dilemma before coming together as a group.

‱ Use of exams: Whilst we see an increasing movement away from exams, we feel that a (closed book) exam is a suitable method of assessment of ethics based LOs in the situation that:

o There is a need to ensure academic integrity, and that each student meets the LO at output level.

o The exam is assessing competencies (e.g. ethical argumentation) as opposed to knowledge.

o All the relevant information needed is provided and there is limited content for students to learn in advance (aside from argumentation, justification, decision making skills etc developed in class).

Their use may therefore be limited to Level 6.

 

Rubric

This document provides the partial AHEPLO8 at each level. The competences involved in meeting this LO have then been identified, along with what students would need to demonstrate to evidence meeting a threshold level, or advanced level. Example questions are given to show how students may demonstrate their competence at each level. For each question there is an explanation of how the question supports achievement of LO at that level. The rubrics should be used alongside the accompanying guidance document which offers practical suggestions and advice.

Year 1: This year focuses on developing awareness of issues, obligations, and responsibilities, and sensitising students to ethical issues.

Year 2: This year focuses on developing the ability to identify ethical issues and to examine opposing arguments, all of which is needed to examine, analyse, and evaluate ethical dilemmas in Year 3.

Year 3: This year focuses on ensuring that students can satisfy LO8 at an output level in a robust manner.

 

References:

Davis, M. and A. Feinerman. (2012). ‘Assessing graduate student progress in engineering ethics’, Science and Engineering Ethics, 18(2), pp. 351-367.

 

Downloads:

Assessing ethics: Guidance

Assessing ethics: Rubric

Assessing ethics: Case study assessment example: Water Wars

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

December 2024

November 2024

October 2024

July 2024

As academics know, it’s been “conference season” recently, with the usual rush of meetings and symposia and events that mark the beginning of summer. We’re pleased that the Engineering Ethics Toolkit has been featured at several of these, both home and abroad:

During 2024 the Ethics Toolkit had over 25,000 views, so we know you’re looking at it, but we also want to know where you’re talking about the Ethics Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year—we’d love to feature your story.

 

This post is also available here.

We want to see ethics embedded in all engineering modules and courses, across all higher education institutions. But to see this achieved we need your help. There are many ways that you can promote the teaching of ethics within your institution and department, and we’ve listed just a few here to get you started.

 

Our toolkit resources are designed to help educators embed ethics in their teaching, even if they have no previous experience of teaching ethics. But we need educators to know that these resources exist and how to find them. We’ve provided some key talking points about the Engineering Ethics Toolkit that you can discuss with colleagues over a cup of coffee at lunchtime or some PowerPoint slides for something more formal.

Download our posters and put them up on staff noticeboards in your department. We have a poster for the Ethics Toolkit, the Ethics Explorer interactive tool, and our Ethics Ambassadors community. Spread the word!

The Engineering Ethics Toolkit is open access, and its teaching resources can be adapted to suit individual needs. We’d love for you to add us to your list of go-to resources.

Sharing on social media is a great way to spread the word about our guidance articles, case studies, case enhancements and blogs.

Often, all it takes is a bit of encouragement to give someone the confidence to start adding ethics to their teaching. We have advice on organising class sessions using our case studies; why not sit down with a couple of colleagues, get to grips with it, and make a plan?

There’s no point just talking about it: at some point you have to do it! We have advice on how to integrate ethics into a module or course, how to organise class sessions using our case studies, how to tackle tough topics, and even how to teach ethics for the first time. We’ve believe we’ve got everything you need to get started, but if you think we’re missing something, let us know.

Once you’ve got to grips with teaching ethics, you’re perfectly placed to teach your colleagues how to go about it. Tell them about your own experiences, what was easy, what was difficult, and where to find the resources they need!

Whether you feel like a seasoned pro or are still struggling to say ‘deontology debate’, we want to hear your experiences. You can submit a blog to the Toolkit, or complete our feedback form.

Our case studies are published with a CC-BY-SA Creative Commons 4.0 license, meaning that you can (and are encouraged to!) share and adapt them, making them appropriate to your specific context. If you would like to send us a link to any adapted materials that you have published, we’ll add it to our resources.

Hopefully all of your institution’s engineering students will come across engineering ethics during their course. But if there are some modules or courses that don’t currently embed ethics, you could reach out to your institution’s SU Engineering Society and offer to give a brief talk with Q&A to discuss issues such as what ethics is, why it’s important in engineering, and how engineers can make ethical decisions. This way you are introducing keen engineers to a vital subject that they might miss out on elsewhere.

Engineering curricula can do more to help students effectively develop ethical awareness, reasoning, or motivation in future engineering professionals. Whilst individual educators can (and do) make a vast difference by embedding ethics across their own engineering modules, a top down approach from the institution making ethics integration mandatory across curricula would mean that all engineering teaching staff would have to embed ethics in their courses and modules. You could make ethical practice a unique selling point of your programme!

Need some teaching activities on the fly? Check out our case studies and case enhancements for last minute classroom materials that you can use when you haven’t had time to plan in advance! If you’re ready to take a more methodical approach to planning across the year or curriculum, you can start with our Ethics Explorer, read all of our advice and guidance, pick our juiciest case studies, and peruse our personal blogs.

Our community of practice is growing steadily, and we encourage you to join, and join in.

We are seeking academics to review the various resources that are submitted to us for publication within the Engineering Ethics Toolkit. Our expectation is that we may ask you to review two or three pieces of content per year. You can apply to be a reviewer here.

We encourage academics to submit advice and guidance, personal blogs, case studies, enhancements and other teaching materials to us for publication in the Engineering Ethics Toolkit. Working with colleagues on this content spreads the word and doubles the expert value. You can find out more about submitting content for the Toolkit here.

Ready to talk ethics? Organise an informal lunch or coffee meet up with department colleagues to share experiences and good practice in teaching engineering ethics. Going to a conference? Get ready to talk ethics to anyone who will listen! We’ve got some handy talking points for you to use. Keep an eye out for opportunities to share resources and expertise.

Tell us your ideas for promoting ethics within your institution or workplace. Email w.attwell@epc.ac.uk.

This post is also available here.

Have YOU used the Engineering Ethics Toolkit? We’re trying to understand the impact that this educational resource has had since its launch in 2022. Understanding impact is key to our ability to further develop and expand the Toolkit’s reach. 

You can help us by answering a few questions (below) and by forwarding this questionnaire to anyone you know who might also have used the Ethics Toolkit. There is no deadline for submitting this form; we are interested in your ongoing experiences.

Select all that apply
Select all that apply

If you would like to submit a blog post on your experience of teaching ethics or using the Engineering Ethics Toolkit, you can do so here.

 

This post is also available here. 

Elsevier’s James Harper has just written a valuable new guidance article for the Engineering Ethics Toolkit on Why information literacy is an ethical issue in engineering. We got together with him to discuss this further.

 

James, where did your passion for this issue originate and how can the resources available for information literacy be put to use both by faculty and students?  

We live in a time marked by an unprecedented deluge of information, where distinguishing reliable and valuable content has become increasingly difficult. My concern was to help engineering educators meet the critical challenge of fostering ethical behaviour in their students in this complex world. Students are in real need of an ethical compass to navigate this information overload, and the digital landscape in particular. They need to acquire what we call ‘information and digital literacy’, specifically, learning how to research, select and critically assess reliable data. This is both a skill and a practice.  

For students, how does this skill relate to the engineering workplace? 

From observing professional engineers, it’s clear they require comprehensive insights and data to resolve problems, complete projects, and foster innovation. This necessitates extensive research, encompassing case studies, standards, best practices, and examples to validate or refute their strategies. Engineering is a profession deeply rooted in the analysis of failures in order to prevent avoidable mistakes. As a result, critical and unbiased thinking is essential and all the more so in the current state of the information landscape. This is something Knovel specifically strives to improve for the communities we serve. 

Knovel – a reference platform I’ve significantly contributed to – was initially built for practising engineers. Our early realisation was that the biggest obstacle for engineers in accessing the best available information wasn’t a lack of resources, but barriers such as insufficient digitalisation, technological hurdles, and ambiguous usage rights. Nowadays, the challenge has evolved: there’s an overload of online information, emerging yet unreliable sources like certain chatbots, and a persistently fragmented information landscape.  

How is Knovel used in engineering education? Can you share some insights on how to make the most of it? 

Knovel is distinguished by its extensive network of over 165 content partners worldwide, offering a breadth of trusted perspectives to meet the needs of a range of engineering information challenges. It’s an invaluable tool for students, especially those in project-based learning programs during their Undergraduate and Master’s studies. These students are on the cusp of facing real-world engineering challenges, and Knovel exposes them to the information practices of professional engineers. 

The platform is adept at introducing students to the research methodologies and information sources that a practising engineer would utilise. It helps them understand how professionals in their field gather insights, evaluate information, and engage in the creative process of problem-solving. While Knovel includes accessible introductory content, it progressively delves into more advanced topics, helping students grasp the complexities of decision-making in engineering. This approach makes Knovel an ideal companion for students transitioning from academic study to professional engineering practice. 

How is the tool used by educators? 

For educators, the tool offers support starting in the foundational years of teaching, covering all aspects of project-based learning and beyond. It is also an efficient way for faculty to remain up-to-date with the latest information and data on key issues. Ultimately, it is educators who have the challenge of guiding students towards reputable, suitable, traceable information. In doing so, educators are helping students to understand that where they gather information, and how they use it, is in itself an ethical issue. 

To learn more about the competence of information literacy check out our guidance article, Why information literacy is an ethical issue in engineering.

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data. 

46% of EPC members already have access to Knovel. To brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com.  

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

Get Knovel to accelerate R&D, validate designs and prepare technical professionals. Innovate in record time with multidisciplinary knowledge you can trust: Knovel: Engineering innovation in record time

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: James E. Harper, Senior Product Manager (Knovel /Elsevier).

Keywords: Information literacy; digital literacy; misleading information; source and data reliability; ethical behaviour; sustainability. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate technical information literacy into the engineering and design curriculum or module design. It will also help to provide students, particularly those embarking on Bachelor’s or Master’s research projects, with the integrated skill sets that employers are looking for, in particular, the ability to critically evaluate information. 

 

Introduction:

In an era dominated by digital information, engineering educators face the critical challenge of preparing students not just in technical skills, but in navigating the complex digital landscape with an ethical compass. This article explores how integrating information and digital literacy into engineering education is not only essential for fostering ethical behaviour but also crucial for ensuring sustainability in engineering practices. 

The intertwined nature of information and digital literacy in engineering is undeniable. Engineering practitioners need to be able to select and critically assess the reliability of the information sources they use to ensure they comply with ethical practice.  The Engineering Council and Royal Academy of Engineering’s Joint Statement of Ethical Principles underscores the need for accuracy and rigour, a core component of these literacies. Faculty members play a pivotal role in cultivating these skills, empowering students and practitioners to responsibly source and utilise information. 

 

The challenge of information overload:

One of the challenges facing trained engineers, engineering faculty and students alike is that of accessing, critically evaluating, and using accurate and reliable information.  

A professional engineer needs to gather insights and information to solve problems, deliver projects, and drive innovation. This involves undertaking as much research as possible: looking at case-studies, standards, best practices, and examples that will support or disprove what they think is the best approach. In a profession where the analysis of failures is a core competence, critical, dispassionate thinking is vital.  In fact, to be digitally literate, an ethically responsible engineer must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). 

Students, while adept at online searching, often struggle with assessing the credibility of sources, particularly information gleaned on social media, especially in their early academic years. This scenario necessitates faculty guidance in discerning reputable and ethical information sources, thereby embedding an ethical approach to information use early in their professional development. 

 

Accuracy and rigour:

Acquisition of ‘information literacy’ contributes to compliance with the Statement of Ethical Principles in several ways. It promotes the ‘accuracy and rigour’ essential to engineering. It guarantees the basis and scope of engineering expertise and reliability so that engineers effectively contribute to the well-being of society and its safety and understand the limits of their expertise. It also contributes to promoting ‘respect for the environment and public good’, not just by ensuring safety in design, drawing up safety standards and complying with them, but also by integrating the concept of social responsibility and sustainability into all projects and work practices. In addition, developing students’ capacity to analyse and assess the accuracy and reliability of environmental data enables them to recognise and avoid ‘green-washing’, a growing concern for many of them. 

 

Employability:

In the workplace, the ability to efficiently seek out relevant information is invaluable. In a project-based, problem-solving learning environment students are often confronted with the dilemma of how to refine their search to look for the right level of information from the very beginning of an experiment or research project. By acquiring this ‘information literacy’ competence early on in their studies they find themselves equipped with skills that are ‘workplace-ready’. For employers this represents a valuable competence and for students it constitutes an asset for their future employability. 

 

Tapping into specialised platforms:

In 2006 the then-CEO of Google, Eric Schmidt famously said “Google is not a truth machine”, and the recent wave of AI-powered chatbots all come with a stark disclaimer that they “may display incorrect or harmful information”, and “can make mistakes. Consider checking important information.”  Confronted with information overload and the difficulty of sifting through non-specialised and potentially unreliable material provided by major search engines, students and educators need to be aware of the wealth of reliable resources available on specialised platforms. For example, Elsevier’s engineering-focused, purpose-built platform, Knovel, offers trustworthy, curated engineering content from a large variety of providers. By giving students access to the same engineering resources and tools as professionals in the field it enables them to incorporate technical information into their work and provides them with early exposure to the industry standard. For educators, it offers support for the foundational years of teaching, covering all aspects of problem-based learning and beyond. It is also an efficient way of remaining up-to-date with the latest information and data on key issues. The extensive range of information and data available equips students and engineers with the ability to form well-rounded, critical perspectives on the various interests and power dynamics that play a role in the technical engineering challenges they endeavour to address. 

 

Conclusion:

By embedding information and digital literacy into the fabric of engineering education (such as by using this case study), we not only promote ethical behaviour but also prepare students for the challenges of modern engineering practice. These skills are fundamental to the ethical and sustainable advancement of the engineering profession. 

 

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.  

46% of EPC members already have access to Knovel.  If you don’t currently have access but would like to try Knovel in your teaching or to brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson,  susan.watson@elsevier.com. Check out this useful blog post from James Harper on exactly that topic here.

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

 

References:

 

Additional Resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

What are the top ethical issues in engineering today, and how can you incorporate these in your teaching?

In our Engineering Ethics workshop at the 2023 SEFI Conference at TU Dublin, we asked participants what they felt were the top ethical issues in engineering today. This word cloud captured their responses, and the results reveal concerns ranging from AI and sustainability to business and policy and beyond.

When incorporating ethics into a lesson or module, educators might want to find teaching resources that address a topic that’s recently been in the news or something of particular relevance to a group of students or to a project brief. But how can this be done efficiently when there are now so many teaching materials available in our Toolkits?

Fortunately, sifting through available resources in the Ethics Toolkit is now easier than ever, with the release of the new Toolkit search function. The Toolkit search allows users to:

  • Choose from a list of suggested keyword tags;
  • Search by multiple keyword tags or their own search terms;
  • Refine the search results by one of more of the following filters: engineering discipline; educational level; type of content.

It even pulls resources from across different toolkits, if so desired.

Not only will this help you discover and find materials that are right for your educational context, but the search function could even become a teaching tool in itself. For instance, you could poll students with the same question we used in the SEFI Workshop, asking them what they think the top ethical issues are in engineering today, and then design (or co-design) a lesson or activity based on their responses and supported by resources in the Toolkit. If you don’t find resources for a particular issue, that could be a great learning opportunity to0 – why might these topics not be addressed? Of course, you can always create a resource that fills a gap and submit it to be a part of the Toolkit: we would love to see a student-developed case study or activity.

Let us know how you have used the Toolkit search function, and if there are ways we could improve it. Happy searching!

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline

AdvanceHE’s Education for Sustainable Development Curriculum Design Toolkit

Curriculum Development   General
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.

The EPC’s Engineering Ethics Toolkit is supported by the Royal Academy of Engineering. This resource is designed to help engineering educators integrate ethics content into teaching.

 

Contents

The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

  • Ethics Explorer: An interactive tool to help educators navigate the landscape of engineering ethics education. Start here and find your own pathway for embedding ethics.
  • Advice and guidance: A library of expertise in engineering ethics and how best to embed learning into teaching practice.
  • Assessment: Expert advice on how to assess ethics learning within engineering education
  • Case studies: Worked examples of real and hypothetical situations presenting ethical engineering challenges for use in teaching scenarios.
  • Case enhancements: Teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them.
  • Reports and studies: The latest research on ethics within engineering education and the engineering profession.
  • Blogs: Personal experience, news and updates on the Engineering Ethics Toolkit.
  • Get involved: A guide to how you can contribute to the Engineering Ethics Toolkit and community.
  • Contributor biographies: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
  • Support the Engineering Ethics Toolkit: Collaborate with us and support this important project.
  • Our supporters: We would like to thank the Royal Academy of Engineering, which has supported the Engineering Ethics Toolkit since its inception.

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts on these resources from the EPC’s Vice President.

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made. Some of these materials are also available as PDF documents on the RAEng website.

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, ethical issues and so on. Additionally, we are looking to create ‘enhanced’ versions of each case study, including specific teaching materials such as lesson plans, presentations and worksheets. For more information, see our Get involved page.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website