We’ve collated a library of links to groups, networks, organisations, and initiatives that connect you with others who are working on embedding sustainability in engineering education.

 

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of
engineering education resources on sustainability below. Please note, the resources linked
below are all open-source. If you want to suggest a resource that has helped you, find out how
on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Collaboration resources

Organisation Type Sustainability focus
Students Organising for Sustainability (SOS) Student groups General
European Students of Industrial Engineering and Management (ESTIEM) Student groups Engineering-specific
People & Planet Student groups General
Student Platform For Engineering Education Development (SPEED) Student groups Engineering-specific
Global Spark Student groups General
Board of European Students of Technology (BEST) Student groups General
UN regional centre for expertise Networks General
Alliance for Sustainability Leadership in Education(EAUC) Networks General
RCE Scotland – Learning for Sustainability Scotland Networks General
UN Global Compact Network Networks General
Global Engineering Deans Council (GEDC ) Networks Engineering-specific
International Federation of Engineering Education Societies (IFEES) Networks Engineering-specific
Engineering for Change Networks Engineering-specific
Higher Education Sustainability Initiative(HESI) Organisations / Initiatives General
UK Fires Organisations / Initiatives Engineering-specific
Engineering for One Planet (EOP) Organisations / Initiatives Engineering-specific
Engineers Without Borders UK (EWB-UK) Organisations / Initiatives Engineering-specific
SEFI Sustainability Special Interest Group Organisations / Initiatives Engineering-specific
Inter-University Sustainable Development Research Programme (IUSDRP) Organisations / Initiatives General

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This post is also available here.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

Jump to a section on this page:

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development  Assessment materials  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materials  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materials  General
Times Higher Education – Impact Rankings 2022 Accreditation materials  General
Times Higher Education, Impact Rankings 2023 Accreditation materials  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materials  General

 

Collaboration resources

Click to view our Collaboration resources page where you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others. 

 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

 

Knowledge tools

Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.

Resource Topic Discipline
UN SDG website Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO’s Education for Sustainable Development Toolbox Education for Sustainable Development and UN Sustainable Development Goals General
Newcastle University’s Guide to Engineering and Education for Sustainable Development Education for Sustainable Development and UN Sustainable Development Goals General
International Institute for Sustainable Development Knowledge Hub Education for Sustainable Development and UN Sustainable Development Goals General
PBL, SDGs, and Engineering Education WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Re-setting the Benchmarks for Engineering Graduates with the Right Skills for Sustainable Development WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHE’s Guidance on embedding Education for Sustainable Development in HE Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO Engineering Report  Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHEEducation for Sustainable Development: a review of the literature 2015-2022  (only accessible to colleagues from member institutions at AdvanceHE – this is a member benefit until October 2025) Education for Sustainable Development and UN Sustainable Development Goals General

Wackernagel, M., Hanscom, L. and Lin, D. (2017) Making the Sustainable Development Goals consistent with sustainability, Frontiers. (Accessed: 01 February 2024).

Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development (VIP4SD), University of Strathclyde (Video) Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development, University of Strathclyde (Study with us) Education for Sustainable Development and UN Sustainable Development Goals General
Siemens Skills for Sustainability Network Roundtable Article – August 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Network Roundtable Article – October 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Report: World Engineering Day – Engineering for One Planet (2024)
Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Student Survey Student Voice   Engineering-specific
Students Organising for Sustainability Learning Academy  Student Voice   General
Students Organising for Sustainability – Sustainability Skills Survey Student Voice   General
Engineers Without Borders-UK Global Responsibility Competency Compass  Competency Frameworks for Sustainability  Engineering-specific
Institute of Environmental Management and Assessment Sustainability Skills Map  Competency Frameworks for Sustainability  General
Arizona State School of Sustainability Key Competencies  Competency Frameworks for Sustainability  General
EU GreenComp: the European Sustainability Competence Framework  Competency Frameworks for Sustainability  General
International Engineering Alliance Graduate Attributes & Professional Competencies Competency Frameworks for Sustainability  General
Engineering for One Planet (EOP) – The EOP Framework Competency Frameworks for Sustainability  Engineering-specific
Ellen Macarthur Foundation’s Circular Economy website  Broader Context , Circular economy Engineering-specific
GreenBiz’s Cheat Sheet of EU Sustainability Regulations  Broader Context , Regulations General
Green Software Practitioner – Principles of Green Software Broader Context , Software Engineering-specific
Microsoft’s Principles of Sustainable Software Engineering  Broader Context , Software Engineering-specific
Engineering Futures – Sustainability in Engineering 2023 webinars  (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.) Broader Context, Engineering Engineering-specific
Innes, C. (2023) AI and Sustainability: Weighing up the environmental pros and cons of Machine Intelligence Technology., Jisc – Infrastructure.  (Accessed: 01 February 2024). Broader Context, Artificial Intelligence Engineering-specific
Arnold, W. (2020a) The structural engineer’s responsibility in this climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2017) Structural engineering in 2027, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2020b) The institution’s response to the climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Litos , L. et al. (2023) An investigation between the links of sustainable manufacturing practices and Innovation, Procedia CIRP. (Accessed: 01 February 2024). Broader Context, Manufacturing Engineering-specific
UAL Fashion SEEDS: Fashion Societal, Economic and Environmental Design-led Sustainability
Broader context, Design General

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

This post is also available here.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.

The EPC’s Sustainability Toolkit is supported by the Royal Academy of Engineering and Siemens. This resource is designed to help engineering educators integrate sustainability-related content into teaching.

 

Contents

The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

 

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering and Siemens.

 

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made.

 

Themes related to Sustainability in other EPC Toolkit resources

Please do take a look at the subset of resources from our other Toolkits that feature themes relating to sustainability.

Resource Tool type EPC Toolkit
https://epc.ac.uk/toolkit/case-study-implementing-the-use-of-homegrown-mass-timber-for-residential-housing/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-recycled-materials-and-the-circular-economy/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-balancing-safety-costs-and-the-environment-in-the-inspection-of-wind-turbine-blades/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-developing-a-decarbonisation-roadmap/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-engineers-and-public-protest/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-feasibility-of-installing-heat-pumps-at-scale-to-reach-net-zero/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-debating-the-adoption-of-nuclear-energy/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/universal-and-inclusive-co-design-of-the-built-environment-and-the-transportation-systems/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-choosing-to-install-a-smart-meter/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-industrial-pollution-from-an-ageing-pipeline-and-its-impact-on-local-communities/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-choosing-a-career-in-climate-change-geoengineering/ Case study Engineering Ethics Toolkit
https://epc.ac.uk/toolkit/case-study-business-growth-models-in-engineering-industries-within-an-economic-system/ Case study Engineering Ethics Toolkit

 

 

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, sustainability issues and so on. For more information, see our Get involved page.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The EPC has introduced a major new initiative to ensure the engineers of tomorrow can rise to the challenges of the climate emergency: The Sustainability Toolkit, produced with support from the Royal Academy of Engineering and Siemens. EPC President, Prof John Mitchell invites you to explore.

 

Prof John Mitchell
Professor John Mitchell, EPC President

In order to ensure that recent engineering graduates are prepared to meet the challenges of today, it is imperative that they develop a greater level of sustainability knowledge and expertise. Sustainability should become the core tenet of engineering education, training and professional practice – a view supported by research undertaken by UCL and the EPC also published by the Royal Academy of Engineering today.

A rising number of groups are advocating that engineering programmes prioritise sustainability in addition to technical knowledge in order to provide aspiring engineers with the tools and perspective they need to be successful. A plethora of areas at the policy level demonstrate this including: The Accreditation of Higher Education Programmes in engineering (AHEP, 4th edition) standards demonstrating the significance of engineering’s impact on the environment.

As part of our commitment to support EPC member institutions to integrate sustainability content in their engineering education, we’re pleased to unveil twelve guidance articles, 18 different teaching resources including five case studies, and a library of links to sustainability communities and networks that promote collaborative efforts.

The toolkit will operate as an open-access platform where users can also submit their resources for review and inclusion. Additionally, it directs users to supplementary materials curated by a team of experts.

We’d like to express our gratitude to the Sustainability Toolkit Steering Group, our Sustainability Toolkit Contributors, and our brilliant supporters, the Royal Academy of Engineering and Siemens for their unwavering assistance and backing. Chris Wise, steering group chair, has been amazing at leading by example – with his expertise and passion for embedding sustainability into the curriculum, he ensured this project reached this point seamlessly.

Sarah Jayne Hitt (Project Manager), Crystal Nwagboso (Project Manager, Research and Editorial Lead/Analyst), and Johnny Rich (Chief Executive) have also done a fantastic job of keeping everyone on course and generating excellent tools guided by the best standards.

I’m immensely proud of our collaboration with Siemens and the Royal Academy of Engineering on the new EPC Sustainability Toolkit. We’re not just shaping educational resources. We’re shaping the engineers who will shape our future.

We sincerely hope you will find these tools helpful in integrating sustainability into the classroom. Kindly let us know about your experience using them and stay tuned as we’ll be expanding the toolkit. Do get in touch or see the Toolkit for further details about submitting your own content.
 
This blog is also available here

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The EPC’s Engineering Ethics Toolkit is supported by the Royal Academy of Engineering. This resource is designed to help engineering educators integrate ethics content into teaching.

 

Contents

The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.

  • Ethics Explorer: An interactive tool to help educators navigate the landscape of engineering ethics education. Start here and find your own pathway for embedding ethics.
  • Advice and guidance: A library of expertise in engineering ethics and how best to embed learning into teaching practice.
  • Case studies: Worked examples of real and hypothetical situations presenting ethical engineering challenges for use in teaching scenarios.
  • Case enhancements: Teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them.
  • Reports and studies: The latest research on ethics within engineering education and the engineering profession.
  • Blogs: Personal experience, news and updates on the Engineering Ethics Toolkit.
  • Get involved: A guide to how you can contribute to the Engineering Ethics Toolkit and community.
  • Contributor biographies: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
  • Support the Engineering Ethics Toolkit: Collaborate with us and support this important project.
  • Our supporters: We would like to thank the Royal Academy of Engineering, which has supported the Engineering Ethics Toolkit since its inception.

Our supporters

These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts on these resources from the EPC’s Vice President.

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made. Some of these materials are also available as PDF documents on the RAEng website.

More to come

This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, ethical issues and so on. Additionally, we are looking to create ‘enhanced’ versions of each case study, including specific teaching materials such as lesson plans, presentations and worksheets. For more information, see our Get involved page.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Our toolkits are separate but overlapping resources designed to support our members to be more professional in what they do. All toolkits are open to members to submit resources or get involved in their further development. 

Some toolkit content is available to members only. For best results, make sure you’re logged in.

Our toolkits:

Within About Toolkits you can find the following pages:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Have you used our Engineering Ethics Toolkit in your teaching? We want to hear from you!

February 2022 saw the launch of our Engineering Ethics Toolkit, with a range of case studies and guidance articles available to help engineering educators embed ethics into their modules and curriculum.

In March 2023 we published further guidance articles and case studies, as well as enhancements on some of the classroom activities suggested within our original cases. June 2023 saw the launch of the interactive Ethics Explorer, which replaced the static engineering ethics curriculum map from 2015. Since then the Toolkit has continued to grow.

More and more engineering educators are telling us that they use these resources, and are finding them invaluable in their teaching. A brave few have contributed blogs, detailing their methods of using and adapting our case studies and classroom activities, and giving an honest appraisal of their own learning curve in teaching ethics.

We’ve heard about leaning in to your discomfort, first time fear, and letting students flex their ethical muscles.

We would love to publish more of this type of content. We want to hear your experiences, good or bad, along with tips, potential pitfalls, what you added to our content in your teaching, and what you and your students got out of the experience. If you have students who are enthusiastic about sharing their thoughts, we would love to hear from them too.

We’d like you to send us your feedback, testimonials or blogs, whether that be a couple of sentences or paragraphs, or a full article with diagrams, or anything in between.

If you have just a few minutes, please complete our questionnaire.

If you have more to say, you can submit a blog post about your experiences.

We look forward to hearing from you.

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr. Jude Bramton (University of Bristol); Elizabeth Robertson (University of Strathclyde); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Keywords: Collaboration; Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.

 

How to organise class sessions:

Engineering educators can find a wealth of ethics case studies in the Engineering Ethics Toolkit. Each one focuses on different disciplines, different areas of ethics learning, and different professional situations, meaning there is almost certainly a case study that could be embedded in one of your classes.

Even so, it can be difficult to know how to organise the delivery of the session. Fortunately, Toolkit contributors Jude Bramton of the University of Bristol and Elizabeth Robertson of the University of Strathclyde have put together diagrams that demonstrate their approaches. These processes can act as helpful guides for you as you integrate an Ethics case study in one of your engineering class sessions.

 

Jude Bramton’s class session organisation looks like this:

You can read more about her approach here.

 

Elizabeth Robertson’s class session organisation looks like this:

You can read more about her approach here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Elizabeth Robertson, Teaching Fellow in the Department of Electronic and Electrical Engineering at The University of Strathclyde, discusses how we need to move past our discomfort in order to teach ethics in engineering.

 

I could wax lyrical about the importance of engineering ethics for today’s students who are tomorrow’s engineers. However, there are lots of other articles that will do it much better than I can. All I’d say in short is that as educators, we know it’s important, our graduate employers tell us it’s important, and our accrediting bodies are looking for us to include it through our curriculum because they know it’s important too.

The task for us as educators then is to demonstrate the importance of ethics to our students and to offer students a learning experience that is relevant to them at whatever stage they are and that that will also offer the most impact – but as with so many things, that is easier said than done.

 

Getting comfortable with what the toolkit is and how to use it

I have used the Engineering Ethics Toolkit since its launch, and I cannot be a bigger proponent for its usefulness for staff or its impact on students’ learning. Educators are always challenged to design sessions that are engaging, participatory and have real student impact. With its range of case studies and really useful advice and guidance documents, the Engineering Ethics Toolkit does all three.

The documentation in the toolkit contains a mix of introductory material on what ethics is and why to integrate ethics education into modules alongside practical considerations including the ‘hows’ – best practice in teaching ethics and methods for assessment and evaluation.

 

Choosing a case study for your students

The suite of broad engineering ethics case studies means that there is a case study for a range of student needs (and there are often new ones on the horizon too). In my teaching that means sometimes I use case studies that are related to discipline-specific learning the students are currently undertaking so they can pull in technical knowledge and experience they have, and in other cases I choose something totally removed in order to allow students to spend more time with the ethical dimensions of a case and not get preoccupied with the technical.

 

The case studies I’ve used

During the last academic year we used the case study ‘Glass safety in a heritage building conversion’ with my first year groups, and that’s pretty far removed from the electrical, mechanical and computer science modules they take. That decision was intentional; the aim was to get students to concentrate on the principles of ethics, stakeholder mapping, stakeholder motivations and interpersonal dynamics and not be ‘distracted’ by the technical aspects. This was one class in a module centred around a sustainable design challenge and we used the Ethics toolkit to help students develop an understanding of the importance of economic, environmental and social factors. Working with a case study not in their exact engineering field helped students see that they must look beyond the technical to understand people – be they stakeholders, end users or community members. Students worked to make decisions on actions with honesty and integrity and to respect the public good. The students engaged really well in the session and there were some vibrant discussions on which actions were ‘right’ or ‘wrong’ and vitally the students grasped how stakeholder dynamics and dynamics of power in projects can affect outcomes.

In comparison, for my third year undergraduate students I intentionally chose a case study that would link to their hardware/software project that was upcoming, and connect closely to learning in their communications module: ‘Smart homes for older people with disabilities’. This meant that alongside stakeholder mapping we identified technical factors looking into possible routes of data leaks. Students engaged so well and were actively debating possible actions to take covering ethical, technical and legal implications. It pained me every time I had to cut conversations short so we could cover the full case study – so much so that this year we’re going to try and give them longer than an hour for the process.

 

Getting comfortable with the students in the lead

I use a participatory teaching methodology often. This means starting our 50 minutes together with student reflection, having 5/10 minutes of introductory talk and then rounds of group discussions. The students are therefore in the driving seat in the classroom – students set the tone and the pace. If they are having valuable, meaningful and worthwhile discussions and demonstrating valuable ethical discussions, my plans change. This means maybe not covering all parts of the case study  maybe skipping a stage or two of discussions that were in my plans. As long as the session’s objective are met, the students can write their own journey.

 

What my sessions look like

As the song goes, we start at the very beginning as it’s a very good places to start. That means first asking the students their current understanding of what ethics is – we did this first by using a word association activity, and asked what came to mind when they hear the term ‘ethics.’ Their answers in the word cloud below demonstrate a good maturity of thought to work from in the session. We then moved on to discuss when we should consider ethics – for us as individuals, members of society and as engineers.

What they said:

Building on from our prompting questions we then introduced the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering and covering the four fundamental principles of ethics defined therein.

From there we worked with the toolkit and our case study of choice. Most case studies come in 2-4 ‘phases’, each with a bit more of the story that I’d briefly talk over, which we gave them printed and electronically. The phases often include a ‘dilemma’ for the protagonist and some questions for provoking thought and discussion or more technical work as is suitable. The questions and activity prompts that are within the case studies are invaluable to educators and students in helping design the session and for giving student groups a place to start if they are not sure how to tackle part of the story. We worked on a think-pair-share model asking individuals to think, groups to discuss, and then asking a few groups to report back to the room. One thing I want to do more of is asking different groups to role play as different stakeholders. Asking students to embed themselves in different perspectives can lead to some very valuable insights.

 

Getting comfortable in a room of differing views

Students worked in small groups with the case study and an important stage was asking groups to report back their thoughts. These were volunteered rather than cold-called and in asking for more groups to share I would prompt if anyone had a different view to make sure that a range of perspectives were heard. Though in fairness to the students they engaged so readily and enthusiastically that I often ran short of time rather than being left with ‘dead air’.

I have delivered ethics sessions to groups of 12, 30 and 100. In all cases it is important that all students feel heard and all views and perspectives respected. You need to make sure that an open, honest, and non-judgemental tone is set. This allows all students to feel they are free to ask questions and importantly share their perspectives, meaning that there is a big onus on the educator to act as a facilitator as much as a teacher.

Good facilitation is key. Some things to think about:

 

Getting comfortable with no absolutes

What is vital in running these sessions is offering some sort of conclusion when there is no ‘right’ answer. My third-year cohort knew that a class on ethics was in the schedule – that I was going to get them to answer Menti polls, work in small groups and report back to the room. These are my established teaching styles and by halfway through the semester the students are well used to it. What they weren’t prepared for was that in the end I wasn’t going to tell them a ‘right’ answer.

All the students I have worked on ethics with were somewhat disappointed when in the end they were not offered the ‘right’ answer for the ethical dilemmas posed. What I did do though was still offer them a conclusion to their learning. I point out some of the excellent examples of consideration and thought offered by groups to highlight themes from the four principles. It’s useful here too to point students to where they’ll apply their learning from the session in the short and long term. For my students their future projects all require ethics, inclusion and sustainability statements. It’s important though to also evidence where the learning will go beyond the classroom.

There are examples of cases that in hindsight there are clear cases of ‘rights’ and ‘wrongs’ (you can pull examples of fields relevant to you, often cited is the Challenger tragedy and Ford Pinto Memo). What we conclude on though is getting comfortable with a lot of decision making professionally being in the ‘middle’ – a complex space with multiple competing factors. Engineers need to work with the principles of ethics to guide us to make sound and well-informed judgements.

It’s essential that tomorrow’s graduate engineers understand that ethics is not a ‘tack on’ statement at the end of a project proposal but rather that ethics is a core part of the role of an engineer. Using the Engineering Ethics Toolkit to help integrate ethics into the core of their education today is a very good way to do that. I recommend the Engineering Ethics Toolkit to all educators – the wealth of the resource cannot be understated in its support to a teacher’s session design and, most importantly, to a student’s learning.

You can find out more about getting involved or contributing to the Engineering Ethics Toolkit here.

 

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website