We’ve collated a library of links to groups, networks, organisations, and initiatives that connect you with others who are working on embedding sustainability in engineering education.
In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourGet Involved page.
To view a page that only lists library links from a specific category type:
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.
In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourGet Involved page.
Listed below are linksto tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.
Click to view our Collaboration resources pagewhere you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others.
Integration tools
Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.
Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.
Engineering Futures – Sustainability in Engineering Webinars (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.
In March 2023 we published further guidance articles and case studies, as well as enhancements on some of the classroom activities suggested within our original cases. June 2023 saw the launch of the interactive Ethics Explorer, which replaced the static engineering ethics curriculum map from 2015. Since then the Toolkit has continued to grow.
More and more engineering educators are telling us that they use these resources, and are finding them invaluable in their teaching. A brave few have contributed blogs, detailing their methods of using and adapting our case studies and classroom activities, and giving an honest appraisal of their own learning curve in teaching ethics.
We would love to publish more of this type of content. We want to hear your experiences, good or bad, along with tips, potential pitfalls, what you added to our content in your teaching, and what you and your students got out of the experience. If you have students who are enthusiastic about sharing their thoughts, we would love to hear from them too.
We’d like you to send us your feedback, testimonials or blogs, whether that be a couple of sentences or paragraphs, or a full article with diagrams, or anything in between.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr. Jude Bramton (University of Bristol); Elizabeth Robertson (University of Strathclyde); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Keywords: Collaboration; Pedagogy.
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.
How to organise class sessions:
Engineering educators can find a wealth of ethics case studies in the Engineering Ethics Toolkit. Each one focuses on different disciplines, different areas of ethics learning, and different professional situations, meaning there is almost certainly a case study that could be embedded in one of your classes.
Even so, it can be difficult to know how to organise the delivery of the session. Fortunately, Toolkit contributors Jude Bramton of the University of Bristol and Elizabeth Robertson of the University of Strathclyde have put together diagrams that demonstrate their approaches. These processes can act as helpful guides for you as you integrate an Ethics case study in one of your engineering class sessions.
Jude Bramton’s class session organisation looks like this:
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Do you want to champion the teaching of ethics within engineering?
Do you want to help shape the future of the Engineering Ethics Toolkit?
Do you need support with integrating ethics into your own engineering teaching?
If you answered yes to one or more of these questions, then you should join our new Ethics Ambassadors community.
Ethics Ambassadors was launched in March 2023 in order to expand and develop the work and recommendations of the Engineering Ethics Advisory Group, whose expertise and advocacy was instrumental during the creation and development of the Engineering Ethics Toolkit.
The aims of the Ethics Ambassadors community are:
to champion the teaching of ethics within engineering courses and modules;
to support educators integrating ethics teaching within engineering courses and modules;
to share best practice in engineering ethics teaching;
to identify and address needs within engineering ethics teaching;
to source, review, develop and publish new materials for the Engineering Ethics Toolkit.
An initial meeting of Ethics Ambassadors was held in June 2023 and we are currently in the process of nominating and voting for key roles within the community.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Dr. Jude Bramton of the University of Bristol discusses her first-hand experience of using the Engineering Ethics Toolkit and what lessons she learnt.
Starting off
Let me set the scene. It’s a cold January morning after the winter break and I need to prepare some Engineering Ethics content for our third year Mechanical Engineers. The students have never been taught this topic, and I have never taught it.
I’m apprehensive – many of our students are fantastic engineering scientists/mathematicians and I’m not sure how they will engage with a subject that is more discussive and, unlike their more technical subjects, a subject with no single correct answer.
Nonetheless, my task is to design a 50-minute session for ca. 180 undergraduate Mechanical Engineers to introduce the concept of Engineering Ethics and start to build this thinking into their engineering mindset. The session will be in a flatbed teaching space, where students will be sitting in groups they have been working in for a number of weeks.
For a bit more context, the content is assessed eventually as part of a group coursework where students assess the ethical implications of a specific design concept they have come up with.
Designing the session with the help of the Toolkit
From doing a little bit of research online, I came across the Engineering Ethics Toolkit from the EPC – and I was so grateful.
I started off by reviewing all 8 case studies available at the time, and reading them in the context of my session. I picked one that I felt was most appropriate for the level and the subject matter and chose the Solar Panels in a Desert Oil Field case study.
I used the case study in a way that worked for me – that’s the beauty of this resource, you can make it what you want.
I put my session together using the case study as the basis, and including the Engineering Council’s principles of Engineering Ethics and some hand-picked tools from some of Toolkit’s guidance articles – for example, I used the 7-step guide to ethical decision making.
I used the text directly from the case study to make my slides. I introduced the scenario in parts, as recommended, and took questions/thoughts verbally from the students as we went. The students then had access to all of the scenario text on paper, and had 15-20 minutes to agree three decisions on the ethical dilemmas presented in the scenario. Students then had to post their group’s answers on PollEverywhere.
The overall session structure looked like this:
How did it go?
When I ran the session, one key component was ensuring I set my expectations for student participation and tolerance at the start of the session. I openly told students that, if they feel comfortable, they will need to be vocal and participative in the session to get the most from it. I literally asked them – “Is that something we think we can do?” – I got nods around the room (so far, so good).
Overall, the session went better than I could have expected. In fact, I think it was the most hands up I have ever had during a class. Not only did we hear from students who hadn’t openly contributed to class discussion before, but I had to actively stop taking points to keep to time. It made me wonder whether this topic, being presented as one with no wrong or right answers, enabled more students to feel comfortable contributing to a large class discussion. Students were very tolerant of each others’ ideas, and we encouraged differences of opinion.
For the small group discussions, I left a slide up with the three ethical dilemmas and the 7-step guide to ethical decision making as a prompt for those that needed it. During the small group discussions, I and supporting teaching staff wandered around the room observing, listening and helping to facilitate discussion, although this was rarely needed as engagement was fantastic. The small group sessions also allowed opportunities for contribution from those students who perhaps felt less comfortable raising points in the wider class discussion.
To my delight, the room was split on many decisions, allowing us to discuss all aspects of the dilemmas when we came to summarise as a larger class. I even observed one group being so split they were playing rock-paper-scissors to make their decision – not quite the ethical decision making tool we might advertise, but representative of the dilemma and engagement of students nonetheless!
Student feedback
I asked our Student Cohort Representative to gather some informal feedback from students who attended the session. Overall, the response was overwhelmingly positive, here are a few snippets:
“It was the best lecture I’ve had since I’ve been here.”
“The most interesting session, had me engaged.”
“It was the first time learning about the connections between engineering and ethics and it was really useful.”
“I enjoyed the participation and inclusion with the students during the lesson. It has favoured the growth of personal opinions and a greater clarity of the subject and its points of view. Furthermore, the addition of real-life examples gave more depth to the topic, facilitating listening and learning.”
“The session was very engaging and I liked the use of examples… This whole unit has showed me how there are more aspects of engineering to consider apart from just designing something. Engineers must always think of ethics and I believe this session has demonstrated that well.”
And finally, when asked “What was your overall impression of the session?” a student replied “Interesting and curious.” – what more could you ask for?
It was such a pleasant surprise to me that not only did students engage in the session, but they actively enjoyed the topic.
I’ve run it once, how would I improve it?
One thing I would do differently next time would be to allow even more time for discussion if at all possible. As discussed, I had to stop and move on, despite the engagement in the room at certain points.
I also reflect how it might have gone if the students weren’t as engaged at the start. If you have other teaching staff in the room, you can use them to demonstrate that it’s ok to have differences of opinion. A colleague and I openly disagreed with each other on a topic, and demonstrated that this was ok. Additionally, if larger class engagement doesn’t work for you, you could also go straight to the small group discussion.
In summary (and top tips!)
I now feel very comfortable, and excited, to be teaching engineering ethics. It has now also catalysed more content to be created to embed this theme further in our programme – so it doesn’t just become that “one off” lecture. However, I think providing specific time on this subject was very beneficial for the students, it gave them time and space to reflect on such a complex topic.
My takeaways and recommendations from this experience have been:
Don’t be worried about the engagement – students will enjoy it and find it interesting.
Set the expectations for participation and tolerance at the beginning, encouraging that there are no right or wrong answers.
Use the Toolkit as you need it for your context – don’t be afraid to take only snippets from certain parts and make something your own.
Use PollEV or similar to involve the whole cohort and demonstrate the overall difference of opinion in the room
Give a good amount of time for discussion in small groups as well as in the larger class.
All in all, I would recommend the resources on the Engineering Ethics Toolkit to anyone. They can be easily adapted to your own contexts and there is a plethora of resources and knowledge that are proven to engage students and get them thinking ethically.
You can find out more about getting involved or contributing to the Engineering Ethics Toolkit here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Keywords: Collaboration; Pedagogy.
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.
Premise:
Most engineers and engineering educators have experienced or read about a situation that makes them think, “that would make a great case study for students to learn from.” Examples of potential cases can be found in the news, in textbooks, and in the workplace. However, it can be difficult to translate a real world situation into an educational resource. This article sets forth a “recipe” based on recent educational scholarship that can be used to create case studies ideal for classroom use.
Case study purpose:
Recipes are created for different reasons – sometimes you want comfort food, sometimes it’s a healthy detox meal, sometimes it’s a stand-out celebratory feast for a special occasion. In a similar way, case studies should be written with a deliberate purpose in mind. To help you consider these, ask yourself:
What engineering disciplines does this issue most closely relate to?
Which modules or programmes might find the issue especially relevant?
Which ethical issues or professional situations referenced in the RAEng Statement of Ethical Principles could be addressed through a case study on this issue?
Are there particular outcomes associated with AHEP4 or other accreditation criteria that could be highlighted?
Next, it’s important to remember that there are different kinds of learning within ethics education. The Ethics Explorer highlights these with its focus on graduate attributes which specify what characteristics and attitudes we hope engineering graduates will develop through this learning. For example, do you want to focus on students’ abilities to identify or identify with an ethical situation? Or do you want them to be able to reason through options or make a judgement? Or is it important for them to learn ethical knowledge such as professional codes or practices? Any of these could be a good focus, but in general, it is useful to write a case study aimed at one particular purpose, otherwise it can become too unwieldy. Plus, case studies that have a specific learning aim can make it easier to devise assessments related to their content.
Case study ingredients:
Just as cooks do when preparing to make a meal, case study writers assemble ingredients. These are the components of a case that can be mixed together in different proportions in order to create the desired result. And, as in cooking, sometimes you should use more or less of an ingredient depending on the effect you want to create or the needs of your audience. But in general, educational scholars agree that these elements are necessary within a case study to promote learner engagement and to achieve the desired educational outcomes.
1. Setting / Context. Ethical issues in engineering don’t happen in a vacuum. Often they are exacerbated by the setting and context in which they occur, whether that’s a start-up tech company in London or an aid organisation in Brazil or in a research lab in Singapore. An authentic environment not only makes the case more realistic, but it also can add important extra dimensions to the issues at stake (Valentine et al., 2020). However, to ensure you don’t run afoul of IP or other legal concerns, it can be best to fictionalise company names and invent hypothetical (yet realistic) engineering projects.
2. Characters. Ethics is a fundamentally human concern; therefore it’s important to emphasise the emotional and psychological elements of engineering ethics issues (Walling, 2015; Conlon & Zandervoort, 2011). In real life, every person brings their role, point-of-view, and background to their consideration of ethical dilemmas, so case studies should replicate that. Additionally, aspects like age, gender, and ethnicity can add complexities to situations that replicate the realities of professional life and address issues relevant to EDI. Case studies can help students imagine how they might negotiate these.
3. Topic. Besides the overarching ethical issue that is related to an engineering discipline, case studies are most effective when they incorporate both macro- and micro-ethical considerations (Rottman & Reeve, 2020). This means that they require students to not only deliberate about a particular scenario (should I program the software to allow for users to see how their data is used?), but also about a wider concern (how should transparency and privacy be negotiated when consenting to share data?). The chosen topic should also be specific enough so that there is opportunity to integrate elements of technical learning alongside the ethical dilemma, and reference broader issues that could relate to ethics instruction more generally (Davis, 2006; Lawlor, 2021).
4. Cause for Conflict. An ethical dilemma could arise from many kinds of conflict. For instance, an employee could feel pressured to do something unethical by a boss. A professional could believe that a stance by an institution is unjust. A person could experience internal conflict when trying to balance work and family responsibilities. A leader could struggle to challenge the norms of a system or a culture. In simplest terms, ethical dilemmas arise when values conflict: is efficiency more important than quality? Is saving money worth ecological harm? Case studies that highlight particular conflicts can help promote critical thinking (Lennerfors, Fors, & Woodward, 2020).
Narrative:
Once the ingredients are assembled, it’s time to write the narrative of the case study. Begin with a simple story of around 250-500 words that sets out the characters, the context, and the topic. Sometimes this is enough to gesture towards some potential ethical issues, and sometimes the conflict can be previewed in this introductory content as well.
Then, elaborate on the conflict by introducing a specific dilemma. You can create an engaging style by including human interests (like emotion or empathy), dialogue, and by avoiding highly technical language. Providing different vantage points on the issue through different characters and motivations helps to add complexity, along with adding more information or multiple decision-making points, or creating a sequel such as justifying the decision to a board of directors or to the public.
Ultimately, the narrative of the case study should be engaging, challenging, and instructional (Kim et al., 2006). It should provide the opportunity for students to reconsider, revisit, and refine their responses and perspectives (Herreid, 2007). Most of all, it should provide opportunities to employ a range of activities and learning experiences (Herkert, 2000). Your case study will be most effective if you suggest ideas for discussions or activities that can help learners engage with the issues in a variety of ways.
Putting the frosting on the cake:
The community of professionals committed to integrating ethics in engineering education is strong and supportive. Running your ideas by an expert in the topic, a colleague, or a member of our Ethics Ambassadors community can help strengthen your case study. Most of all, discussing the issue with others can help you develop your own confidence in embedding ethics in engineering. The more case studies that we develop from more perspectives, the more diversity we bring to engineering education and practice – we can all learn from each other. We hope you start cooking up your own case study soon!
You can find information on contributing your own resources to the toolkit here.
References:
Conlon, E. and Zandvoort, H. (2011). ‘Broadening ethics teaching in engineering: Beyond the individualistic approach’, Science and Engineering Ethics, 17, pp. 217-232.
Davis, M. (2006) ‘Integrating ethics into technical courses: Micro-insertion’, Science and Engineering Ethics, 12, pp. 717-730.
Herkert, J.R. (2000) ‘Engineering ethics education in the USA: Content, pedagogy, and curriculum’, European Journal of Engineering Education 25(4), pp. 303-313.
Herreid, C.F. (2007) Start with a story: The Case study method of teaching college science. Arlington, VA: NSTA Press.
Kim, S. et al. (2006) ‘A conceptual framework for developing teaching cases: A Review and synthesis of the literature across disciplines’, Medical Education 40, pp. 867-876.
Rottman, C. and Reeve, D. (2020) ‘Equity as rebar: Bridging the micro/macro divide in engineering ethics education’, Canadian Journal of Science, Mathematics and Technology Education 20, pp. 146-165.
Valentine, A. et al. (2020) ‘Building students’ nascent understanding of ethics in engineering practice’, European Journal of Engineering Education 45(6), pp. 957-970.
Walling, O. (2015) ‘Beyond ethical frameworks: Using moral experimentation in the engineering ethics classroom’, Science and Engineering Ethics 21, pp. 1637-1656.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Martin Griffin (Knight Piésold Consulting, United Kingdom).
Keywords: Equity; Equality, diversity and inclusion (EDI); Collaboration; Bias; Social responsibility; Design.
Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for.
Premise:
No engineer is an island; it is not good for an engineer to act in isolation. Rather engineers need to be part of a welcoming community in order to thrive. How an engineering professional interacts with either other engineers and non-engineers is essential for building a culture and professional environment of collaboration, creating environments where engineers can create meaningful bonds with one another and feel comfortable communicating openly. This requires recognising and understanding how unconscious bias and privileges can create divides and foster negative professional (toxic) environments, and being committed to establishing standards of conduct for and addressing issues related to EDI. There is a great need to advocate for fellow engineers providing places to belong and empowering them to thrive in their chosen profession and career pathways. This includes people who are part of one or more underrepresented groups that have been historically, persistently, and systemically marginalised in society based on their identity, such as race, colour, religion, marital status, family status, disability, sex, sexual orientation, gender identity, and age.
The Royal Academy of Engineering and EngineeringUK (2018) frequently publish reports on the demographics of engineers and the skills shortage in the workforce. These reports highlight the under-representation of people from ethnic and minority groups, those with a disability or impairment, or those who are LGBTQ+. In addition, the Institute of Engineering and Technology recently reported that only 9% of businesses take particular action to increase underrepresented groups into their workforces.
Engineering and technology are for everyone. It is morally right to ensure that everyone has equal opportunities and by doing so we can improve our world, shape our future, and solve complex global challenges. In order to accomplish these moral imperatives, we need to include a diversity of talent and knowledge. Furthermore, in the UK we still face a nationwide skills shortage threatening our industry. To address this and ensure the sustainability of our industry we must support equal opportunities for all and be truly inclusive.
The three values:
The three values of EDI are timeless and should be embedded into the way that engineering professionals act, starting with recognition that the unfair treatment of others exists. This unfair treatment may take the form of bullying, harassment, discrimination (either direct or indirect), victimisation, microaggressions, gaslighting, bias and inequity. An engineer’s role must also include advocating for the support of others in this regard too. Each of the three values are very different, but all three together are essential to create opportunities for engineers to grow and thrive, and for a productive and creative engineering community to flourish.
Equity encourages fair processes, treatment, and possibilities for everyone, resulting in an equal playing field for all. It acknowledges that oppressive systems have created varied circumstances for different engineers. By valuing equity, engineers must commit to fairly redistributing resources and power to address inequalities that systems have intentionally or unintentionally created, diminishing the impact of such circumstances and ensuring equitable opportunities. Equality relates to ensuring engineers and groups are treated fairly and have access to equal opportunities. Note, it should be emphasised that equity is not the same as equality; in the simplest terms, equality means ‘sameness,’ and equity means ‘fairness’. Thus, equality has become synonymous with ‘levelling the playing field’, whereas equity is synonymous with ‘more for those who need it’.
Diversity refers to how diverse or varied a particular environment is, be it an engineering consultancy, academic funded research team, interdisciplinary joint venture designing as part of a national megaproject, and so on. Diversity involves professional openness and conscientiousness towards diverse social interactions. Therefore, diversity also involves intentional representation and collaboration with others from different demographic characteristics, identities, and differing experiences. Engineers should feel welcome to be their full self without the need to mask, being able to contribute and bring fresh perspectives where they are in attendance.
Inclusion refers to a state of conscious belonging, meaning all are respected, empowered, and valued. Inclusivity should therefore be ingrained in an engineer’s daily operations and surrounding culture, being able to feel comfortable being their authentic selves. Inclusion involves extensive representation across roles, levels (grades) and the aforementioned demographic characteristics, recognising who is and is not in the room and the valuable perspectives and experiences they can bring. Inclusion also relates to ensuring all engineers feel valued and supported, where the benefits of creativity, innovation, decision making and problem solving are realised.
Incorporating EDI in engineering education:
It is not possible to place EDI in a box and open it occasionally such as for annual awareness weeks or as an induction week module. It is a lifestyle, a conscious choice, and it needs to be embedded in an engineer’s values, approach and behaviours. Making engineering EDI an integral part of engineering ethics education will not involve an abstract ethical theory of EDI but rather a case-based approach. The teaching of EDI within engineering ethics through case studies helps students consider their philosophy of technology, recognise the positive and negative impact of technology, imagine ethical conduct, and then apply these insights to engineering situations. Moreover, when similar ethical modules have touched students, they are likely to remember the lessons learned from those cases. Several case studies found in the Ethics Toolkit that reference EDI concerns are listed at the end of this article.
Good contemporary practical examples should be presented alongside case studies to promote and demonstrate why EDI ought to be embedded into a professional engineer’s life. The need to raise awareness, highlightthe issues faced, and accelerate inclusion of Black people is provided in the Hamilton Commission report, focusing on all aspects of UK Motorsport including engineering. The importance of gender inclusivity in engineering design and how user-centred practices address this are addressed by Engineers Without Borders UK. Creating accessible solutions for everyone, including those who are disabled, is seen in the ongoing development of Microsoft’s Accessibility Technology & Tools. BP has launched a global framework for action to help them stay on track and progress in a positive way. The further benefits EDI brings to design and delivery in construction engineering are demonstrated by Mott Macdonald.
Inclusive Engineering (similar to the principles of Universal Design) ensures that engineering products and services are accessible and inclusive of all users. Inclusive Engineering solutions aim to be as free as possible from discrimination and bias, and their use will help develop creative and enlightened engineers. Ethical responsibility is key to all aspects of engineering work, but at the design phase it is even more important, as we can literally be designing biases and discrimination into our technological solutions, thus amplifying existing biases. Recommended guidance is provided within PAS 6463:2022 as part of the engineering design process; this is a new standard written to give guidance on designing the built environment for our neurodiverse society. With the right design and management, it is possible to eliminate, reduce or adjust potentially negative impacts to create places where everyone can flourish equally.
It is vital to recognise that achieving true equality, diversity, and inclusion is complex and cannot be ‘fixed’ quickly. An engineer must participate in active learning and go on a six stepped journey of self-awareness from being ‘not listening,’ ‘unaware,’ ‘passive,’ ‘curious,’ and ‘ally,’ to ‘advocate.’ A ‘not listening’ attitude involves shaming the unaware, speaking on behalf of others, invalidating others, clumsy behaviours, being bigoted, prejudiced, antagonistic and unwilling to listen and learn. Cultivating an ‘ally’ attitude is being informed and committed, routinely and proactively championing inclusion by challenging accepted norms, and taking sustained action to make positive change. It is for this reason the values of EDI should be part of an engineering professional’s ongoing lifestyle to have any real and lasting effect on engineering environments.
Therefore, the importance of EDI needs to influence how an engineering professional thinks, acts, includes others and where engineers seek collaborative input. The concept of engineering is far more important than any individual engineer and sometimes engineers need to facilitate opportunities for voices to be heard. This involves respect and empathy to create trusted relationships and the need for self-awareness and self-development. Sometimes this means stepping back so that other engineers can step forward.
Resources and support:
Specific organisations representing protected characteristics such as InterEngineering have the goal to connect, inform and empower LGBTQ+ engineers. Likewise, the Women’s Engineering Society (WES) and the Association for Black Engineers (AFBE-UK) provide support and promote higher achievements in education and engineering. The aforementioned organisations are partnered with the Royal Academy of Engineering to highlight unheard voices, raise awareness of the barriers faced by minority groups, and to maximise impact. Many other umbrella groups, for instance Equal Engineers, also raise awareness of other underrepresented groups, such as the neurodivergent in engineering, by documenting case studies, undertaking surveys, holding regular careers events and annual conferences, and more.
There is evidence to support the widely accepted view that supporting and managing EDI is a crucial element in increasing productivity and staff satisfaction. Diverse experiences and perspectives bring about diversity of thought which leads to innovation. It allows everybody to be authentic at work and provides the opportunity for diverse voices to be heard. Consequently, implementing EDI has proven to increase performance, growth, and innovation, as well as improvements in health, safety and wellbeing. EDI will therefore help to prepare students with the fundamental attitudes that are needed as practitioners and human beings.
Finally, engineering with EDI embedded into a professional engineer’s lifestyle will make a difference to those most in need. In a globalised world it will put us in a good position to bring innovation and creativity to some of the biggest challenges we face together. Equitable, diverse and inclusive engineering must be at the heart of finding sustainable solutions to help shape a bright future for all.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
**Whilst this call has now closed, you can still submit guidance articles, case studies, case enhancements, blogs, and other resources to the Engineering Ethics Toolkit. Please see our Get involved page for details.**
The Engineering Ethics Toolkit is a new resource for engineering educators to help them integrate ethics content into their teaching. It has been produced by the UK’s Engineering Professors’ Council (EPC) for the Royal Academy of Engineering (RAEng) as part of the profession’s ongoing work to embed ethical practice into the culture of engineering. 3 guidance articles and 12 case studies designed for classroom use have been developed in a first phase of work. Explore these resources on both the EPC and the RAEng websites.
The Engineering Ethics Toolkit Advisory Group seeks contributors to add to and develop these resources who can:
Write additional guidance articles
The Ethics Toolkit Advisory group seeks contributors to write guidance articles on various topics related to engineering ethics education, shown below. These articles are meant to be overviews that a reader with no prior knowledge could refer to in order to develop a baseline understanding and learn where to look for additional information. They should be approximately 500-1000 words and reference relevant resources, especially existing resources in the Ethics Toolkit. They may be written by a single author or by a team of authors. Single authors may be paired with other authors who have volunteered to write on the same topic. See the existing guidance articles for examples of style, tone, and approach. Use Harvard referencing.
You may propose a topic to write about, but the Ethics Advisory Group will prioritise contributions of articles on the following topics:
What is Ethics?
Why Integrate Ethics in Engineering?
How to Integrate Ethics into a Module/Course?
Tackling Tough Topics in Discussion OR How to Lead a Discussion
How Ethics Links to Other Competencies and Skills
Getting Comfortable with Open-Ended Problems/Questions Related to Ethics
Learning Taxonomies and Ethics Education
Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
Create case enhancements that develop teaching materials for activities suggested in the case studies
Case enhancements are teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them. Enhancements provide crucial guidance for those who may be teaching ethics-related material for the first time, or who are looking for new and different ways to integrate ethics into their teaching. They may take the form of discussion prompts, debate or role play scripts, technical content related to the ethical dilemma, worksheets, slides, or other similar materials. Enhancements may be written by a single author or by a team of authors. Single authors may be paired with other authors who have volunteered to contribute to the same case.
The Ethics Advisory Group seeks at least one case enhancement per published case study, outlined below. You may propose additional or different enhancements according to your background and expertise. You may want to familiarise yourself with the relevant cases in order to determine where you can best contribute.
Business Growth Models. Enhancement desired: Activity: In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business.
Facial Recognition. Enhancement desired: Prompts to facilitate discussion activities.
Glass Safety. Enhancement desired: Activity: Debate whether or not the engineer has an ethical or professional responsibility to warn relevant parties.
Internet Constellation. Enhancement desired: Activity: Anatomy of an internet satellite – use the Anatomy of an AI case study as an example of a tether map, showing the inputs and outputs of a device. Create a tether map showing the anatomy of an internet satellite.
Power to Food. Enhancement desired: Create a sample group project specification for developing an ethical assessment of the following activity with suggested marking/evaluation criteria. Activity: Identify different aspects of the production process where ethical concerns may arise, from production to delivery to consumption. Which ethical issues do you consider to be the most challenging to address?
School Chatbot. Enhancement desired: Activity: Undertake stakeholder mapping to elicit value assumptions and motivations.
Water Wars. Enhancement desired: Work up a script for the following activity. Activity: Role-play the council meeting, with students playing different characters representing different perspectives.
Installing a Smart Meter. Enhancement desired: Generate typical smart meter data so that students can analyse it.
Solar for Oil. Enhancement desired: Produce example calculations in chemical and/or electrical engineering related to carbon offset and solar installations.
Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
Develop and write new case studies
The Ethics Toolkit Advisory group seeks contributors to write new case studies on various topics related to engineering ethics. These case studies should be written in a similar format and style to the existing case studies in the Toolkit. The audience for these case studies is educators seeking to embed ethics within their engineering teaching. They may be written by a single author or jointly by a team of authors. Single authors may be paired with other authors who have volunteered to write on the same topic. Authors are encouraged to speak to the project manager for consultation and guidance during the writing process.
Case studies on any topics related to engineering ethics are welcome. Ideas for new cases have been suggested to the Advisory Group; you may select or adapt one of these shown below, or choose your own.
Design / disposal of medical waste such as home Covid tests or masks, pill packaging, etc;
Genetically engineering mosquitoes or other animals to reduce or eliminate their reproduction;
Design / implantation of devices that control human health or biology, such as sleep/wake cycles, etc. (or another transhumanist topic);
Balancing human safety in public spaces at night with dark sky or animal health initiatives;
Transport issues (infrastructure, access, safety, etc.);
Sustainable materials in construction (homegrown timber, supply chain, etc.)
Materials sourcing and circularity;
Artisanal or deep-sea mining and the connection to indigenous rights;
Dealing with contracts or subcontracts with potential slave or forced labour;
Creation and deployment of emotion detection systems;
Issues related to competitive tendering or overseas procurement;
Equity and impact of flood or erosion mitigation solutions;
Responsibility for micro- and nano-plastics in the environment and human bodies.
Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
In undertaking this work, contributors will become part of the growing community of educators who are helping to ensure that tomorrow’s engineering professionals have the grounding in ethics that they need to provide a just and sustainable future for us all. Contributors will be fully credited for their work on any relevant Toolkit materials, and will be acknowledged as authors should the resources be published in any form. Developing these resources will provide the chance to work with a dynamic, diverse and passionate group of people leading the way in expanding engineering ethics teaching resources, and may help in professional development, such as preparing for promotion or fellowship. If contributors are not compensated by their employers for time spent on this type of activity, a small honorarium is available to encourage participation. After a revision process these will be published as part of the Toolkit online.
If you are interested in contributing to our Engineering Ethics Toolkit, fill out this form by the 12th September 2022 and we will be in touch with additional details.
**Whilst this call has now closed, you can still submit guidance articles, case studies, case enhancements, blogs, and other resources to the Engineering Ethics Toolkit. Please see our Get involved page for details.**
Welcome to the EPC’s Enterprise Collaboration Toolkit – formerly known as the Crucible Project. Here you will find EPC’s landmark project supporting university and industry collaboration in engineering by showcasing and sharing the keys to success.
Some toolkit content is available to members only. For best results, make sure you’re logged in.
The Enterprise Collaboration Toolkit was inspired by the EPC’s landmark 2020 Annual Congress, Industry & Academia: Supercharging the Crucible, which highlighted five areas of mutual interest.
This toolkit includes case studies from a wide range of HE institutions and industry partners, focusing on these 5 themes which can all can be accessed via the links below:
Academics at all levels – whether early career staff looking for opportunities to establish a network or senior leaders who want to extend the role of industry partnerships in their strategy or who want to improve graduate employment outcomes.
Managers in industry looking to establish links with academics to boost research, development, innovation and talent pipeline.
Policy-makers and sector agencies with an interest in industry and academia working more closely for the benefit of the economy, society and regions.
Advisors and contributors
In 2021 the EPC called for case study contributions to build this toolkit to help our members forge stronger industry links by sharing experiences and developing resources. We were delighted to receive nearly 50 applications to contribute case studies, exploring one or more of the Crucible Projects five main themes. These submissions were reviewed in detail by the EPC’s Research, Innovation and Knowledge Transfer Committee (RIKT) and 25 were shortlisted to present at our very successful Crucible Project online launch event on the 16th February 2022. With over 100 attendees joining us throughout the full-day event we saw presentations of a fantastic range of the case studies now available in this toolkit. We would like to extend our greatest thanks to the RIKT committee for all their enthusiasm and hard work on this project, in addition to all those who presented at the event and/or contributed case studies to make this an extensive, and what we hope will be a very useful, resource.
More to come
This is just the beginning of the Crucible Project toolkit – this will be a living and growing resource to provide best practice examples of academic-industry partnerships to help you find research funding, place graduates in employment, create work-based learning and many other collaborations. To ensure the continuous growth of this resource, members will soon be able to contribute their own, or further case studies.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.