The decisions engineers make on a daily basis can have significant consequences for underrepresented and disadvantaged groups in society. Prof Dawn Bonfield, Visiting Professor of Inclusive Engineering at Aston University, Royal Society Entrepreneur in Residence at King’s College London and a member of the EPC’s Engineering Ethics Advisory Group explains…

In the recent ethics report published by the RAEng (1) you might have noticed the explicit references, in an ethics context, to the societal and social justice implications of our engineering solutions that can lead to biased or discriminatory outcomes for different groups of people. This prioritisation of inclusive outcomes is a welcome expansion of the conventional focus of engineering ethics, which is often rooted in issues such as safety, corruption, and competence.

Reference was made in the first page of the report to the use of crash test dummies that have been designed to represent male drivers, leaving women (and pregnant women in particular) at greater risk in car accidents; the potential for algorithms and internet search engines to influence our thoughts on the world; issues arising from facial recognition technology failing to accurately identify those from Black, Asian and Ethnic Minority communities; and the use of artificial intelligence systems that will make safety-critical, legal, and other life changing decisions, which are often based on historical and biased datasets. You can further explore some of the issues with facial recognition technology in one of the ethics case studies produced by the EPC for their RAEng-supported Engineering Ethics Toolkit.

These are all examples of how, as engineers, we can inadvertently create solutions that are biased against minoritized groups of people if we are not careful. This generally occurs as a direct result of the fact that these groups of people are poorly represented in the engineering sector, and so their inputs are missing in the specification, design, and testing of new technologies (2).

But even before we get to a truly diverse engineering workforce, all engineers must be mindful of the ways in which the decisions they take can be discriminatory or can promulgate bias. In situations like the ones mentioned above it is relatively easy to spot the opportunity for discrimination, but in other cases it can be much more difficult. For example, there are ethical implications associated with the sort of ducting that gets chosen for a new building, where one material causes more pollution to socially and economically disadvantaged populations than another. It is in cases like this that a little more thought is required to spot whether the outcomes of these decisions are inclusive and ethical, or not.

Recently, the Covid-19 pandemic has shown us very clearly what the ethical implications are of our built environment decisions and designs, where people living in densely populated and overcrowded urban areas with minimal access to outdoor space have had significantly worse health outcomes than those with access to outdoor and green spaces. Inclusive design of the built environment is now a growing and recognised area of our engineering work, and as well as the more obvious examples of ensuring equitable access to those with disability issues, it also recognises that public spaces should be equitable and accessible to all communities. Everybody needs to see themselves represented in these environments and feel able to use them safely and fully. These are issues of ethics and inclusion, as well as social justice and equality, and the requirement we have as engineers to consider all of these perspectives as the creators of our future world must be a part of our systems engineering mindset. Several of the EPC’s ethics case studies focus on responsibility, equity, and stakeholder engagement, such as the Ageing Pipeline and its Impact on Local Communities case.

The importance of systems, design, iterative thinking, and the focus on ensuring that the whole life cycle of a product, including maintenance, repair, deconstruction, and end of life decommissioning, requires true stakeholder engagement, means that these inclusive outcomes can be considered at the very start of projects, rather than as an afterthought, where any changes are much more difficult and costly to integrate. The strengthening of the Social Value Act (3), which requires people who commission public services to explicitly evaluate how they can secure wider social, economic and environmental benefits, also puts emphasis on ensuring the outcomes of any procurement are inclusive and ethical. Similarly, the Sustainable Development Goals ethos of Leave No One Behind (4) requires that outcomes are considered from all perspectives, and that solutions taking all of the goals into account are balanced and not considered in silos. The EPC’s ethics case study on Business Growth Models allows engineering students to explore many of these issues.

Designing with the gender perspective in mind, especially in parts of the world where women have very different societal roles based on culture, stereotypes, local norms, and religion, is key to ensuring that the differences and disadvantages that women face are not exacerbated. Understanding these differences is the first step in addressing them, and in many cases, technology can act as a real enabler in situations where women have limited access to traditional education, information, and independence. For example, the widespread use of microfinance in many parts of Africa – a technology not aimed specifically at women – is nevertheless giving women much better access to loans and financial independence than the traditional banking structures did, which women are not always able to access easily. Other examples include understanding the need for sanitation facilities in public spaces such as schools, government offices, transportation hubs and health clinics, without which women’s access to these facilities becomes restricted and their participation curtailed (5).

Another ethical issue comes into play here too. Do we design just to remove bias and discrimination, or do we design to reverse historical bias and discrimination? For example, women have traditionally worked in certain sectors such as care giving roles, and not in sectors like engineering and technology. Algorithmic decision-making tools can use this historical data to preferentially show stereotypical job opportunities based on past trends and evidence, which could foreseeably prevent women from being targeted for engineering related roles. Adapting these tools to make these job opportunities open to all in an equitable way is one thing, but what if we decided to preferentially show engineering roles to women and caring roles to men – a kind of social engineering, if you will? What are the ethics of this, and would that be going too far to remove biases? I will leave you to think about this one yourselves!  If you would like to write a case study about it, we are currently looking for contributors to the toolkit!

The decisions we make daily as engineers have consequences to individuals and communities that have not always been understood or considered in the past, but by understanding the need for inclusive outcomes for all stakeholders, we also ensure that our solutions are ethical, and that we leave no on behind. The ethics case studies in the EPC’s recently launched Engineering Ethics Toolkit reveal the ethical concepts that comprise our everyday activities and what lies behind those decisions – resources like this should be used to ensure ethical decision making is integrated throughout an engineers’ education and continuing professional development.

This blog is also available here.

 

References

  1. RAEng Ethics Report https://raeng.org.uk/policy-and-resources/education-policy/the-engineering-profession/global-responsibility-and-progressive-engineering-leadership/ethics
  2. inceng.org website
  3. Social Value Act https://www.gov.uk/government/publications/social-value-act-information-and-resources/social-value-act-information-and-resources
  4. Sustainable Development Goals ethos of Leave No One Behind https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind
  5. Towards Vision Website ‘Gender Perspective in Engineering’ http://www.towardsvision.org/the-gender-perspective-in-engineering.html

 

Dawn Bonfield MBE CEng FIMMM FICE HonFIStructE FWES is Visiting Professor of Inclusive Engineering at Aston University and Royal Society Entrepreneur in Residence at King’s College London.

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Funded by the Royal Academy of Engineering the EPC’s Engineering Ethics toolkit was recently launched – containing a range of case studies and supporting articles to help engineering educators integrate ethics content into their teaching. EPC Board member and Professorial Teaching Fellow, Mike Bramhall, at The Engineering and Design Institute (TEDI-London) has incorporated three of the case studies from this recently produced toolkit into TEDI’s BEng (Hons) in Global Design Engineering. Mike and two of his students, Stuart Tucker and Caelan Vollenhoven, gave a presentation at this year’s EPC Annual Congress about their positive experience teaching and learning with the case studies. In this blog, Mike reflects on how and why he incorporated these resources.

The BEng (Hons) Global Design Engineering programme was launched in our brand new institution – TEDI-London – in September 2022. The programme is a blended mix of online learning integrated with project-based learning. Through this project-based learning approach and working in partnership with industry, our students will create and contribute to solutions to some of the biggest challenges facing the 21st century and be equipped with the skills employers need from future engineers. Within these real-world projects, students work in teams and consider the ethical, environmental, social, and cultural impacts of engineering design. These issues are important for an engineer to understand whilst working with society. This importance is highlighted in the UK Standard for Professional Engineering Competence and Commitment (UK-SPEC: 4th edition) with accreditation bodies identifying ethics as one of the core learning outcomes and competencies in engineering programmes. The Accreditation of Higher Education Programmes in engineering standards (AHEP: 4th edition) reflects the importance of societal impact in engineering. To meet AHEP 4 our programme learning outcomes have been mapped against all required outcomes. The Engineer and Society outcomes include:

To help students understand some of these issues whilst working on their design projects we chose three case studies from the Engineering Ethics Toolkit:

‘Choosing to install a smart meter’

‘Smart homes for older people with disabilities’

‘Solar panels in a desert oil field’

We converted key parts of these case studies to be compatible with our virtual learning environment and incorporated them into one online learning node. To support students in their development of ethical thinking, each case study focuses on different parts of ethics for engineers:

  1. Everyday ethics
  2. Ethical reasoning
  3. Ethical analysis

Students are guided through the case studies in small chunks and asked to reflect upon each ethical issue. In this way students are not overwhelmed with too much information all at once. Eventually students are asked to incorporate their reflection into an end of year Professional and Personal Portfolio, explaining and evidencing how they have met each of the AHEP learning outcomes. The image below shows an example of a reflection task.

We asked the students to go through the online node individually prior to a class session in which staff then facilitated small-group discussions on each of the case studies. For example, for the Smart Meter case study we suggested that one group could look at being ‘for smart meters’ and another group ‘against smart meters’, using ethical issues and judgement in their decision making. Other issues arose during these discussions such as sustainability, data security, risk, and equality, diversity & inclusion. Some of the student comments are shown below:

On a high level, installing a smart meter is being portrayed as the decent thing to do in terms of the environment however it is just an instrument to monitor usage.
One way to be good to the environment is to be careful with your energy usage, e.g. switching off lights, only having heating and hot water when required so installing effective timers/thermostats in parts of your home where you need it.
Security & privacy: Who can see your consumption data and what can they do with it? The meters are all connected to the central wireless network, called the Data Communication Company (DCC). Concerns are that this network could be ‘hacked’ into. They may see a pattern of no-usage and provide opportunity for theft.
As first year undergraduate engineers we now have an insight and awareness of ethics and the responsibility of engineers in society.
Breaking down the case studies into a more interactive format and in manageable chunks made it easier for students, to stop us being overwhelmed – making it perfect for discussion in small groups.

We could put our thoughts on ethics into our end of year Portfolios – mapping against the AHEP requirements

These comments show how broadly and deeply students were able to engage with the ethical concepts presented in the case studies and apply them to their future work. As our course progresses, we intend to use more of the case studies, and map them appropriately against particular projects that students are working on at each level of the programme.

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

The Engineering Ethics Toolkit is a new resource for engineering educators to help them integrate ethics content into their teaching. It has been produced by the UK’s Engineering Professors’ Council (EPC) for the Royal Academy of Engineering (RAEng) as part of the profession’s ongoing work to embed ethical practice into the culture of engineering. 3 guidance articles and 12 case studies designed for classroom use have been developed in a first phase of work. Explore these resources on both the EPC and the RAEng websites.

 

The Engineering Ethics Toolkit Advisory Group seeks contributors to add to and develop these resources who can:

 

Write additional guidance articles

The Ethics Toolkit Advisory group seeks contributors to write guidance articles on various topics related to engineering ethics education, shown below. These articles are meant to be overviews that a reader with no prior knowledge could refer to in order to develop a baseline understanding and learn where to look for additional information. They should be approximately 500-1000 words and reference relevant resources, especially existing resources in the Ethics Toolkit. They may be written by a single author or by a team of authors. Single authors may be paired with other authors who have volunteered to write on the same topic. See the existing guidance articles for examples of style, tone, and approach. Use Harvard referencing. 

You may propose a topic to write about, but the Ethics Advisory Group will prioritise contributions of articles on the following topics:

  1. What is Ethics?
  2. Why Integrate Ethics in Engineering?
  3. How to Integrate Ethics into a Module/Course?
  4. Tackling Tough Topics in Discussion OR How to Lead a Discussion
  5. How Ethics Links to Other Competencies and Skills
  6. Getting Comfortable with Open-Ended Problems/Questions Related to Ethics
  7. Learning Taxonomies and Ethics Education

Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

Create case enhancements that develop teaching materials for activities suggested in the case studies

Case enhancements are teaching materials and resources that help educators to employ the ethics case studies and lead the activities referenced within them. Enhancements provide crucial guidance for those who may be teaching ethics-related material for the first time, or who are looking for new and different ways to integrate ethics into their teaching. They may take the form of discussion prompts, debate or role play scripts, technical content related to the ethical dilemma, worksheets, slides, or other similar materials. Enhancements may be written by a single author or by a team of authors. Single authors may be paired with other authors who have volunteered to contribute to the same case.

The Ethics Advisory Group seeks at least one case enhancement per published case study, outlined below. You may propose additional or different enhancements according to your background and expertise. You may want to familiarise yourself with the relevant cases in order to determine where you can best contribute. 

  1. Business Growth Models. Enhancement desired: Activity: In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. 
  2. Facial Recognition. Enhancement desired: Prompts to facilitate discussion activities.
  3. Choosing a Career in Climate Change Geoengineering. Enhancement desired: Activity: map the arguments of the three professors. Whose perspective might be the most persuasive and why?
  4. Glass Safety. Enhancement desired: Activity: Debate whether or not the engineer has an ethical or professional responsibility to warn relevant parties.
  5. Internet Constellation. Enhancement desired: Activity: Anatomy of an internet satellite – use the Anatomy of an AI case study as an example of a tether map, showing the inputs and outputs of a device. Create a tether map showing the anatomy of an internet satellite.
  6. Industrial Pollution from an Ageing Pipeline. Enhancement desired: Generate scripts for discussion prompts.
  7. Power to Food. Enhancement desired: Create a sample group project specification for developing an ethical assessment of the following activity with suggested marking/evaluation criteria. Activity: Identify different aspects of the production process where ethical concerns may arise, from production to delivery to consumption. Which ethical issues do you consider to be the most challenging to address?
  8. School Chatbot. Enhancement desired: Activity: Undertake stakeholder mapping to elicit value assumptions and motivations.
  9. Water Wars. Enhancement desired: Work up a script for the following activity. Activity: Role-play the council meeting, with students playing different characters representing different perspectives.
  10. Smart Homes for Older People. Enhancement desired: Create a sample data set for technical analysis.
  11. Installing a Smart Meter. Enhancement desired: Generate typical smart meter data so that students can analyse it.
  12. Solar for Oil. Enhancement desired: Produce example calculations in chemical and/or electrical engineering related to carbon offset and solar installations.

Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

Develop and write new case studies

The Ethics Toolkit Advisory group seeks contributors to write new case studies on various topics related to engineering ethics. These case studies should be written in a similar format and style to the existing case studies in the Toolkit. The audience for these case studies is educators seeking to embed ethics within their engineering teaching. They may be written by a single author or jointly by a team of authors. Single authors may be paired with other authors who have volunteered to write on the same topic. Authors are encouraged to speak to the project manager for consultation and guidance during the writing process.

Case studies on any topics related to engineering ethics are welcome. Ideas for new cases have been suggested to the Advisory Group; you may select or adapt one of these shown below, or choose your own.

  1. Design / disposal of medical waste such as home Covid tests or masks, pill packaging, etc;
  2. Genetically engineering mosquitoes or other animals to reduce or eliminate their reproduction;
  3. Design / implantation of devices that control human health or biology, such as sleep/wake cycles, etc. (or another transhumanist topic);
  4. Balancing human safety in public spaces at night with dark sky or animal health initiatives;
  5. Transport issues (infrastructure, access, safety, etc.);
  6. Sustainable materials in construction (homegrown timber, supply chain, etc.)
  7. Materials sourcing and circularity;
  8. Artisanal or deep-sea mining and the connection to indigenous rights;
  9. Dealing with contracts or subcontracts with potential slave or forced labour;
  10. Creation and deployment of emotion detection systems;
  11. Issues related to competitive tendering or overseas procurement;
  12. Equity and impact of flood or erosion mitigation solutions;
  13. Responsibility for micro- and nano-plastics in the environment and human bodies.

Unless otherwise stated, to ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.

In undertaking this work, contributors will become part of the growing community of educators who are helping to ensure that tomorrow’s engineering professionals have the grounding in ethics that they need to provide a just and sustainable future for us all. Contributors will be fully credited for their work on any relevant Toolkit materials, and will be acknowledged as authors should the resources be published in any form. Developing these resources will provide the chance to work with a dynamic, diverse and passionate group of people leading the way in expanding engineering ethics teaching resources, and may help in professional development, such as preparing for promotion or fellowship. If contributors are not compensated by their employers for time spent on this type of activity, a small honorarium is available to encourage participation. After a revision process these will be published as part of the Toolkit online.

If you are interested in contributing to our Engineering Ethics Toolkit, fill out this form by the 12th September 2022 and we will be in touch with additional details.

**Whilst this call has now closed, you can still submit guidance articles, case studies, case enhancements, blogs, and other resources to the Engineering Ethics Toolkit. Please see our Get involved page for details.**

 

Prof. Raffaella Ocone, Chair (r.ocone@hw.ac.uk)

Prof. Sarah Jayne Hitt, Project Manager (sarah.hitt@nmite.ac.uk)

Engineering Ethics Toolkit Advisory Group Members:

This post is also available here.

Welcome to the EPC’s Enterprise Collaboration Toolkit – formerly known as the Crucible Project. Here you will find EPC’s landmark project supporting university and industry collaboration in engineering by showcasing and sharing the keys to success.

Some toolkit content is available to members only. For best results, make sure you’re logged in.

The Enterprise Collaboration Toolkit was inspired by the EPC’s landmark 2020 Annual Congress, Industry & Academia: Supercharging the Crucible, which highlighted five areas of mutual interest.

This toolkit includes case studies from a wide range of HE institutions and industry partners, focusing on these 5 themes which can all can be accessed via the links below:

These case studies are aimed at:

Advisors and contributors

In 2021 the EPC called for case study contributions to build this toolkit to help our members forge stronger industry links by sharing experiences and developing resources. We were delighted to receive nearly 50 applications to contribute case studies, exploring one or more of the Crucible Projects five main themes. These submissions were reviewed in detail by the EPC’s Research, Innovation and Knowledge Transfer Committee (RIKT) and 25 were shortlisted to present at our very successful Crucible Project online launch event on the 16th February 2022. With over 100 attendees joining us throughout the full-day event we saw presentations of a fantastic range of the case studies now available in this toolkit. We would like to extend our greatest thanks to the RIKT committee for all their enthusiasm and hard work on this project, in addition to all those who presented at the event and/or contributed case studies to make this an extensive, and what we hope will be a very useful, resource.

More to come

This is just the beginning of the Crucible Project toolkit – this will be a living and growing resource to provide best practice examples of academic-industry partnerships to help you find research funding, place graduates in employment, create work-based learning and many other collaborations. To ensure the continuous growth of this resource, members will soon be able to contribute their own, or further case studies.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The Engineering Ethics Toolkit is produced by the Engineering Professors’ Council with support from the Royal Academy of Engineering as part of the profession’s on-going work to embed ethical practice into the culture of engineering. Click here for the toolkit homepage

 

Advisory Group

The Ethics Advisory Group worked on Phase 1 and Phase 2 of the Engineering Ethics Toolkit.

A list of the Engineering Ethics Advisory Group members can be found below.

The Group was chaired by Prof. Raffaella Ocone and the project managed by Prof. Sarah Jayne Hitt with the support of the Engineering Professors’ Council and the Royal Academy of Engineering.

See our blog ‘Welcome to the Engineering Ethics Toolkit‘ for an introduction and thoughts from the EPC’s President.

 

Meetings

The Ethics Advisory Group met between March and December 2022, as a full group and sub-groups.

You can see details of their meetings below.

 

Evolution

The Ethics Advisory Group disbanded in December 2022.

The Ethics Ambassadors community was launched in March 2023 to expand and develop their work and recommendations.

EPC President Prof Mike Sutcliffe introduces an ambitious new initiative to ensure engineering education is a force for good: the EPC’s Engineering Ethics toolkit, produced in partnership with the Royal Academy of Engineering.

Engineering can have significant impact on society and the environment, both positive and negative.  Harnessing the power of engineering to build a sustainable society that works for everyone requires us to navigate complexity, uncertainty and challenging ethical issues.

Understanding ethical issues and behaving in an ethical manner underpins other behaviours such as inclusivity and sustainability, ensuring that individual practitioners, professions and organisations are globally responsible. To maximise positive impact these behaviours must become instinctive – golden threads running through everything that engineers think and do.

The EPC Board considered its own ethical responsibility – including representing our members’ views, supporting good practice and as an organisation – at its retreat in January 2020.  This led to the clear action for the EPC to promote engineering ethics more proactively and adopt clear ethical positions.  A key aspect of this is enabling the embedding of ethical best practice into the UK engineering higher education curriculum through creation of an ‘Engineering Ethics Toolkit’.

There is growing advocacy for bringing engineering ethics to the fore in engineering programmes – alongside technical skills – as we equip future engineers with the skills and mindset they need to succeed.  At the policy level, this is evident in three general areas:

  1. The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC; 4th edition) and accreditation bodies identifying ethics as one of the core learning outcomes and competencies in accreditation documents;
  2. The inclusion of more descriptive competencies that expand on the understanding and practical application engineering ethics; and
  3. The Accreditation of Higher Education Programmes in engineering (AHEP, 4th edition) standards reflecting the importance of societal impact in engineering.

Today we are pleased to launch the first milestone in the development of the EPC’s Engineering Ethics toolkit – a range of case studies and supporting articles to help engineering educators integrate ethics content into their teaching.

This will allow engineering students to be able to identify ethical issues, exercise ethical thinking and use ethical judgement within their projects and coursework.

Producing this first phase of the toolkit has been a fabulous team effort – the high priority placed on creating this exemplified by remaining on track and producing a high-quality resource despite the challenges faced from Covid-19.  Everyone has done an amazing job.

This would not have been possible without the generosity and support of the Royal Academy of Engineering, and the Engineering Council with whom they are partnering.  As chair, Raffaella Ocone (Heriot-Watt) is doing a wonderful job of guiding us – getting us off to a flying start with her previous trailblazing work on embedding ethics into the curriculum. And Sarah Jayne Hitt (formerly NMiTE) is doing an absolutely fabulous job of keeping us focused, on track and producing high-quality resources informed by best practice.

This achievement is a wonderful example of how, as engineers, we work most effectively when we work together to design effective solutions – a team I enjoy working with and am proud to be a part of.

We hope you find these resources for embedding ethics into the curriculum useful.  Do let us know how you get on and keep an eye out as we continue to expand these resources into a more comprehensive toolkit for engineering educators.

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

In September 2015 the first university-business co-developed Degree Apprenticeship programmes were launched – having been designed and eligible for funding under the government’s new model for apprenticeship training (Apprenticeship Standards), and expected to be resourced via the so called “apprenticeship Levy”.

Whilst still at a relatively small scale and early stage, as at March 2016, Apprenticeship Standards are ‘ready for delivery’ at the Degree Apprenticeship level in three discipline areas – two of which are engineering-related.  A further seven are awaiting approval, five of which are engineering-related.

Some toolkit content is available to members only. For best results, make sure you’re logged in.

Contents:

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website