Objectives: This activity is our guide to navigating assessment centres, offering tips and strategies tailored to empower underrepresented groups and help you be prepared, authentic self, stand out and succeed. 

Introduction: Assessment centres have been a key part of graduate recruitment since the 1950s, originally developed to evaluate leadership potential in military officers. Today, they are widely used by employers to assess candidates through group tasks, interviews, and individual exercises. This activity serves as a practical guide to help you navigate assessment centres with confidence. With a focus on empowering underrepresented groups, it provides tips and strategies to help you prepare effectively, present your authentic self, and stand out in a competitive selection process.

Topic: Standing out with confidence at assessment centres: a guide to preparation, authenticity, and success.

Keywords: Problem solving; Employability and skills; Communication; Leadership or management; Collaboration; Digitalisation; Professional development; Writing Skills; Equity, Diversity and Inclusion; Neurodiversity; Inclusive or Responsible design; Recruitment; Business or trade or industry; Workplace culture; Information and Digital literacy; Artificial Intelligence.

 

An immersive experience

Getting startedWhat to expect An employer’s guide What are assessment centre activities?

Click on each accordion tab to explore videos that guide you through navigating assessment centres, offering tips and strategies designed to empower underrepresented groups and help you prepare, be your authentic self, stand out, and succeed.

Video summary: 

This video was produced by The Careers Chat, a platform associated with Warwick University, provides an overview of assessment centres used by graduate recruiters. It discusses various tasks designed to evaluate candidates’ skills in action, offering insights into the selection process and tips for preparation.  

Key insights: 

🌟 Always be mindful that you’re being assessed – from the moment you arrive until you leave. Maintain a professional and approachable demeanor to leave a lasting positive impression. 

🤝 View fellow candidates as collaborators, not competitors. Respect their perspectives and engage in teamwork; remember, it’s possible that everyone could be offered a role. 

💼 Keep in mind that the tasks are tailored to the role you’re applying for. Be authentic, and the skills you’ve already highlighted in your application will naturally stand out. 

Video summary:

Assessment centres are crucial for graduate recruitment, involving various tasks to evaluate candidates’ skills through collaborative activities.

Key insights:

🎓 Real-time evaluation: Assessment centres provide an opportunity for recruiters to observe candidates in action; skills, interpersonal dynamics and teamwork.

📅 Duration and format flexibility: Be prepared and mentally ready for either a half-day or full-day assessment face to face or online.

📝 Diverse assessment tasks: Wide range of tasks, from essays to presentations, means candidates should practice and be adaptable to showcase different skills.

🤝 Collaboration over competition: Viewing fellow candidates as collaborators rather than competitors can foster a supportive atmosphere, better outcomes for everyone.

🌈 Authenticity matters: Presenting genuine skills and authentic experiences rather than trying to fit a mould can make candidates stand out and connect with recruiters.

🚪 Professionalism is key: From the moment you arrive until you leave, maintaining a professional demeanour leaves a lasting impression, and suitability for the role.

💡 Preparation is essential: Familiarising oneself with the specific tasks related to the job application can boost confidence and performance, and draw upon relevant skills.

Video summary:
An assessment centre evaluates candidates through various exercises to assess teamwork, problem-solving, and fit within the company culture.

Key insights:

🔍 Assessment centres are designed to simulate real work environments, helping employers see how candidates fit into team dynamics and your ability to collaborate.

🧠 Psychometric tests may be retaken during the assessment, so candidates should be prepared to demonstrate their logical reasoning and numerical skills in person.

🗣️ Group exercises focus on problem-solving as a team, the process is more important than the outcome, opportunity to show your communication and leadership skills.

🎤 Presentations, whether in groups or individually, evaluate public speaking and the ability to synthesize complex information into clear solutions.

🎭 Role-play exercises test candidates’ client-handling skills and ability to provide solutions under pressure, highlighting their problem-solving approach.

🤝 Lunch and breaks are part of assessment, are an opportunity to network, and demonstrate your informal communication skills that could influence your success

📊 You need to demonstrate understanding and applying the company’s core values and meeting their desired competencies effectively throughout the process.

 

Resources

 

Underrepresented groups preparing for virtual assessment centres 

 

How to PASS an assessment centre UK

The video offers tailored guidance specifically for international students.

 

Acing virtual assessment centres: future you webinar: 

As part of their Future You webinar series, Prospects hosted a session titled Acing Virtual Assessment Centres on Tuesday, 20th April 2021. The webinar offers valuable insights, practical tips, and expert guidance to help students confidently navigate virtual assessment centres. Watch the video below to gain useful strategies and boost your preparation. Aldi, Arcadis and Police Now Recruiters advice for preparing for Virtual Assessment centres.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: Engage in a mentorship relationship within EDI-focused networks, either as a mentor or mentee. This exchange fosters personal, professional growth and strengthens EDI communities through shared knowledge and experiences. 

Introduction: Engaging in mentorship within EDI-focused networks, as either a mentor or mentee, fosters personal and professional growth while strengthening inclusive communities. Through peer support and mentoring groups, you can connect with others facing similar challenges, diversify your networks, and challenge social norms to promote social justice and inclusivity.

Topic: Building inclusive communities through EDI mentorship: fostering growth, networks, and social justice.

Keywords: Mentoring; Equity, Diversity and Inclusion; Justice; Social responsibility; Collaboration; Ethics; Professional development; Leadership or management.

 

Resources and support

A guide for employers, employees, and future employees on the reasons to implement reciprocal mentoring. Click here to access the PDF guide.

 

Reciprocal mentoring

In the video below, Professor Anne Nortcliffe highlights the concept and benefits of reciprocal mentoring, emphasizing mutual learning, inclusion, and shared growth between junior and senior colleagues.

Video summary:

🎯 Purpose: Reciprocal mentoring differs from traditional mentoring, where typically a senior guides a junior — here, both parties learn from one another.

🔄 Mutual learning: Both mentor and mentee bring valuable perspectives, creating opportunities for shared growth and understanding.

🧑‍🎓🧑‍💼 Generational exchange: Junior staff share insights from their generational and workplace experiences, enriching the senior staff’s awareness and approach.

🗺️ Career navigation: Seniors still provide guidance in navigating career paths and adapting to changing professional landscapes.

Interview tip: During job interviews, ask if the employer has a reciprocal mentoring program — if not, use the provided toolkit to highlight its benefits.

📣 Authentic voices: Socially underrepresented individuals can bring their lived experiences into the conversation, promoting inclusion.

🌍 Inclusive environment: Reciprocal mentoring fosters diversity, equity, and inclusion within the workplace.

🧑‍🤝‍🧑 Collaborative impact: Mentors become advocates in senior spaces, amplifying the visibility and contributions of their mentees.

🚀 Opportunities: Mentors may champion their mentees for key projects and leadership development opportunities.

💡 Take initiative: If your workplace doesn’t offer reciprocal mentoring, suggest it to HR and help lead the implementation.

 

Peer support

Organise or join peer support/mentoring groups with fellow graduates or students who may experience similar challenges as you. You can use these groups to hear other people’s experiences relating to employment and how to thrive in the workplace.

Join organisations such as: 

 

Build and diversify your networks 

Build networks and participates in social economic and ecology justice events 

 

Embrace social justice

 

Challenge social norms 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: Engage in EDI events, workshops, and networks to deepen your understanding of diversity, inclusion, and social responsibility. Gain real-world insights from industry videos and leverage volunteering, placements, and networking to enhance employability and refine career goals. Use diverse work experiences for self-discovery, embrace unexpected roles for growth, and reflect on past experiences to clarify future career decisions. These steps will guide your personal and professional development.

Introduction: Embracing lifelong learning, the journey of understanding and implementing Equality, Diversity, and Inclusion (EDI) is continuous. By consistently learning, reflecting, and applying these principles in all areas of life, you foster growth that benefits both yourself and those around you.

Topic: Enhancing career growth and social responsibility through active engagement in EDI events, networks, and diverse work experiences.

Keywords: Equity, Diversity and Inclusion; Social responsibility; Professional development; Employability and Skills; Collaboration; Leadership or management; Gender; Networking; Neurodiversity; LGBTQ+.

 

Social responsibility

Video summary:

Ammaarah Ravat, a compliance engineer at Cummins, emphasizes community involvement and the value of diverse experiences in shaping career paths.

Key insights:

🌟 Importance of social responsibility: Engaging in community service reflects a commitment beyond job duties, showcasing character and values.

🔍 Role of volunteering: Actively participating in local initiatives can enhance employability and illustrate one’s dedication to societal betterment.

🚀 Value of industrial placements: Gaining diverse experiences during placements enables students to refine their career goals and professional interests.

💼 Self-discovery: Working in varied roles helps individuals identify their strengths and preferences, guiding future career decisions.

🌐 Networking opportunities: Building a professional network during internships is crucial for career advancement and finding new opportunities.

🎯 Open-minded approach: Embracing unexpected job roles can lead to personal growth and a better understanding of the industry.

🤔 Reflection on experiences: Analysing past roles helps clarify what one wants and doesn’t want in their career path, aiding future choices.

 

Resources and support 

To support your journey, we’ve curated resources from Wenite, Equal Engineers. We’ve also developed a University Career Services Library – a curated collection of links to career centers at various universities, providing direct access to valuable tools, guidance, and opportunities to support your career growth.

 

Engage in EDI events, workshops , and networks 

We invite you to participate in upcoming EDI-focused networks, events, and workshops: 

 

Meet some of our industry collaborators  

Getting startedSusan HawkesStewart EyresJordan Hannah

Click on each accordion tab to hear from some of our industry collaborators. These videos offer valuable insights into real-world experiences and perspectives that can enhance your understanding of the field.

Video summary: 

Susan Hawkes, a technician at Berry Range Limited, promotes engineering diversity and emphasizes the importance of mental health within her family-run company. 

Key insights: 

🌟 Technicians matter: Technicians like Susan play a vital role in engineering, yet often lack recognition. Elevating their status can enhance the industry. 

🤝 Diversity drives progress: Promoting diversity in engineering creates innovative solutions and reflects the society we serve, making it imperative for future growth. 

🏢 Company culture counts: A supportive work environment that values mental health contributes to employee satisfaction and retention, which is essential in a demanding industry. 

👩‍⚕️ Mental health focus: Addressing mental health proactively fosters a healthier workforce and can lead to improved productivity and morale. 

🌐 Women in engineering: Encouraging more women to join institutions like ICE can lead to a more balanced workforce and bring fresh perspectives to the field. 

🗣️ Networking opportunities: Engaging in networking events can open doors for collaborations and mentorship, crucial for career development in engineering. 

🌍 Leadership representation: Having diverse leaders in organizations, such as the female president of ICE, inspires future generations and promotes inclusivity in the field. 

Video summary: 

Stewart Eyres discusses the mission of Equal Engineers to create a diverse, equitable, and inclusive approach to engineering recruitment and support. 

Key insights: 

🌈 Diversity in engineering: Equal Engineers addresses the need for a diverse workforce in engineering, recognizing varied perspectives enhance innovation and problem-solving. 

🎓 Collaboration with universities: Partnering with educational institutions fosters a pipeline of diverse talent, ensuring that engineering education aligns with industry needs. 

🤝 More Than recruitment: The agency goes beyond traditional recruitment by actively working with companies to make their environments more welcoming for diverse candidates. 

📊 Support for new recruits: Regular follow-ups with new hires help to verify that companies meet their commitments, creating a supportive onboarding experience. 

🌟 Empowering ambition: Stuart encourages aspiring engineers not to settle for their first job but to seek roles that truly fit their skills and aspirations. 

🔍 Job market opportunities: With a shortage of engineers, there is an abundance of opportunities available, inviting candidates to be proactive in their job search. 

💼 Thriving in the workplace: Creating an inclusive environment allows diverse employees to contribute their unique strengths, benefiting both the individual and the organisation.

Video summary: 

Jordan Hannah discusses supporting apprenticeships in engineering, emphasizing the need for employer engagement and practical experience in the field. 

Key insights: 

🌱 Employer responsibility: Companies should actively engage with apprentices, helping with career development rather than just completing their training period. This fosters a sense of loyalty and ensures a skilled workforce. 

🏗️ Diverse engineering paths: Engineering encompasses a wide array of disciplines, from infrastructure to technology. Embracing this diversity can open numerous career opportunities and attract a broader range of talent. 

📆 Structured development: A well-planned apprenticeship program provides a roadmap for apprentices, enhancing their job security and professional growth, which can lead to higher retention rates. 

🧠 Importance of employability skills: Engineers must cultivate soft skills like communication to effectively collaborate with non-technical stakeholders, underscoring the interdisciplinary nature of modern engineering roles. 

🚀 Encouragement to experiment: Encouraging students to explore various engineering roles can lead to a more informed career choice, highlighting the importance of practical experience in shaping interests. 

🔄 Learning from dislike: Understanding what one does not enjoy can be just as valuable as knowing what one does like, guiding future career decisions and improving job satisfaction. 

📈 Continuous support: Post-apprenticeship support is crucial for young professionals, ensuring they transition smoothly into their careers and feel valued by their employers. 

 

 

Ready to take the next step? 

Your commitment to EDI creates a more inclusive, equitable, and diverse world. Continue engaging with these principles to embrace the challenges and opportunities in both personal and professional life. Let’s move forward together. 

 

Your feedback matters 

Email Crystal Nwagboso for any suggestions and feedback. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.

The EPC’s Inclusive Employability Toolkit is supported by Canterbury Christ Church University, Equal Engineers, The Royal Academy of Engineering, and Wrexham University. This resource is designed to help engineering educators integrate EDI principles and practices in engineering, computing, design and technology – across education, employer engagement, career preparation, and progression into the workplace.

 

Introduction 

This resource was formerly known as the EDGE Toolkit, and was developed in partnership with Canterbury Christ Church University, Wrexham University, Equal Engineers and The Royal Academy of Engineering. The two Universities have now joined forces with the Engineering Professors Council to launch the newly renamed Inclusive Employability Toolkit, working together to improve usability and ensure broader access to this valuable resource. 

The Inclusive Employability Toolkit supports inclusive employment in engineering, computing, design, and technology, enhancing diversity and authentic voices in the workplace. 

Our commitment to fostering an environment where every individual feels valued and empowered has led us to develop the Inclusive Employability Toolkit. This comprehensive toolkit is designed to guide students, faculty, and staff in understanding and practicing EDI principles, ensuring that our campus is a place where diversity thrives and every voice is heard. 

The Inclusive Employability Toolkit is more than just a set of resources – it’s a commitment to continuous learning, understanding, and action. We invite you to explore the toolkit, participate in the activities, and engage with the wealth of available resources. Together, we can build an engineering community that truly reflects the world’s diversity, united in our pursuit of equity and inclusion. 

Begin by exploring this page; it provides a comprehensive background on the importance of EDI in the world of engineering and sets the stage for your learning journey. 

 

Welcome 

The world is incredibly diverse, but navigating the complexities of equity, diversity, and inclusion (EDI) can be challenging, especially for minority groups who face significant hurdles. In the video below, Professor Anne Nortcliffe invites you to explore the Inclusive Employability Toolkit, offering guidance on how to make the most of its features and resources. 

 

The Inclusive Employability Toolkit aims to

 

Contents 

How to use this toolkit effectively:  

Embarking on your journey through Inclusive Employability Toolkit is a step towards fostering an inclusive and diverse environment within the engineering community. This guide will help you navigate the toolkit, ensuring you make the most of the resources, challenges, and learning opportunities it offers. 

 

Goals

🌍 Diversity matters: The toolkit emphasizes that diverse voices enrich the workplace, offering unique perspectives that drive innovation and creativity.
💪 Empowering students: By focusing on technical students, the toolkit equips them with the skills and confidence to navigate their career paths successfully.
🎤 Encouraging authenticity: Bringing your authentic voice to work fosters an environment of trust and openness, leading to stronger team dynamics.
🤝 Role of allies: Supporting individuals from minority backgrounds (female, LGBTQ, disabled, mature, low socio-economic status, global majority) not only aids their success but enriches the workplace culture for everyone involved.
📈 Business impact: Companies that prioritise equity and inclusion see improved employee retention and higher morale, translating into better performance metrics.
🛠️ Better solutions: Diverse teams in engineering and technology are proven to develop more effective solutions, addressing a wider range of needs and challenges.
🏛️ Societal benefits: Promoting equity and inclusion not only benefits organisations but also contributes to a more just and equitable society overall. 

 

Licensing

To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made.

 

Further details

CommitmentOur roleWhat we knowChallenges in the industryIndustry EmployersStudent feedback

To leading the charge in creating new opportunities for diversity and inclusion of engineering, technology and design to address regional skills gap. Our vision for all engineering, technology and design students regardless of their background have opportunity to thrive in engineering, technology and design industry.


As game changers we have researched and developed the Inclusive Employability Toolkit to empower students and employers in building bridges between academia, students, and industry to enable gainful graduate employment and more inclusive, dynamic, and diverse opportunities in engineering, technology and design.

A higher proportion of Global Majority and low socioeconomic students’ study at Post-92 universities, and yet, employment outcomes for graduates from these universities often lag behind their Russell Group peers.

Ethnicity, gender, and socioeconomic factors continue to shape the employability landscape However more inclusive engineering, technology and design teams create better solutions to problems for all of society.

Gain insights from industry employers as they discuss the toolkit and its impact.


Gain insights from students as they reflect on the usefulness and impact of the toolkit.


Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.   

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Here you’ll find a list of our events related to the Engineering Ethics Toolkit.

You can also search here for meetings of the Ethics Advisory Group, and Ethics Ambassadors.

Authors: Professor Emanuela Tilley, (UCL); Associate Professor Kate Roach (UCL); Associate Professor Fiona Truscott (UCL). 

Topic: Sustainability must-haves in engineering project briefs. 

Type: Guidance. 

Relevant disciplines: Any. 

Keywords: PBL; Assessment; Project brief; Learning outcomes; Pedagogy; Communication; Future generations; Decision-making; Design; Ethics; Sustainability; AHEP; Higher education.
 
Sustainability competency: Integrated problem-solving; Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All. 
 
Reimagined Degree Map Intervention: Adapt learning outcomes; Active pedagogies and mindsets; More real-world complexity; Cross-disciplinarity; Authentic assessment.

 

Supporting resources: 

 

Premise: 

Projects, and thus project-based learning, offer valuable opportunities for integrating sustainability education into engineering curricula by promoting active, experiential learning through critical and creative thinking within problem-solving endeavours and addressing complex real-world challenges. Engaging in projects can have a lasting impact on students’ understanding and retention of knowledge. By working on projects related to sustainability, students are likely to internalise key concepts and develop a commitment to incorporating sustainable practices into their future engineering endeavours. 

 

Building a brief:

Project briefs are a powerful tool for integrating sustainability into engineering education through project-based learning. They set the tone, define the scope, and provide the parameters for students to consider sustainability in their engineering projects, ensuring that future engineers develop the knowledge, skills, and mindset needed to address the complex challenges of sustainability. 

To ensure sustainability has a central and/or clear role within an engineering project, consider the following as you develop the brief: 

1. Sustainability as part of goals, objectives, and requirements. By explicitly including sustainability objectives in the project brief, educators communicate the importance of considering environmental, social, and economic factors in the engineering design and implementation process. This sets the stage for students to integrate sustainability principles into their project work. 

 

2. Context: Briefs should always include the context of the project so that students understand the importance of place and people to an engineered solution. Below are aspects of the context to consider and provide:

 

3. Stakeholders: Sustainability is intertwined with the interests and needs of various stakeholders. Project briefs can include considerations for stakeholder engagement, prompting students to identify and address the concerns of different groups affected by the project. This reinforces the importance of community involvement and social responsibility in engineering projects. Below are aspects of the stakeholders to consider and provide: 

 

4. Ethical decision-making: Including ethical considerations related to sustainability in the project brief guides students in making ethical decisions throughout the project lifecycle. The Ethics Toolkit can provide guidance in how to embed ethical considerations such as: 

 

5. Knowns and unknowns: Considering both knowns and unknowns is essential for defining the project scope. Knowing what is already understood and what remains uncertain allows students to set realistic and achievable project goals. Below are aspects of considering the knowns and unknowns aspects of a project brief to consider and provide:

 

6. Engineering design process and skills development: The Project Brief should support how the educator wants to guide students through the engineering design cycle, equipping them with the skills, knowledge, and mindset needed for successful problem-solving. Below are aspects of the engineering design process and skills development to consider and provide: 

a. Research – investigate,  

b. Creative thinking – divergent and convergent thinking in different parts of the process of engineering design,

c. Critical thinking – innovation model analysis or other critical thinking tools,

d. Decision making – steps taken to move the project forward, justifying the decision making via evidence,

e. Communication, collaboration, negotiation, presentation,  

f. Anticipatory thinking – responsible innovation model AREA, asking in the concept stages (which ideas could go wrong because of a double use, or perhaps thinking of what could go wrong?),

g. Systems thinking.  

 

7. Solution and impact: Students will need to demonstrate that they have met the brief and can demonstrate that they understand the impact of their chosen solution. Here it would need to be clear what the students need to produce and how long it is expected to take them. Other considerations when designing the project brief to include are: 

 

 

Important considerations for embedding sustainability into projects: 

1. Competences or content? 

 

 2. Was any content added or adapted? 

– What form of content, seminars, readings, lectures, tutorials, student activity 

 

3. Competencies  

UNESCO has identified eight competencies that encompass the behaviours, attitudes, values and knowledge which facilitate safeguarding the future. These together with the SDGs provide a way of identifying activities and learning that can be embedded in different disciplinary curricula and courses.  For more information on assessing competences, see this guidance article.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Diana Adela Martin (University College London), Suleman Audu and Jeremy Mantingh (Engineers Without Borders The Netherlands). 

Topic: Circular business models. 

Tool type: Teaching. 

Relevant disciplines: Chemical; Biochemical; Manufacturing. 

Keywords: Circular business models; Teaching or embedding sustainability; Plastic waste; Plastic pollution; Recycling or recycled materials; Responsible consumption; Teamwork; Interdisciplinary; AHEP; Higher education. 
 
Sustainability competency: Integrated problem-solving; Collaboration; Systems thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action); SDG 14 (Life below water). 
 
Reimagined Degree Map Intervention: More real-world complexity, Active pedagogies and mindset development, Authentic assessment, Cross-disciplinarity.

Educational level: Intermediate. 

 

Learning and teaching notes:   

This case study is focused on the role of engineers to address the problem of plastic waste in the context of sustainable operations and circular business solutions. It involves a team of engineers developing a start-up aiming to tackle plastic waste by converting it into infrastructure components (such as plastic bricks). As plastic waste is a global problem, the case can be customised by instructors when specifying the region in which it is set. The case incorporates several components, including stakeholder mapping, empirical surveys, risk assessment and policy-making. This case study is particularly suitable for interdisciplinary teamwork, with students from different disciplines bringing their specialised knowledge.  

The case study asks students to research the data on how much plastic is produced and policies for the disposal of plastic, identify the regions most affected by plastic waste, develop a business plan for a circular business focused on transforming plastic waste into bricks and understand the risks of plastic production and waste as well as the risks of a business working with plastic waste. In this process, students gain an awareness of the societal context of plastic waste and the varying risks that different demographic categories are exposed to, as well as the role of engineers in contributing to the development of technologies for circular businesses. Students also get to apply their disciplinary knowledge to propose technical solutions to the problem of plastic waste. 

The case is presented in parts. Part one addresses the broader context of plastic waste and could be used in isolation, but parts two and three further develop and add complexity to the engineering-specific elements of the topic.  

 

Learners have the opportunity to:  

Teachers have the opportunity to include teaching content purporting to: 

 

Recommended pre-reading: 

Part one:

Part two:

 

Part one: 

Plastic pollution is a major challenge. It is predicted that if current trends continue, by 2050 there will be 26 billion metric tons of plastic waste, and almost half of this is expected to be dumped in landfills and the environment (Guglielmi, 2017). As plastic waste grows at an increased speed, it kills millions of animals each year, contaminates fresh water sources and affects human health. Across the world, geographical regions are affected differently by plastic waste. In fact, developing countries are more affected by plastic waste than developed nations. Existing reports trace a link between poverty and plastic waste, making it a development problem. Africa, Asia and South America see immense quantities of plastic generated elsewhere being dumped on their territory.  At the moment, there are several policies in place targeting the production and disposal of plastic. Several of the policies active in developed regions such as the EU do not allow the disposal of plastic waste inside their own territorial boundaries, but allow it on outside territories.  

 

Optional STOP for activities and discussion 

 

Part two: 

Impressed by the magnitude of the problem of plastic waste faced today, together with a group of friends you met while studying engineering at the Technological University of the Future, you want to set up a green circular business. Circular business models aim to use and reuse materials for as long as possible, all while minimising waste. Your concern is to develop a sustainable technological solution to the problem of plastic waste. The vision for a circular economy for plastic rests on six key points (Ellen McArthur Foundation, n.d.): 

  1. Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority 
  2. Reuse models are applied where relevant, reducing the need for single-use packaging 
  3. All plastic packaging is 100% reusable, recyclable, or compostable 
  4. All plastic packaging is reused, recycled, or composted in practice 
  5. The use of plastic is fully decoupled from the consumption of finite resources 
  6. All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected 

 

Optional STOP for group activities and discussion 

 

Part three: 

The start-up SuperRecycling aims to develop infrastructure solutions by converting plastic waste into bricks. Your team of engineers is tasked to develop a risk assessment for the operations of the factory in which this process will take place. The start-up is set in a developing country of your choice that is greatly affected by plastic waste. 

 

Optional STOP for group activities and discussion 

 

Acknowledgement: The authors want to acknowledge the work of Engineers Without Borders Netherlands and its partners to tackle the problem of plastic waste. The case is based on the Challenge Based Learning exploratory course Decision Under Risk and Uncertainty designed by Diana Adela Martin at TU Eindhoven, where students got to work on a real-life project about the conversion of plastic waste into bricks to build a washroom facility in a school in Ghana, based on the activity of Engineers Without Borders Netherlands. The project was spearheaded by Suleman Audu and Jeremy Mantingh. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Authors: Emma Crichton CEng MICE and Dr Jonathan Truslove MEng PhD (Engineers Without Borders UK). 

Topic: How to talk about sustainability in engineering education. 

Tool type: Guidance. 

Relevant disciplines: Any. 

Keywords: Advocacy; Collaboration; Global responsibility; Sustainability; Systems change; Climate change; AHEP; Higher education; Pedagogy. 
 
Sustainability competency: Self-awareness; Strategic; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development.

Who should read this article? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It’s especially useful in helping educators, heads of departments and deans to engage in a constructive or uncomfortable conversation if you don’t see yourself as a sustainability expert.  

 

Premise: 

To not have conversations because they make you uncomfortable is the definition of privilege. Your comfort is not at the centre of this discussion. That’s not how it works. We have to be able to choose courage over comfort, we have to be able to say, ‘Look, I don’t know if I’m going to nail this but I’m going to try because I know what I’m sure as hell not going to do is stay quiet.’” Brene Brown  

 

Some of the best conversations you can have in life are not comfortable to initiate: 

Think about a time you’ve participated in a meaningful conversation. These are not easy conversations, but they can also be the ones we look back to as very powerful, even if they took courage to initiate. And sometimes in a conversation, especially a constructive conversation, people disagree. People debate. People have different perspectives. And that’s the beauty of conversation and the beautiful rich diversity of people. It would be so boring if we all had the same life experiences, expertise and thoughts. If we only wanted to hear our own perspective, you can do that in a voice note to yourself, in your journal or by talking to the mirror.  

There can also be different conversations depending on the values of those having the conversation. What they see as important, scary or what environment they live in helps form their core understanding. But despite our differences, humans are hard-wired for connection, to listen and talk with others. We discuss ideas in order to find common ground, and/or to learn about an experience we didn’t have ourselves. Difficult, constructive conversations build relationships, while avoiding them leads to a less deep connection.  

 

Why talk about sustainability? 

Educators, you have permission to start and facilitate a conversation about something you don’t know much about or are not an expert in. Just be honest about what you know and be driven to learn more.    

This relates to conversations around the topic of sustainability. When we talk about how we can live within our planetary limits, whilst meeting the needs of all people, questions about justice, inequality and fairness often crop up. We don’t have one right answer here, we don’t have a magic fix or one person to blame. No one is an expert here. Sure, some know more about the science, others more about people’s lived experiences and others can feel they don’t know enough. But we all have a right to participate in conversations about our collective humanity. For example, conversations you could have with students about sustainability could cover: 

After all, sustainability is about imagining our future: One where we have less impact on our safe climate and biodiversity and less inequality. But we may see that future world differently. We may worry about the impact any change might have on our lives and the things we value most. Some may struggle with the idea of repurposing golf courses to address our housing crisis, others may struggle with the idea of policies stopping people from flying frequently (but they might be okay with this being imposed on those with private jets). Others may despair at the slow levels of change, where we don’t move from our default trajectory and risk climate breakdown.  

On our current trajectory, we are looking at living in a world where our climate exceeds 1.5 degrees of warming, where there is mass migration, sea level rise, etc. This world may be worse, where more people suffer. But would you change how we engineer to make it better or play a role in another way to shift our trajectory? 

 

How to initiate conversations about sustainability in engineering education: 

To not have these important conversations means we don’t see any role for ourselves or the organisations we work for in creating change – and that’s not true, since sustainability requires systemic change to how we engineer AND to how we educate. For example, we asked hundreds of engineering educators and educationalists what they hope to see as the future of engineering education. Their responses are visualised below: 

Discussing your opinions about these responses could be one way to start a conversation with a colleague. 

It is also really important to engage in regular conversations about sustainability with students as a feature of their university education. Be a role model for how to participate in constructive conversations respectfully. Help them practise how to hold and present themselves in these spaces.  

So, with this in mind, what can you do?  

 
Initiate the conversation. Prepare to do so. Here are some tips and tricks.  

Be humble! Learning from others is key. Degrees can be designed so that students can frequently hear and learn about different perspectives and develop the ability to speak with economists, social scientists, scientists, humanities experts, ecologists, and those with expertise gained through lived experience. Be willing to learn from others and acknowledge that it’s okay they don’t have all the answers either. In our experience, students usually respect this attitude of humility.  

It can be helpful to work with those with experience. Recognise who is leading changes and creating ways for educators to feel safe in leading and making change. Sometimes all it takes is the offer of a coffee with a colleague to form a connection and get a shared understanding of how to move forward. 

Seek (and give) advice and share your experience. Share resources, barriers, insights and position initiatives to support in an organised and collaborative way.  

Work in partnership with students. Students also have a critical role to play in this shift, not just because they are increasingly demanding to see more sustainability in the curriculum. For many emerging students, sustainability is the topic of their lifetime. Listen to the perspectives of international students, who can bring more diverse perspectives on global responsibility.  

 

Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course) 

 

Useful resources to get talking: 

There are some excellent resources out there that can help us get started framing and having conversations about sustainability with others: 

1. The Talk Climate Change campaign tracks climate discussions to share messages and inspire others around the world. It provides advice, conversation starters and allows you to add your discussions with family, friends, and communities about sustainability to their interactive map and explore conversations submitted by others. 

2. Listen to podcasts such as the Liberating Sustainability podcast by Students Organising for Sustainability UK (SOSUK) who bring together leaders from student liberation movements and academia to deconstruct the exclusivity of sustainability activism and education, or An Idiot’s Guide to Saving the World which dives into each of the Sustainable Development Goals and focuses in on ‘who is affected?’, ‘What are solutions on a global scale?’, and ‘what can I as an individual do?’. 

3. Watch the presentation on Imagining 2050 from James Norman, a current educator (who will be 72 years old in 2050) and Cleo Parker, an engineering student (who will be 49 in 2050) during the Institution of Structural Engineers Annual Academics Conference 2022. You can also read the main learning points from the conference in this blog post 

4. The World Café methodology is an example of creating a space for collaborative dialogue around questions that matter and sharing insights and lessons learned. You can see an example of this by the UK Green Building Council (UKGBC) who run Collaboration Cafes on Climate Resilience, here. 

5. Watch the TED talks playlists on sustainability covering key questions and visionary ideas on the question of our generation.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

To view a plain text version of this resource, click here to download the PDF.

Author: Cigdem Sengul, Ph.D. FHEA (Computer Science, Brunel University). 

Topic: Embedding SDGs into undergraduate computing projects using problem-based learning and teamwork. 

Tool type: Guidance. 

Relevant disciplines: Computing; Computer science; Information technology; Software engineering.  

Keywords: Sustainable Development Goals; Problem-based learning; Teamwork; Design thinking; Sustainability; AHEP; Pedagogy; Higher education; Communication; Course design; Assessment; STEM; Curriculum design. 
 
Sustainability competency: Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All 17; see specific examples below for SDG 2 (Zero Hunger); SDG 13 (Climate Action). 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment.

Who is this article for? This article should be read by educators at all levels in Higher Education who wish to embed sustainable development goals into computing projects. 

Supporting resources 

 

Premise:  

Education for Sustainable Development (ESD) is defined by UNESCO (2021) as:  “the process of equipping students with the knowledge and understanding, skills and attributes needed to work and live in a way that safeguards environmental, social and economic wellbeing, in the present and for future generations.” All disciplines have something to offer ESD, and all can contribute to a sustainable future. This guide presents how to embed the Sustainable Development Goals (SDGs) into undergraduate computing projects, using problem-based learning and teamwork as the main pedagogical tools (Mishra & Mishra, 2020).  

 

Embedding Sustainable Development Goals (SDGs) into computing group projects: 

Typically, the aim of the undergraduate Computing Group Project is to: 

This type of project provides students with an opportunity to integrate various skills, including design, software development, project management, and effective communication.  

 

In this project setting, the students can be asked to select a project theme based on the SDGs. The module team then can support student learning in three key ways: 

1. Lectures, labs, and regular formative assessments can build on lab activities to walk the project groups through a sustainability journey that starts from a project pitch, continues with design, implementation, and project progress reporting, and ends with delivering a final demo.

2. Blending large classroom teaching with small group teaching, where each group is assigned a tutor, to ensure timely support and feedback on formative assessments.

3. A summative assessment based on a well-structured project portfolio template, guiding students to present and reflect on their individual contribution to the group effort. This portfolio may form the only graded element of their work, giving the students the opportunity to learn from their mistakes in formative assessments and present their best work at the end of the module.  

 

Mapping the learning outcomes to the eight UNESCO key competencies for sustainability (Advance HE, 2021), the students will have the opportunity to experience the following: 

 

More specifically, sustainable development can be embedded following a lecture-lab-formative assessment-summative assessment path: 

1. Introduction lecture: Introduce the SDGs and give real-life examples of software that contribute to SDGs (examples include: for SDG 2 – Zero Hunger, the World Food Programme’s Hunger Map; SDG 13 – Climate Action, Climate Mind ). The students then can be instructed to do their own research on SDGs. 

2. Apply design thinking to project ideation: In a lecture, students are introduced to design thinking and the double-diamond of design to use a diverge-converge strategy to first “design the right thing” and second “design things right.” In a practical session, with teaching team support, the students can meet their groups for a brainstorming activity. It is essential to inform students about setting ground rules for discussion, ensuring all voices are heard. Encourage students to apply design thinking to decide which SDG-based problem they would like to work on to develop a software solution. Here, giving students an example of this process based on a selected SDG will be useful. 

3. Formative assessment – project pitch deliverable: The next step is to channel students’ output of the design thinking practical to a formative assessment. Students can mould their discussion into a project pitch for their tutors. Their presentation should explain how their project works towards one or more of the 17 SDGs. 

4. Summative assessment – a dedicated section in project portfolio: Finally, dedicating a section in a project portfolio template on ideation ensures students reflect further on the SDGs. In the portfolio, students can be asked to reflect on how individual ideas were discussed and feedback from different group members was captured. They should also reflect on how they ensured the chosen problem fits one or more SDGs, describe the selection process of the final software solution, and what alternative solutions for the chosen SDG they have discussed, elaborating on the reasons for the final choice. 

 

Conclusion: 

Computing projects provide an excellent opportunity to align teaching, learning, and assessment activities to meet key Sustainable Development competencies and learning outcomes. The projects can provide transformational experiences for students to hear alternative viewpoints, reflect on experiences, and address real-world challenges. 

 

References: 

Advance HE. (2021) Education for sustainable development guidance. (Accessed: 02 January 2024). 

Lewrick, M., Link, P., Leifer, L.J. & Langensand, N. (2018). The design thinking playbook: mindful digital transformation of teams, products, services, businesses, and ecosystems. New Jersey: John Wiley & Sons, Inc, Hoboken. 

Mishra, D. and Mishra, A. (2020) ‘Sustainability Inclusion in Informatics Curriculum Development’, Sustainability, 12(14), p. 5769.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 
To view a plain text version of this resource, click here to download the PDF.

Author: Onyekachi Nwafor (CEO, KatexPower). 

Topic: Harmonising economic prosperity with environmental responsibility. 

Tool type: Knowledge. 

Relevant disciplines: Any.  

Keywords: Environmental responsibility; Pedagogy; Economic growth; Ethical awareness, Interdisciplinary; Collaboration; AHEP; Sustainability; Environment; Biodiversity; Local community; Climate change; Higher education. 
 
Sustainability competency: Integrated problem-solving; Strategic; Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 8 (Decent work and economic growth); SDG 10 (Reduced Inequalities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels in higher education who wish to consider how to navigate tradeoffs between economic and environmental sustainability as they apply to engineering. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise:  

In the face of the ever-growing need for economic progress and the escalating environmental crises, the engineering profession finds itself at a crossroads. Striking a delicate balance between economic growth and environmental sustainability is no longer an option but an imperative. This article delves into the pivotal role of engineering educators in shaping the mindset of future engineers, offering an expanded educational framework that fosters a generation capable of harmonising economic prosperity with environmental responsibility. 

  

The uneasy truce:  

Developing nations, with burgeoning populations and aspirations for improved living standards, grapple with the paradox of rapid economic expansion at the expense of environmental degradation. This necessitates a shift in focus for engineering educators, who bear the responsibility of cultivating engineers with a foresighted perspective. Rather than demonising economic growth, the goal is to instill a nuanced understanding of its interdependence with environmental well-being. For example, in developing countries like Brazil, rapid economic expansion driven by industries such as agriculture and logging has resulted in extensive deforestation of the Amazon region. This deforestation not only leads to the loss of valuable biodiversity and ecosystem services but also contributes to climate change through the release of carbon dioxide. Similarly, in industrialised nations, the pursuit of economic growth has often led to the pollution of air, water, and soil, causing adverse health effects for both humans and wildlife. 

 

Equipping our future stewards: 

To navigate this delicate landscape, educators must move beyond traditional technical expertise, fostering a holistic approach that integrates ethical awareness, interdisciplinary collaboration, localised solutions, and a commitment to lifelong learning. 

1. Ethical awareness: One potential counterargument to the expanded educational framework may be that the focus of engineering education should remain solely on technical expertise, with the assumption that ethical considerations and interdisciplinary collaboration can be addressed later in a professional context. However, research has shown that integrating ethical awareness and interdisciplinary collaboration early in engineering education not only enhances problem-solving skills but also cultivates a sense of responsibility and long-term thinking among future engineers. 

2. Holistic thinking: Research has shown that interdisciplinary collaboration between engineering and social science disciplines can lead to more effective and sustainable solutions. For instance, a study conducted by the World Bank’s Water and Sanitation Program (WSP) found that by involving sociologists and anthropologists in the design and implementation of water infrastructure projects in rural communities, engineers were able to address cultural preferences and local knowledge, resulting in higher acceptance and long-term maintenance of the infrastructure. Similarly, a case study of a renewable energy project in Germany demonstrated how taking into account the geographic nuances of the region, such as wind patterns and solar radiation, led to more efficient and cost-effective energy solutions. Presently, Germany boasts the world’s fourth-largest installed solar capacity and ranks amongst the top wind energy producers.  

3. Localised solutions: Students must be required to consider the social, cultural, and geographic nuances of each project. This means moving away from one-size-fits-all approaches and towards an emphasis on the importance of context-specific solutions. This ensures that interventions are not only technologically sound but also culturally appropriate and responsive to local needs, fostering sustainability at both the project and community levels. 

4. Lifelong learning: Empower students with the skills to stay abreast of emerging technologies, ethical frameworks, and policy landscapes. Recognise that the landscape of sustainability is dynamic and ever evolving. Foster a culture of continuous learning and adaptability to ensure that graduates remain true stewards of a sustainable future, equipped to navigate evolving challenges throughout their careers. 

 

A compass for progress:  

By integrating these principles into engineering curricula, educators can provide students with a moral and intellectual compass—an ethical framework guiding decisions toward a future where economic progress and environmental responsibility coexist harmoniously. Achieving this paradigm shift will require collaboration, innovation, and a willingness to challenge the status quo. However, the rewards are immeasurable: a generation of engineers empowered to build a world where prosperity thrives alongside a healthy planet—a testament to the true potential of the engineering profession. 

Engineering teachers can raise a generation of engineers who can balance economic growth with environmental responsibility by embracing a broader educational framework that includes ethical awareness, cross-disciplinary collaboration, localised solutions, and a commitment to lifelong learning. Through the adoption of these principles, engineering curricula can provide students with a moral and intellectual compass, guiding them toward a future where economic progress and environmental sustainability coexist harmoniously. 

 

References: 

International Renewable Energy Agency (IRENA) (2023).Pathways to Carbon Neutrality: Global Trends and Solutions’, Chapter 3. 

Sharma, P. (2022) ‘The Ethical Imperative in Sustainable Engineering Design’, Chapter 5. 

United Nations (2021) ‘Goal 13: Climate Action. In Sustainable Development Goals: Achieving a Balance between Growth and Sustainability’. (pp. 120-135). 

World Bank (2022) ‘Renewable Energy in Developing Nations: Prospects and Challenges’, pp.10-15. 

World Bank Group (2023) Cleaner cities, Brighter Futures: Ethiopia’s journey in urban sanitation, World Bank. (Accessed: 05 February 2024).   

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 

To view a plain text version of this resource, click here to download the PDF.

Let us know what you think of our website