Objectives: To equip learners with the skills to successfully navigate digital and traditional recruitment processes for engineering roles. This includes demonstrating EDI, technical, and employability skills using the STAR framework; tailoring CVs for AI and Applicant Tracking Systems (ATS); and preparing for aptitude and abstract reasoning tests through targeted practice to enhance problem-solving and analytical abilities.

Introduction: Large national and international employers use digital application processes to recruit graduates. These digital applications aim to capture personal details, education, and work experience. Reflect on your experiences to demonstrate your EDI, employability, and technical skills applied using the STAR (Situation, Technique, Action, and Result) framework. Smaller and medium enterprises typically seek cover letters and CVs. 

Topic: Navigating digital recruitment in engineering: CVs, AI, and aptitude tests.

Keywords: Equity Diversity and Inclusion; Employability and skills; Problem solving; Assessment criteria or methods and tools; CVs and cover letters; Digitalisation; Artificial intelligence; Information and Digital literacy; Communication; Technical integration; Writing skills; Inclusive or Responsible design; Neurodiversity; Curriculum or Course; Computer science; Computing; Engineering professionals; Professional development; Recruitment; Digital engineering tools; Business or trade or industry; Workplace culture

 

Master the art of applying for engineering computing jobs

In the video below, Professor Anne Nortcliffe explains how to develop expertise in securing engineering computing positions by demonstrating technical proficiency and employability skills through well-supported, evidence-based responses.

Video summary:

Master the art of applying for engineering computing jobs by showcasing both technical and employability skills through evidence-based responses. 

Key insights:

⚙️AI in hiring: Understanding that many companies use AI for initial screenings emphasizes the need for clear, evidence-based answers in applications. 

✏️Individual contributions: Highlighting personal achievements rather than team efforts showcases leadership and initiative, key traits employers seek. 

💡Interpersonal skills: Employers value teamwork and leadership; demonstrating how you’ve influenced others highlights your potential as a valuable team member. 

💬Diversity matters: Bringing unique social perspectives into projects can lead to more inclusive solutions, making your application stand out. 

⭐STAR methodology: Using the STAR method helps structure your experiences into compelling narratives, making it easier for employers to assess your qualifications. 

🗒️Tailored applications: Customising your CV and cover letter for each job application reflects your genuine interest and ensures relevance to the employer’s needs. 

📚Professional etiquette: Ending your application with gratitude and a clear call to action maintains professionalism and shows your enthusiasm for the role. 

 

AI and Applications

To navigate digital recruitment, it’s crucial to understand AI’s role in candidate screening. Tailor your CV to pass AI and Applicant Tracking Systems (ATS) using resources that provide insights into keywords, formatting, and strategies. This enhances your visibility and competitiveness in the digital recruitment process. 

Further links to look at:

Please note that after clicking these links, you will need to create a free account on the external website to access the materials.

 

CV and Covering Letter

CV templates to support students and graduates to stand out and highlight their engineering and technology capabilities, especially when applying to Small and Medium Enterprises (SMEs) that do not use AI recruitment tools.

  1. CV template – Word 
  2. CV template – Publisher 
  3. CV template – Publisher with Advice 

For applications to large corporations that use AI recruitment tools, it is recommended:

 

Aptitude and Abstract Reasoning Test 

If your digital application is successful you will be typically invited to complete an aptitude and abstract reasoning tests to evaluate candidates. To excel, practice brain training exercises and brain teasers to enhance problem-solving, critical thinking, and analytical skills. Regular practice with similar questions boosts confidence and performance, improving your chances of passing these tests and standing out in the recruitment process. 

Further links to look at:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: This activity aims to equip students with strategies to thrive in video interviews.

Introduction: Our mission is to empower students with tips to excel in video interviews. This interactive challenge provides tailored advice to leverage your strengths and navigate digital recruitment challenges. Get expert guidance for in-person, video, and telephone interviews with recruiters. Learn about optimal lighting, assessment centres, and holistic interview practices. 

Topic: Mastering video and virtual interview skills with inclusive preparation strategies.

Keywords: Neurodiversity; Equity Diversity and Inclusion; Interviews; Recruitment; CVs and cover letters; Digitalisation; Communication; Employability and skills; Accessibility; Professional development; Professional conduct; Digital engineering tools; Artificial intelligence; Virtual Learning Environment; Personal or professional reputation; Student support; Technology; Assessment criteria or methods and tools; Bias.

 

How to optimise your interview setup and presence

Watch our featured video from Wenite (below) for expert tips on optimising your interview setup and presence.  

Video summary:

Being well-prepared for job interviews is essential for making strong impressions, boosting confidence, and gaining a competitive edge.  

 

Highlights: 

🎯Importance of preparation: Crucial for first impressions and confidence.  

👔In-person tips: Dress appropriately, mind body language, and plan travel.  

💻Virtual interview prep: Ensure tech works, choose a quiet space, and test the platform.  

📞Phone interview strategies: Use notes wisely, maintain vocal clarity, and avoid distractions.  

🌟STAR technique: A framework for answering behavioural questions effectively.  

🏢Research the company: Align your values and goals with the organisation to show genuine interest.  

Prepare questions: Have smart, relevant questions ready for the interviewer.  

 

Key insights :

🔍First impressions matter: A strong initial impression can set the tone for the entire interview, making preparation vital.  

💪Confidence through practice: Thorough preparation helps articulate thoughts clearly, enhancing confidence during interviews.  

🏆Competitive edge: Detailed preparation allows candidates to showcase unique skills and experiences, differentiating them from others.  

🎥Adapt to formats: Each interview type requires a tailored approach, from dressing well for in-person to testing tech for virtual formats.  

📖Utilise the STAR technique: This adaptable framework helps structure responses to behavioural questions, ensuring clarity and relevance.  

🌐Company research is critical: Understanding the company’s values and strategies can help align your responses and demonstrate genuine interest.  

Engaging questions matter: Thoughtful questions reflect your interest in the role and provide insights into the company culture and expectations.  

 

Lights, camera, action!

A profile picture or video interview is often your first impression on a potential employer. Ensure you convey professionalism, approachability, and confidence, especially with proper lighting for accurate representation. AI tools can optimise your appearance by adjusting lighting and camera settings for accurate colour representation, helping you present your best self.  

Further links to look at:

 

Neurodiversity   

When preparing for a job interview, ensure the process is accessible to all candidates by requesting reasonable adjustments, like receiving interview questions beforehand. Approach employers with confidence and professionalism, clearly explaining how these adjustments will help you perform at your best. Proactively advocating for such adjustments fosters a more inclusive environment for all applicants.  

Further links to look at:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: Enhance your profile and personal brand with a strong CV, Cover Letters, and LinkedIn presence. This initiative aims to equip you with the skills to create CVs and LinkedIn profiles that reflect your unique identity and adhere to Equality, Diversity, and Inclusion (EDI) standards. Our objective is to help underrepresented groups highlight their skills and experiences, ensuring their job applications are compelling and impactful. 

Introduction: This activity is designed to help you strengthen your personal brand by developing impactful CVs, cover letters, and LinkedIn profiles that reflect your unique identity. With a focus on Equality, Diversity, and Inclusion (EDI), you’ll gain practical tips for presenting your skills and experiences in a way that resonates with employers and promotes inclusive values in the workplace.

Topic: How to build your personal brand with inclusive CVs, cover letters, and LinkedIn profiles.

Keywords: Equity, Diversity and Inclusion; CVs and cover letters; Employability and skills; Personal or professional reputation; Communication; Writing skills; Recruitment; Professional conduct; Digitalisation; Business or trade or industry; Ethical awareness; Inclusive or Responsible design; Networking.

 

Enhance your CV, cover letters, and LinkedIn presence

Wenite Video offers resources to help you create EDI-focused CVs and LinkedIn profiles. This includes expert advice and strategies for underrepresented groups, ensuring your job materials highlight your unique identity and skills. 

Video summary:

Tolu Osobu-Gabbie shares tips on creating a robust CV, cover letter, and LinkedIn profile, emphasizing the importance of diversity and inclusion in the workplace. 

Key insights:

📝 Structured CVs: A well-structured CV enhances readability, making it easier for recruiters to assess qualifications quickly. This can significantly increase your chances of being noticed. 

🔍 Tailored applications: Customising your CV for each job with relevant keywords can align your skills with the employer’s needs, making you a more attractive candidate. 

📈Quantification matters: Using numbers to demonstrate your achievements can capture attention and convey the impact of your contributions effectively. 

🌟Strong opening in cover letters: Starting with a personal story can create a memorable first impression and establish a connection with recruiters. 

🚀Highlight key Skills: Focusing on two to three relevant skills in your cover letter allows you to showcase your strengths without overwhelming the reader. 

🌍Mutual values:Demonstrating how your values align with those of the company can strengthen your application and show that you’re a good cultural fit.

🔗LinkedIn optimisation: An updated LinkedIn profile enhances visibility to recruiters, and using keywords can improve your chances of being found for desired roles. 

 

 

Resources:

LinkedIn profiles

Learn the requirements and best practices for EDI-compliant CVs and LinkedIn profiles to effectively communicate your unique background to employers. 

Leverage LinkedIn’s multimedia features like reels, photos, and watermarked PDF documents to enhance your profile. Strategic use of elements can make your profile stand out, increase credibility and highlight your technical and employability skills: 

 

 

Further links to look at: 

 

 

Creating a portfolio on Linkedin:

Jessica Norton from UMass Amherst Career Development & Professional Connections HUB walks through how to set up a LinkedIn Portfolio to heighten visibility of your professional projects!

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: This activity is our guide to navigating assessment centres, offering tips and strategies tailored to empower underrepresented groups and help you be prepared, authentic self, stand out and succeed. 

Introduction: Assessment centres have been a key part of graduate recruitment since the 1950s, originally developed to evaluate leadership potential in military officers. Today, they are widely used by employers to assess candidates through group tasks, interviews, and individual exercises. This activity serves as a practical guide to help you navigate assessment centres with confidence. With a focus on empowering underrepresented groups, it provides tips and strategies to help you prepare effectively, present your authentic self, and stand out in a competitive selection process.

Topic: Standing out with confidence at assessment centres: a guide to preparation, authenticity, and success.

Keywords: Problem solving; Employability and skills; Communication; Leadership or management; Collaboration; Digitalisation; Professional development; Writing Skills; Equity, Diversity and Inclusion; Neurodiversity; Inclusive or Responsible design; Recruitment; Business or trade or industry; Workplace culture; Information and Digital literacy; Artificial Intelligence.

 

An immersive experience

Getting startedWhat to expect An employer’s guide What are assessment centre activities?

Click on each accordion tab to explore videos that guide you through navigating assessment centres, offering tips and strategies designed to empower underrepresented groups and help you prepare, be your authentic self, stand out, and succeed.

Video summary: 

This video was produced by The Careers Chat, a platform associated with Warwick University, provides an overview of assessment centres used by graduate recruiters. It discusses various tasks designed to evaluate candidates’ skills in action, offering insights into the selection process and tips for preparation.  

Key insights: 

🌟 Always be mindful that you’re being assessed – from the moment you arrive until you leave. Maintain a professional and approachable demeanor to leave a lasting positive impression. 

🤝 View fellow candidates as collaborators, not competitors. Respect their perspectives and engage in teamwork; remember, it’s possible that everyone could be offered a role. 

💼 Keep in mind that the tasks are tailored to the role you’re applying for. Be authentic, and the skills you’ve already highlighted in your application will naturally stand out. 

Video summary:

Assessment centres are crucial for graduate recruitment, involving various tasks to evaluate candidates’ skills through collaborative activities.

Key insights:

🎓 Real-time evaluation: Assessment centres provide an opportunity for recruiters to observe candidates in action; skills, interpersonal dynamics and teamwork.

📅 Duration and format flexibility: Be prepared and mentally ready for either a half-day or full-day assessment face to face or online.

📝 Diverse assessment tasks: Wide range of tasks, from essays to presentations, means candidates should practice and be adaptable to showcase different skills.

🤝 Collaboration over competition: Viewing fellow candidates as collaborators rather than competitors can foster a supportive atmosphere, better outcomes for everyone.

🌈 Authenticity matters: Presenting genuine skills and authentic experiences rather than trying to fit a mould can make candidates stand out and connect with recruiters.

🚪 Professionalism is key: From the moment you arrive until you leave, maintaining a professional demeanour leaves a lasting impression, and suitability for the role.

💡 Preparation is essential: Familiarising oneself with the specific tasks related to the job application can boost confidence and performance, and draw upon relevant skills.

Video summary:
An assessment centre evaluates candidates through various exercises to assess teamwork, problem-solving, and fit within the company culture.

Key insights:

🔍 Assessment centres are designed to simulate real work environments, helping employers see how candidates fit into team dynamics and your ability to collaborate.

🧠 Psychometric tests may be retaken during the assessment, so candidates should be prepared to demonstrate their logical reasoning and numerical skills in person.

🗣️ Group exercises focus on problem-solving as a team, the process is more important than the outcome, opportunity to show your communication and leadership skills.

🎤 Presentations, whether in groups or individually, evaluate public speaking and the ability to synthesize complex information into clear solutions.

🎭 Role-play exercises test candidates’ client-handling skills and ability to provide solutions under pressure, highlighting their problem-solving approach.

🤝 Lunch and breaks are part of assessment, are an opportunity to network, and demonstrate your informal communication skills that could influence your success

📊 You need to demonstrate understanding and applying the company’s core values and meeting their desired competencies effectively throughout the process.

 

Resources

 

Underrepresented groups preparing for virtual assessment centres 

 

How to PASS an assessment centre UK

The video offers tailored guidance specifically for international students.

 

Acing virtual assessment centres: future you webinar: 

As part of their Future You webinar series, Prospects hosted a session titled Acing Virtual Assessment Centres on Tuesday, 20th April 2021. The webinar offers valuable insights, practical tips, and expert guidance to help students confidently navigate virtual assessment centres. Watch the video below to gain useful strategies and boost your preparation. Aldi, Arcadis and Police Now Recruiters advice for preparing for Virtual Assessment centres.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: EDI Quest is an interactive game designed to deepen your understanding of Equality, Diversity, and Inclusion (EDI) in the workplace. This immersive experience consolidates EDI concepts into a single adventure, challenging you to reflect and apply your knowledge to solve real-world scenarios. 

Introduction: This interactive learning experience brings Equality, Diversity, and Inclusion (EDI) principles to life through gameplay. As you navigate real-world workplace scenarios, you’ll be challenged to apply your knowledge, make thoughtful decisions, and reflect on the impact of inclusive practices. This activity is designed to make learning about EDI engaging, practical, and memorable.

Topic: An interactive game-based resource that helps students explore and apply Equality, Diversity, and Inclusion (EDI) principles through real-world workplace scenarios.

Keywords: Equity, Diversity and Inclusion; Inclusive or Responsible design; Communication; Employability and skills; Professional development; Problem solving; Digitalisation; Information and Digital literacy.

How it works: In EDI Quest, you’ll face challenges and scenarios mirroring real-life workplace situations. Each level tests your EDI knowledge, offering instant feedback and learning opportunities. For an optimal experience, we encourage you to engage with this academic game alongside others. It is designed to be played collaboratively, so we recommend involving a friend, colleague, professor, or even a parent. Playing in pairs or groups will enhance your learning experience and provide valuable perspectives and insights that you might not gain when playing in isolation

System requirements: EDI Quest is accessible on most web browsers and devices. For the best experience, use the latest version of Chrome, Firefox, or Safari on mobile, desktop, or laptop. 

How to access the game: Displayed below is the “Level Up EDGE” page. To access the game, please navigate to the “Interactive” tab within the page interface. To enhance your gameplay experience, adjust your browser’s zoom level as needed.

 

EDI quest

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.

Elsevier’s James Harper has just written a valuable new guidance article for the Engineering Ethics Toolkit on Why information literacy is an ethical issue in engineering. We got together with him to discuss this further.

 

James, where did your passion for this issue originate and how can the resources available for information literacy be put to use both by faculty and students?  

We live in a time marked by an unprecedented deluge of information, where distinguishing reliable and valuable content has become increasingly difficult. My concern was to help engineering educators meet the critical challenge of fostering ethical behaviour in their students in this complex world. Students are in real need of an ethical compass to navigate this information overload, and the digital landscape in particular. They need to acquire what we call ‘information and digital literacy’, specifically, learning how to research, select and critically assess reliable data. This is both a skill and a practice.  

For students, how does this skill relate to the engineering workplace? 

From observing professional engineers, it’s clear they require comprehensive insights and data to resolve problems, complete projects, and foster innovation. This necessitates extensive research, encompassing case studies, standards, best practices, and examples to validate or refute their strategies. Engineering is a profession deeply rooted in the analysis of failures in order to prevent avoidable mistakes. As a result, critical and unbiased thinking is essential and all the more so in the current state of the information landscape. This is something Knovel specifically strives to improve for the communities we serve. 

Knovel – a reference platform I’ve significantly contributed to – was initially built for practising engineers. Our early realisation was that the biggest obstacle for engineers in accessing the best available information wasn’t a lack of resources, but barriers such as insufficient digitalisation, technological hurdles, and ambiguous usage rights. Nowadays, the challenge has evolved: there’s an overload of online information, emerging yet unreliable sources like certain chatbots, and a persistently fragmented information landscape.  

How is Knovel used in engineering education? Can you share some insights on how to make the most of it? 

Knovel is distinguished by its extensive network of over 165 content partners worldwide, offering a breadth of trusted perspectives to meet the needs of a range of engineering information challenges. It’s an invaluable tool for students, especially those in project-based learning programs during their Undergraduate and Master’s studies. These students are on the cusp of facing real-world engineering challenges, and Knovel exposes them to the information practices of professional engineers. 

The platform is adept at introducing students to the research methodologies and information sources that a practising engineer would utilise. It helps them understand how professionals in their field gather insights, evaluate information, and engage in the creative process of problem-solving. While Knovel includes accessible introductory content, it progressively delves into more advanced topics, helping students grasp the complexities of decision-making in engineering. This approach makes Knovel an ideal companion for students transitioning from academic study to professional engineering practice. 

How is the tool used by educators? 

For educators, the tool offers support starting in the foundational years of teaching, covering all aspects of project-based learning and beyond. It is also an efficient way for faculty to remain up-to-date with the latest information and data on key issues. Ultimately, it is educators who have the challenge of guiding students towards reputable, suitable, traceable information. In doing so, educators are helping students to understand that where they gather information, and how they use it, is in itself an ethical issue. 

To learn more about the competence of information literacy check out our guidance article, Why information literacy is an ethical issue in engineering.

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data. 

46% of EPC members already have access to Knovel. To brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com.  

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

Get Knovel to accelerate R&D, validate designs and prepare technical professionals. Innovate in record time with multidisciplinary knowledge you can trust: Knovel: Engineering innovation in record time

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange, Research, Graduate employability and recruitment

Authors: Steve Jones (Siemens), Associate Prof David Hughes (Teesside University), Prof Ion Sucala (University of Exeter), Dr Aris Alexoulis (Manchester Metropolitan University) and Dr Martino Luis (University of Exeter)

Keywords: Digitalisation, Partnership, Collaboration, Network

Abstract: Siemens have worked together with university academics from 10 institutions to develop and implement holistic digitalisation training and resources titled the “Connected Curriculum”. The collaboration has proved hugely successful for teaching, research and knowledge transfer. This model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners.

 

Collaboration between academic institutions and industry is a core tenet of all Engineering degrees; however its practical realisation is often complex. Academic institutions employ a range of strategies to improve and embed their relationships with industry. These approaches are often institution specific and do not translate well across disciplines. This leaves industries with multiple academic partnerships, all operating differently and a constant task of managing expectations on both sides. The difference about Siemens Connected Curriculum is that it is an industry-led engagement which directly seeks to address and resource these challenges.

In 2019 Siemens developed the “Connected Curriculum”, a suite of resources (see fig1) to support and enable academic delivery around the topic of ‘Industry 4’. A novel multi-partner network was formed between Siemens, Festo Didactic and universities to develop and deliver the curriculum using real industrial hardware and software. Siemens is uniquely positioned to support on Industry 4 because it is one of the few companies that has a product portfolio that spans the relevant industrial hardware and software. As a result, Siemens is more able to bring together the cyber-physical solutions that sit at the heart of Industry 4.

 

 

 

Figure 1 – Core resources of Siemens Connected Curriculum

Connected Curriculum Aims

The scheme set out with a number of designed aims for the benefit of both Siemens and the partner universities.

Connected Curriculum Implementation

In 2019, four universities agreed with Siemens to create a pilot programme with a common vision for where Siemens could add value, how the university partners could collaborate, and how the network could scale. The initial pilot programme included Manchester Metropolitan University (MMU), The University of Sheffield (UoS), Middlesex University (Mdx), and Liverpool John Moores University (LJMU). Since the success of its pilot programme, as of Jan 2022 Connected Curriculum now has ten UK university partners with the addition of Teesside University, Coventry University, Exeter University, Salford University, Sheffield Hallam University and The University West of England. The consortium continues to grow and is now expanding internationally. The university academics and the Connected Curriculum team at Siemens have worked together to develop holistic digitalisation training and resources.

Siemens developed a specific team to resource Connected Curriculum, which now includes a full-time Connected Curriculum lead and two Engineering support staff. In addition to the direct team, the initiative also relies on input from a range of experts across the multiple Siemens business units.

The collaboration between multiple institutions and Siemens has proved hugely successful for teaching, research and knowledge transfer. We feel this model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners. Evidential outcomes of these benefits are demonstrated through the following examples.

Multi-disciplinary delivery

In 2020 Teesside University’s School of Computing, Engineering and Digital Technologies completed a module review including the embedding of digitalisation, resourced through Connected Curriculum, across its Engineering degrees. A discipline specific, scaffolded approach was developed, enabling students to build on previous learning. This includes starting at a component level and building towards fully integrated cyber-physical systems and plants. Connected Curriculum resources are used to inform and resource new modules including Robotics Design and Control and Process Automation. Due to the inherent need for multi-disciplinary working on digitalisation projects many of these have been structured as shared modules. As Siemens work across such a broad range of industries we are able to embed case studies and tasks which are relevant and foster collaborative working. The need for these digital skills and collaborative approaches has been highlighted by a number of studies including the joint 2021 IMechE/IET survey report: The future manufacturing engineer – ready to embrace major change?

Impact on Industry

In May 2021, Exeter’s Engineering Management group and a manufacturer of electric motors, generators, power electronics, and control systems (located in Devon, UK) collaborated to create digital twins for the assembly line of the Internal Permanent Magnet Motor.  With the support from Siemens, we implemented Siemens Tecnomatix Plant Simulation to develop the models. The aim was to optimise assembly line performance of producing the Internal Permanent Magnet Motor such as cycle time, resource utilisation, idle time, throughput and efficiency. What-if scenarios (e.g. machine failure, various material handling modes, absenteeism, bottlenecks, demand uncertainty and re-layout workstations) were performed to build resilient, productive and sustainable assembly lines. Two MSc students were closely involved in this collaborative project to carry out the modelling and the experiments.  Our learners have experienced hands-on engineering practice and action-oriented learning to implement Siemens plant simulation in industry.

Industrially resourced project-based learning

In 2020 Siemens was involved in the Ventilator Challenge UK (VCUK) consortium that was formed in response to the COVID-19 pandemic. VCUK was tasked with ramping up production of ventilators from 10/week to 1500/week to produce a total of 13500 in just 12 weeks. Inspired by this very successful project, academics at MMU approached the Connected Curriculum team asking if the project could be replicated with a multidisciplinary group of 2nd year Engineering students. MMU Academics and Engineers from Siemens codeveloped a project pack using an open-source ventilator design from Medtronic. The students were tasked with designing a manufacturing process that would produce 10000 ventilators in 12 weeks. The students had 6 weeks to learn how to use the industry standard tools required for plant simulation (Siemens Tecnomatix) and to carry out the project successfully. The project attracted media attention and was featured in articles 1 and 2.

Keys to Success

So, what made the Connected Curriculum so successful? Digitalisation is clearly a current trend and so timing has played an important role. One of the most significant reasons is that Siemens not only led the scheme but resourced it. This has been key to supporting the rapidly growing need for relevant academic expertise. The on-going support from Siemens is also key for issue resolution and to support implementation for universities in adopting new curriculum. Engaging academic partners early in the process was key to ensuring the content was relevant and appropriately pitched.

Siemens breadth and depth of technological expertise across numerous technologies has been a key factor in the success of this initiative. Combined with its global engineering community, this has facilitated a rich integrated curriculum approach which covers a range of aligned technologies. Drawing on internal experts across its global community has allowed the initiative to benefit from a wealth of existing knowledge and resources. Having reached critical mass the initiative is now financially self-sustaining. Without reaching this milestone continued engagement would have been impossible.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website