In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourGet Involved page.
To view a page that only lists library links from a specific category type:
Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.
Author: Dr Gill Lacey (Teesside University).
Keywords: Pedagogy; Societal impact; Personal ethics; Research ethics.
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design. It will also help prepare students with the integrated skill sets that employers are looking for.
Premise:
Ethics is defined in many ways but is generally agreed to be a set of moral (right or wrong) principles that govern social behaviour. While this is not the place for a discussion of ethical philosophies and theories that analyse what we mean by “moral”, or how we define social behaviour, it is pertinent to consider the nature of engineering ethics so that we understand why it should be integrated into modules. Davis gives us a rather pared down explanation: “Integrating ethics into science and engineering courses is largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem ‘more relevant,’”(Davis, 2006).
Despite this, very often ethics is considered as an afterthought – sometimes it only comes up when a solution to a technical problem results in unintended consequences. Rather, we need our students to look at any technical solution through an ethical lens – as well as through an economic one. This generally involves considering what effect any technical project might have on society, especially on those who use that technology. Teaching students to consider the technology through an ethical lens makes them true engineers, not just technicians. And as Davis implies, relevance provides motivation.
Some principles for integrating ethics:
Consideration needs to be given to improving our students’ ethical learning throughout their course/programme (Hess and Fore, 2018). We argue that ethics can and should be embedded into most modules in a natural way, giving as much or as little time to it as necessary. A planned progression should be aimed for throughout the course, and the Ethics Explorer in this Toolkit provides suggestions as to how this can be accomplished. A more sophisticated understanding will be arrived at over time by exposing them to more and more complex cases where the outcome is not obvious. A graduate engineer should be able to give a considered response to an employer’s question about an ethical position during an interview.
Other principles for integrating ethics include:
1. State your assumptions and moral position at the start of a course/module
This is not the same as taking a moral stance. Some moral issues can be universally agreed, but not all, so we need an approach to morally disputed issues. We must be clear about the ethical framework in which the course is being taught. An ethically neutral engineering course is neither advisable nor possible.
For instance, it needs to be baldly stated that climate change is real, that all the modules in the course make that assumption, and low carbon solutions are the only ones that will be considered. Some students will be challenged by that. This is a case of stating the moral position of the course and asking the students how they are going to ‘be’ with that position, because it will not be argued for (Broadbent, 2019).
Many lecturers start a module with an “expectations” list, especially with new students; it could be argued this is a first exposure to engineering ethics as it relates to social and professional behaviour in the teaching space. There is no room for discussion or reflection here; this is a statement of how things are going to be in this community. Sharing accepted moral values is assumed here.
There are general standards of behaviour to which everyone is expected to conform around respect and disagreeing constructively; there is a professional standard to which we can conform. The advantage of doing this is that it provides certainty and weight to our judgement in report writing as well as practice in professional ethical conduct in the workplace.
2. Provide resources
A survey regarding the teaching of ethics showed agreement between the students that provision of resources, such as case studies and examples, were needed to allow ethics to be considered. They want guidance and accessto receiving ethical approval for projects or research, and an opportunity for reflection on personal ethics and how these relate to professional attitudes or projects (Covill et al., 2010). Examples include:
Case studies. This Ethics Toolkit provides dozens of potential case studies for use in a classroom setting. Students are challenged to explore their existing preconceptions and modify them to accommodate the realities of the cases (Lundeberg, Levin, and Harrington, 1999). Educators can also follow these models to develop their own case studies.
Engineering ethics in the news. For instance, in a wastewater treatment module, the following article might be highlighted: “Almost 90% of storm overflows discharge directly into rivers. And 3 in 4 rivers we tested last year pose a serious continuous risk to human health.” (Surfers Against Sewage (SAS), 2022). Although SAS’s website gives plenty of graphic images and up to date news as well as links to the policies that surround the issue, it doesn’t give much detail on why it happens. So it becomes a useful ethical study by asking those questions. It is not the role of the teacher to come up with any answers, but it is vital to articulate and acknowledge the feelings and emotions when presented with such an issue (Prince and Felder, 2006). We all can agree that allowing untreated sewage to overflow into rivers is bad. So how does it happen? Where is the sewage supposed to go? Where is the storm water supposed to go? What happens during a storm? What do engineers have to do with the cause, or the solution, to this problem? It is important to remind students that no one intends the sewage to contaminate watercourses, it is an unintended consequence. So how could it be prevented, and how could engineers support this solution? What needs to be done technically, politically and financially to solve the problem? Be on the lookout for contemporary issues, to make it relevant. Direct quotes, videos, images and so on from issues in the news allow students to fully involve themselves with the issue.
Guidance and access to receiving ethical approval for projects or research. This is a procedural issue, which may vary according to the institution; many universities have a research ethics policy which mandates the process. Clearly, we should comply with our own university processes where they exist. A simple approach that is popular with students is a form containing yes/no questions (Junaid et al., 2021). The project supervisor can prepare students to answer accurately by talking to them about their proposals to help them identify the ethical considerations by asking ‘what if?’ type questions. This allows a non-specialist to decide whether a more in-depth ethical survey is needed.
3. Allow for opportunity to reflect
This can be achieved by requiring a reflection in every level of an engineering degree. It could be part of an assessment at the end of a project or module in the form of a short, written reflection. It could be approached by asking the student in an interview to consider the ethics of a situation and the interviewer can then challenge the student on their journey to become ethically literate.
Broadbent, O. (2018). ‘Delivering project based learning: Teaching resources and guidance for academics.’ Engineers without Borders and Think-up.
Covill, D., Singh D.G., Katz, T., and Morris, R. (2010). ‘Embedding ethics into the engineering and product design curricula: A Case study from the UK,’ International Conference On Engineering And Product Design Education, 2 & 3 September. Norwegian University Of Science And Technology, Trondheim, Norway.
Davis, M. (2006) ‘Integrating ethics into technical courses: Micro-insertion,’ Science and Engineering Ethics, 12(4), pp.717-730.
Hess, J.L., and Fore, G. (2018) ‘A Systematic Literature Review of US Engineering Ethics Interventions,’ Science and Engineering Ethics 24, pp. 551–583.
Junaid, S., Kovacs, H., Martin, D. A., and Serreau, Y. (2021) ‘What is the role of ethics in accreditation guidelines for engineering programmes in Europe?’, Proceedings of the SEFI 49th Annual Conference: Blended Learning in Engineering Education: challenging, enlightening – and lasting? European Society for Engineering Education (SEFI), pp. 274-282.
Lundeberg, M.A., Levin, B.B. and Harrington, H.L. (eds.), (1999). Who learns what from cases and how? The research base for teaching and learning with cases. Routledge.
Prince, M.J. and Felder, R.M. (2006) ‘Inductive teaching and learning methods: Definitions, comparisons, and research bases,’ Journal of Engineering Education 95, pp. 123-138.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Ben Ricketts (NMITE), Prof Beverley Gibbs (NMITE) and Harriet Dearden (NMITE)
Keywords: Challenge-based Learning, Timber Technology, Levelling-up, Skills, Future of Work
Abstract: NMITE is a greenfield engineering-specialist HEI in Herefordshire which welcomed its first students in September 2021. Partnership is key to our growth, from both necessity and choice. Our MEng Integrated Engineering is infused with partners who facilitate a challenge-based learning pedagogy, and our Centre for Advanced Timber Technology (opening September 2022) works in national partnership to deliver a curriculum developed by – and for – the timber engineering industry. Alongside a rich educational offer, NMITE’s greenfield status brings with it the responsibility to contribute to civic and economic growth. We are a named partner in Western Power Distribution’s Social Contract as we pursue shared goals for regional development and reduced economic inequality. Key to our goals is our role in in Hereford’s Town Plan, leading an initiative called The Skills Foundry which will promote community engagement around individual skills, and with businesses in the changing nature of work.
NMITE is a greenfield HEI founded to make a difference to the people of Herefordshire and to its economy. Herefordshire is characterised by lower-than-average wages, lower-than-average skills, higher proportions of part-time work, a GVA gap of £1.75bn[1], and is categorised as a social mobility coldspot [2]. Into this context, NMITE was launched in 2021 without any antecedent or parent organisation, and with an engineering and technology focus whose graduates would help address the national shortfall of engineers. We see ourselves as educators, educational innovators, a catalyst for upskilling, and agents for regional change.
An HEI founded in partnership
From NMITE’s earliest days, building strong relationships with partners has been a core part of our culture. NMITE’s first supporters were industry partners, a mixture of local SMEs and national and international companies with a regional presence, united by the need for access to a talent pipeline of engineering graduates. The urgency of this need was evidenced in the raising of over £1M of seed funding, from a range of businesses and individuals. This early investment demonstrated to Government and other stakeholders that the concept of an engineering higher education institution in Hereford had industrial support. In turn, this unlocked significant Government funding which has subsequently been matched through donations and sponsorship to NMITE.
Over the last five years, the portfolio of partners has continued to grow. The nature of the support spans equipment, expertise and financial donations. Our Pioneer Fund raised money to support NMITE’s first students, with donations recognised through naming opportunities. For NMITE, this enabled us to offer universal bursaries to our students joining in our first two years of operation – a powerful tool in student recruitment, and with a longer-term outcome for those early investors in their ability to develop relationships with students, increase their brand awareness and achieve their own recruitment targets in the future.
Curriculum Partnerships
NMITE welcomed its first MEng students in September 2021, and this has provided new opportunities for industrial partnership in the curriculum. The MEng Integrated Engineering is a challenge-led pedagogy where learners work in teams to address real engineering challenges provided by an industrial (and occasionally community) partner. During the process, learners have direct contact with professionals to understand commercial pressures and engineering value, apply theoretical knowledge and develop professional capabilities.
In the sprint-based MEng, NMITE learners tackle around 20 different challenges in this way. Since September, our first students have helped re-engineer the material on a torque arm, designed and built a moisture sensor for a timber-framed house, visualised data from a geotechnical survey, and validated/optimised their own designs for a free-standing climbing structure. Students are already building their portfolio of work, and employers are building relationships with our student body.
Amplifying Innovation
Whilst NMITE is comfortable in its positioning as a teaching-focused HEI, we are mindful of the contribution we can make to the regional economy. NMITE has benefitted from LEP investment to support regional skills and productivity [3], and we have identified opportunities in advanced timber technology, automated manufacturing and skills for a changing future of work.
The Centre for Advanced Timber Technology (CATT) will open in September 2022 on Skylon Park, Hereford’s Enterprise Zone. Drawing on insight from a series of round table meetings with global and national businesses in timber, we came to understand that the UK timber industry needed to be much better connected, with more ambitious collaboration across the industry both vertically (seed to end product) and horizontally (between architects, engineers and construction managers, for example). In pursuing these aims we once again opted for a partnerships-based approach, forging close relationships with Edinburgh Napier University – internationally recognised for timber construction and wood science – and with TDUK – the timber industry’s central trade body. Founded in this way, CATT is firmly rooted in industrial need, actively engaged with industrial partners across the supply chain, and helps join up activity between Scotland, England and Wales.
CATT’s opening in 2022 will spearhead NMITE’s offer for part-time, work-based learners (including professionals, reskillers and degree apprentices) and provide a progressive curriculum for a sustainable built environment. In keeping with NMITE’s pedagogical principals, the CATT’s curriculum will be infused with a diverse portfolio of industrial partners who will provide challenges and context for the CATT curriculum. In future years, the Centre for Automated Manufacturing will provide educational options for comparable learners in the manufacturing industry.
Our initial research in establishing need in these areas pointed not only to skills shortages, but to technological capacity. Herefordshire has a very high proportion of SME’s who report difficulties in horizon scanning new technologies, accessing demonstrations, attracting and retaining graduates with up-to-date knowledge. In this space, and an HEI can play a key role in amplifying innovation; activities to support this will be integral to NMITE’s work at Skylon Park.
The Changing Nature of Work
NMITE is active in two further projects that support the regional economy and social mobility, founded in the knowledge that today’s school leavers will face very different career paths and job roles to those we have enjoyed. Automation, globalisation and AI are hugely disruptive trends that will change opportunities and demand new skills.
NMITE’s ‘Herefordshire Skills for the Future’ project is funded by the European Social Fund and helps SMEs, micro-businesses and young people to develop and secure the skills needed to flourish in the economy of 2030. Activities include:
skills audits for SMEs and creation of bespoke action plans
early career leadership development courses and networking
upskilling in entre- and intrapreneurship capabilities
significant upscaling of high-quality work experience for school and college students and careers advice
NMITE’s Future Skills Hub is a central element of the Hereford Stronger Towns bid [4] to the Government’s Towns Fund, a flagship levelling-up vehicle. The overarching goal of the hub is to provide access to skills and improve employment opportunities for Herefordians, in the context of changing job roles and opportunities.
Conclusion
Our core mission of innovation in engineering education is enhanced by our civic commitment to regional growth and individual opportunity. From the outset, NMITE has been clear that to meet business demand for work-ready engineers, business must contribute meaningfully to their development. We aim to contribute to closing the gap in regional, national and global demand for engineers, but without that critical early investment from partners we would not have been in the position to establish the radical institution that NMITE is today, that remains so close to the original vision of the Founders.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Corrina Cory (University of Exeter), Nick Russill (University of Exeter and Managing Director TerraDat UK Ltd.) and Prof Steve Senior (University of Exeter and Business Development Director at Signbox Ltd.)
Keywords: Gold Standard Project Based Learning, EntreComp, 21st Century Skills, Entrepreneur in Residence, Collaboration
Abstract: We have recently updated our engineering programmes at the University of Exeter (E21 – Engineering the Future) with a USP of Entrepreneurship at the core of the first two years to prepare students for research led learning and the future of jobs. We have worked closely with our Royal Society Entrepreneurs in Residence (EiR) to ensure authenticity in our ‘real-world’ Gold Standard Project Based Learning (GSPBL) activities. We would like to share this great collaboration experience with our EPC colleagues.
Introduction
We have recently updated our engineering programmes at The University of Exeter (E21 – Engineering the Future). The Unique Selling Point (USP) of Entrepreneurship is embedded through Stage 1 and 2 using a new methodology combining Gold Standard Project Based Learning (GSPBL)[1] [image: Picture_1.jpg]) and EntreComp[2] ([image: Picture_2.png], the European Entrepreneurship Competence Framework).[3-5]
Gold Standard PBL – Seven Essential Project Design Elements [4]. Creative Commons License. Reference [1] – pblworks.org (2019). Gold Standard PBL: Essential Project Design Elements. [online] Available at: www.pblworks.org/what-is-pbl/gold-standard-project-design (Accessed 16 February 2022).
The EntreComp wheel: 3 competence areas and 15 competences [5].Creative Commons License. Reference [2] – McCallum, E., Weicht, R., McMullan, L., Price, A. (2018). EntreComp into Action: get inspired, make it happen, M. Bacigalupo & W. O’Keeffe Eds., EUR 29105 EN, Publications Office of the European Union, Luxembourg, pg.13, pg. 15 & pg. 20.
The 21st Century Skills developed in the early stages of the programmes prepare students for research-led learning in later stages and future graduate employment.
The Royal Society Entrepreneur in Residence (EiR) scheme, aims to increase the knowledge and awareness of cutting-edge industrial science, research and innovation in UK universities. The scheme enables highly experienced industrial scientists and entrepreneurs to spend one day a week at a university developing a bespoke project.
In this context, the EiR scheme has grown ‘confidence in, and understanding of business and entrepreneurship among staff and students’ and we have collaborated with our EiRs to ensure authenticity in our ‘real-world’ project-based learning activities.[6] They have inspired students to pursue their own ideas and bring them to reality in ways that bring sustained regional and global benefit.
Aims
Develop collaborative relationships with EiRs.
Implement our newly developed methodology combining GSBPL and EntreComp to thread a USP of Entrepreneurship throughout our updated engineering programmes.
Integrate the experience of our EiRs via Entrepreneurship modules in experiential project launches, interactive workshops and attendance at pitch presentations.
Update assessments to include multi-media, entrepreneurial submissions including storyboards, video pitches, wireframes and websites to assess digital competency, creativity, business, collaboration and inclusivity for successful future graduate employment.
Plan
The Engineering Department worked with venture capitalist Alumni, Adam Boyden to create a MEng in Engineering & Entrepreneurship. The education team seized the opportunity during curriculum development to make the Stage 1 and 2 Entrepreneurship modules common to all engineering programmes to embed a USP of Entrepreneurship in E21.
Both our EiRs are natural educators and thrive on sharing their rich experiences and stories to mentor others through their entrepreneurship journeys.
They provide on-site technology demonstrations, prizes for 21st Century Skills and interactive workshops on entrepreneurship. This integration of EiRs into teaching and learning adds variety, and through the power of story, the students engage to a high level. Furthermore, their curiosity prompts them to construct and ask challenging questions.
The open-ended GSPBL driving questions allow groups to develop unique ideas. Most of the projects yielded excellent and highly original themes, some of which could have real value in the future should they be further developed.
We have observed learning opportunities for inclusivity, listening, improvements in self-confidence and more free-thinking and ideation as a direct result of our methodology combining GSPBL and EntreComp.
Using this method and mapping competences using EntreComp should improve outcomes for graduates who gain the top employability skills required by 2025 e.g., critical thinking and analysis, problem-solving, self-management, active learning, resilience, stress tolerance and flexibility.[7] Students develop an appreciation and understanding of business start-ups, ideation and successful implementation of innovative research and development through their experiential learning.
Outcomes
Our EiRs have provided insights into what it takes to be an entrepreneur and have introduced energy, enthusiasm, creativity and innovative thought processes throughout both Entrepreneurship modules.
Nick Russill’s specific contributions include team building, planning, branding, entrepreneurial skills, innovation, business development, co-hosting project launch seminars, innovation workshops, project-based learning support sessions and mock investment pitch panels.
Steve Senior’s lectures Q&As and workshops include the beauty of failure, advanced Computer Aided Design (CAD)/Computer Aided Manufacturing (CAM), marketing and e-commerce. He mentors student teams on how to capitalise on limited resources during growth and explains risk analysis with case studies from his own companies.
The digital materials created for our blended updated programmes will remain a longer-term legacy of their involvement and provide resources available to be called on in future to sustain the impact of EiRs at Exeter.
Nick has commented that ‘my time as EiR with the Exeter engineering students has convinced me that GSPBL takes education to another level, and I wish it were more widespread in education curricula … The close association of learning with real-life applications and case studies has proved that students retain far more technical and theoretical information than they may do from more traditional methods’.
Students are surveyed at the start of Entrepreneurship 1 and the end of Entrepreneurship 2 in terms of their self-assessed ability to evidence aspects of EntreComp on their CV. Previous publications have illustrated an increase in competence over the 2 years of Entrepreneurship and we will continue to collect this data to evidence outcomes.[5]
Entrepreneurs in residence share their real-world experience and then stick around to build relationships with the staff, researchers and students. They become an integral part of the team. Student Feedback definitely proves that we’re helping to ignite sparks for a new generation of entrepreneurs. Student feedback includes:
‘Gain skills in areas concerning self-motivation and creativity’… ‘become comfortable with risk and uncertainty … a really good learning experience’ …’developing confidence and being able to trust yourself and take the initiative’… ‘good innovation and technical skills’ … ‘learning by doing is the only way for entrepreneurship and this course has given us a great environment and support to learn, fail, pivot and learn again’.
Staff and students have commented on the value of injecting ad hoc real-life anecdotes of problem-solving stories and learnings from experienced entrepreneurs which is unique, valuable and significantly enriches learning experiences.
Lessons and Future Work
An individual reflective work package report is submitted by all students at the completion of two years of entrepreneurship modules. This provides a period of reflection for students and a chance to showcase their journey including valuable learning through failure, personal contributions to the group’s success and professional development in terms of 21st Century Skills as defined by EnreComp.
Following panel Q&A at the EPC Crucible Project, future refinement includes reviewing possible additions to the reflective report and illustrating links between engineering competence and EntreComp to clearly signpost students to the relevance of Entrepreneurial 21st Century Skills for graduate employment, chartership and intrapreneurship.
European Commission, Joint Research Centre, Price, A., McCallum, E., McMullan, L., et al. (2018) EntreComp into action : get inspired, make it happen. Publications Office. https://data.europa.eu/doi/10.2760/574864, pp.13, 15 & 20.
Cory, C., Carroll, S. and Sucala, V., 2019. Embedding project-based learning and entrepreneurship in engineering education. In: New Approaches to Engineering Higher Education in Practice. Engineering Professors’ Council (EPC) and Institution of Engineering and Technology (IET) joint conference.
Cory, C., Sucala, V. and Carroll, S., 2019. The development of a Gold Standard Project Based Learning (GSPBL) engineering curriculum to improve Entrepreneurial Competence for success in the 4th industrial revolution. In: Complexity is the new Normality.. Proceedings of the 47th SEFI Annual Conference, pp.280-291.
Cory, C. and Cory, A., 2021. Blended Gold Standard Project Based Learning (GSPBL) and the development of 21st Century Skills – an agile teaching style for future online delivery. In: Teaching in a Time of Change. AMPS Proceedings Series 23.1., pp.207-217.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)
Keywords: WBL, Degree Apprenticeship, Engineering
Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.
This case study is presented as a video which you can view below:
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)
Abstract: The ‘Transforming Tomorrow’ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to ‘hit the ground running’ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.
Introduction
WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Department’s experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.
The ‘Transforming Tomorrow’ Project is about taking a holistic view of the Department’s educational provision in order to understand the effectiveness of the provision from students’ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we better meet the needs of industry. This paper reports the first part of the Project.
Context
For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and online learning; five key themes were identified:
The need to adopt a design approach to curriculum development
The quality of the student experience
Student engagement
The challenges and benefits of blended learning
Student and academic perceptions of online learning
Each of these themes have in common the fact that the virtual learning approaches analysed and discussed were developed over a significant period of time.
Method and Findings
A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on students’ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown.
The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least, engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.
Figure 1: First Year Engineering Students’ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)
In looking at the above table one thing that immediately drew colleagues’ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.
For the academic staff, a survey conducted at the same time sought to determine colleagues’ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questions…
This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future). With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.
Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st CenturyIndustry
Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.
The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics:
1. Teaching to Meet the Challenges of Industry
Contextualising learning in society
Looking back to move forward
Transforming teaching
Producing work-ready graduates when ‘work’ is constantly changing.
2. Student-Centred Active Learning
Deep or surface learning?
Engendering independent learning in the millennial student
Co-creation in learning
Encouraging a learning culture
3. Growing independent learners
Developing self-authorship in students (and staff)
Disruptive pedagogies = flexible graduates
Authenticity in assessment
Re-imagining assessment for employability
4. Levelling the Playing Field
Supporting students to succeed
Post-colonial industry-focused learning
Inclusivity in learning and teaching
Student-led, research-based, real-life teaching
5. Re-Designing what we do
Design thinking for the future
Linking work and education for the millennium generation
Knowledge exchange and co-creation
Embedding sustainability principles across the curriculum
6. Engineering an environment for learning
Scaffolding active learning across
Finding space for study
Bringing engineering challenges into learning
Off-On-Hybrid: Moving forward from Covid
Conclusion
In conclusion, society is entering what has been termed ‘the new normal’; for WMG, there is nothing ‘normal’ about what we do. We are entering a ‘Transformational Time’; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt the ‘new normal’. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Abstract: The Institute of Innovation and Knowledge Exchange works closely with business and industry as well as with universities (e.g. City of Birmingham, Plymouth, Westminster). The case study will feature the application of the Investor in Innovations Standard (Aligned to the ISO 56002 Innovation Management System) within the Research, Innovation, Enterprise and Employability (RIEE) Directorate of Birmingham City University (BCU). The Case Study will look at six key areas: 1. Strategy and Alignment; 2. Organisational Readiness; 3. Core Capabilities and Technologies; 4. Industry Foresight; 5. Customer Awareness; and 6. Impact and Value.
Introduction
This case study draws upon the work and outcomes of the Investor in Innovations (I3) ISO56002 Standard programme Birmingham City University’s (BCU) Research, Innovation, Enterprise and Employability (RIEE) department undertook with IKE Institute to benchmark their existing innovation capabilities, identify gaps and provide an action plan for future improvement in innovation and knowledge exchange (KE).
The validation and benchmarking work conducted with BCU RIEE used a six category standard framework (see fig. 1): strategy and alignment, organisational readiness, core capabilities, technologies and IP, industry foresight, customer awareness and impact and value.
Fig. 1 Investor in Innovations ISO56002 Standard Framework
Aim
The aim of the case study was to examine each of these categories to assess how knowledge exchange methodologies, practices, tools and techniques were being used to support the university’s innovation ambitions, and ultimately, to drive up value and impact.
Innovation and knowledge exchange are inextricably linked (see fig. 2). Innovation needs knowledge exchange to fuel every stage of its process, from listening and discovery, through design and experimentation to implementation and measurement. Conversely, knowledge exchange needs innovation to create a focus for engagement. Innovation gives knowledge exchange its creative, entrepreneurial spirit. The two are required to work in unison if an organisation is to achieve higher levels of innovation maturity.
Fig. 2 The link between the innovation process and knowledge exchange
Enabling innovation and knowledge exchange to work concurrently was shown to be a central theme within RIEE, exemplified, particularly, through their STEAMhouse project (see fig. 3). A collaborative innovation campus which provides product and service innovation and knowledge exchange to business.
Fig 3. BCU RIEE’s STEAMhouse project
Strategy and alignment
The critical aspect of this category was to examine BCU’s Innovation Strategy and how well aligned this was to the overall 2025 Strategy for the university. An underpinning element of the innovation strategy, was reviewing, supporting and improving their innovation ecosystem partners (both business and industry and academic), widening and growing their STEAM (Science, Technology, Engineering, Art and Mathematics) communities of practice, and supporting direct knowledge exchange through the roll-out of commercialisation policies, training, capital and digital infrastructure to support more students and entrepreneurs.
Organisational readiness
This category assessed BCU’s innovation culture, creative capabilities and the structures, processes and governance in place to support innovation developments. When examined through the knowledge exchange lens, these areas translated into BCU’s ability to use KE to spark discussion, curiosity and inspire creativity accelerating the build up of a virtuous growth mindset. BCU have engaged with over 2,500 businesses, and formally assisted 1,425 to start, grow or innovate since 2017/18. BCU demonstrated their ability to leverage this landscape to create powerful sub-networks within their wider ecosystem for greater knowledge exchange, thus, generating a force multiplier at every stage of their innovation process. Internally, dissemination of innovation wins and promotion of ideas sharing has ramped up the institution’s innovation knowledge base and underpinned a sustainable innovation pipeline of activities.
Core capabilities, technologies and IP
For an institution like BCU, this category focused on building capacity in expertise and resource. Rapid access to external knowledge sources within RIEE’s ecosystem helped to reflect different perspectives from SMEs, larger businesses, other academic stakeholders and industrial representatives from associations and learned societies. Development of 100 innovation ambassadors within RIEE has brought greater access to the ambassadors’ own communities of practice and collaborative networks. The use of crowdsourcing mechanisms such as innovation challenges, have helped build momentum around specific product, service or societal problems. Use of collaborative knowledge STEAM tools such as STEAM Sprints, have enabled greater creative problem solving and refinement of selected ideas.
Industry foresight
At the heart of this category is knowledge exchange. Through analysis and synthesis, information becomes intelligence supporting innovation directions. Within RIEE, long-established and engrained partnerships with external stakeholders and engagement on industry forums have been utilised to acquire sectoral knowledge and key market intelligence informing and shaping the exploration and exploitation of new scientific, technological and engineering discoveries. The university’s representation on key regional advisory boards positioned them as thought leaders and led to sculpting regional strategies and plans.
Customer awareness
BCU’s Public and Community Engagement Strategy forms the basis for mechanisms to drive productive knowledge exchange. This category focused on understanding the needs of the customer and involving them in the innovation development process. RIEE demonstrated its ability to use collaborative networks and customer ecosystems to identify challenges. They harnessed co-creation practices and funding – e.g. Proof of Concept Support Fund for Staff – to then deliver innovative solutions.
Effective knowledge exchange requires coherent, relevant and accurate data. Through BCU’s CRM, segmentation and narrow-casting has been achieved. This targeting of specific information through BCU’s online platforms and social media channels has encouraged 13,591 connections with businesses and proliferated greater knowledge exchange with over 2,500 engaged relationships.
Impact and value
This category’s focus ensured that a structured approach to implementation was adopted to maximise commercial success, and measurement of the innovation process meets organisational objectives. In this context, BCU’s community engagement and knowledge exchange through multiple pathways helped to underpin continual improvement of RIEE’s innovation process. The positive impact of knowledge exchange for RIEE has been defined by the development of STEAMhouse project – phase 2, and the creation of BCU Enterprises, to further drive the impact of RIEE, including research, experimentation, exploitation, and commercialisation of product IP and service know-how in STEAM disciplines.
Outcomes
Gaps were identified across all six of the I3 Standard framework categories. The key improvements in KE included:
Identifying methods to activate critical behaviours in staff, students and ecosystem partners, to encourage greater sharing and knowledge exchange;
Clustering innovation activities around key technology domains and IP assets, enabling more targeted knowledge exchange with partners, suppliers and customers within the innovation ecosystem;
Developing a more systematic way to communicate and engage with innovation partners yearly, to assess change in customers’ ecosystems, curate priorities of demand and increase BCU’s innovation maturity level;
Identifying more targeted KPIs to measure RIEE’s activities, thus determining progress and success, return on innovation investment and yield value.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.
Background
Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.
The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.
The Brief
Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.
Figure 1. Image from the project brief indicating the potential building envelopes for the roof design
Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.
Requirements
Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.
The chosen design was developed to include:
Full structural design; Calculations to Eurocodes, load path diagrams, member sizing, connection design, explanation of structural choices.
Buildability (cost breakdown, site logistics, consideration of context)
Health and Safety risks, impacts on design and control measures
Construction sequence
Sustainability summary inc. embodied carbon calculations
Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.
Figure 2. Connection detail drawing by group 9
Delivery
Course material was delivered over 4 sessions with a final session for presentations:
Session 1: Project introduction and scheme designing
Session 2: Timber design
Session 3: Construction and constructability
Session 4: Fire Engineering and sustainability
Session 5: Student Presentations
Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.
These sessions built on learning from previous modules and projects.
Learning / Skills Development
The project aimed to develop skills and learning in the following areas:
Technical skills relating to structural design using timber, embodied energy calculations, drawing and H&S risk assessment.
Design skills relating to consideration of the site, its context and the need, creativity and assessing ideas, consideration and overlapping of numerous disciplines, design iteration and improvement.
Professional skills in relation to communicating with clients, producing reports to a professional standard, presenting a project, working in teams, organising resources, etc.
Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.
Benefits of Collaborating
The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.
Figure 3. Development of design concepts by group 12
The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).
Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.
Reflections and Feedback
Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.
Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.
Figure 4. Winning design summary diagram by group 12
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Abstract: The case study looks at how we use guest lecturers from industry (and academia) at Cranfield University. In the case study we examine why and how module leaders use guest lecturers in their modules. Furthermore, we also cover the student perspective. How do students perceive this form of industry collaboration and what are their expectations from guest lectures? The case study will benefit the EPC community by giving insight and advice on how to include guest lecturers in the curriculum. While many universities use guest lecturers from industry, very little research has been conducted into module leaders’ and students’ experience with guest lectures. The case study provides good practice examples based on students’ and module leaders’ feedback.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Ian Hobson (Senior Lecturer and Academic Mentor for Engineering Leadership Management at Swansea University and former Manufacturing Director at Tata Steel) and Dr Vasilios Samaras (Senior Lecturer and Programme Director for Engineering Leadership Management at Swansea University)
Keywords: Academia, Industry
Abstract: Throughout the MSc Engineering Leadership Management program, the students at Swansea University develop theoretical knowledge and capability around leadership in organisations. Working alongside our industry partner Tata Steel, they deploy this knowledge to help understand and provide potential solutions to specific organisational issues that are current and of strategic importance to the business. The output of this work is presented to the Tata Steel board of directors along with a detailed report.
Aims of the program
In today’s world, our responsibility as academics is to ensure that we provide an enabling learning environment for our students and deliver a first-class education to them. This has been our mantra for many years. But what about our responsibility to the employing organisations? It’s all well and good providing well educated graduates but if they are not aligned to the requirements of those organisations then we are missing the point. This may be an extreme scenario, but there is a real danger that as academics we can lose touch with the needs of those organisations and as time moves on the gap between what they want and what we deliver widens.
In today’s world this relationship with the employment market and understanding the requirement of it is essential. We need to be agile in our approach to meet those requirements and deliver quality employees to the market.
How did we set this collaborative approach?
In reality the only way to do this is by adopting a collaborative approach to our program designs. Our aim with the MSc Engineering Leadership Management (ELM) at Swansea University is to ensure that we collaborate fully with the employment market by integrating industry professionals into our program design and delivery processes. In this way we learn to understand the challenges that organisations face and how they need strength in the organisation to meet those challenges. This of course not an easy task to accomplish.
In our experience professionals within organisations are often overrun with workload and trying to manage the challenges that they face. A university knocking the door with an offer of collaboration is not always top of their priority list, so how do we make this happen? You need to have a balance of academics and experienced industry leaders working within the program who understand the pressures that business faces. They also often have networks within the external market who are willing to support such programs as the ELM. The power of collaboration is often overlooked. It’s often a piece of research, dealing with a specific technical issue, it is rarely a continuum of organisational alignment. If the collaboration is designed for the long-term benefit of improving employability, then organisations will see this as a way to help solve the increasing challenge of finding “good” employees in a market that is tightening. So overall this becomes a win-win situation.
How was the need for the program identified?
Our program was developed following feedback to the university from the market that graduates were joining organisations with good academic qualifications but lacked an understanding of how organisations work. More importantly how to integrate into the organisation and develop their competencies. This did come with time and support, but the graduates fell behind the expected development curve and needed significant support to meet their aspirations.
Swansea University developed the ELM to provide education on organisations and how they work and develop the skills that are required to operate in them as an employee. These tend to be the softer skills, but also developing the student’s competence in using them. Examples include working as teams and providing honest feedback via 1-1s and 360s and team reviews.
In our experience the ability to challenge in a constructive way is a competency that the students don’t possess. All our work is anchored in theory which provides reference for the content. The assignments that we set involve our industry partners and provide potential solutions to real issues that organisations face. The outcome of their projects is presented to senior management within the host organisation. This is often the high point of the year for the students. This way the students get exposure to the organisations which extends their comfort zones preparing them for the future challenges.
What are the program outcomes?
September 2022 will be our fifth year. The program is accredited by the Institution of Engineering and Technology (IET). Our numbers have increased year on year, and we are running cohorts of up to 20 students. It’s a mix of UK and international students. The program requires collaboration between the university faculties which has brought significant benefits and provided many learning opportunities. The collaboration between the engineering and business schools has made us realise that working together we provide a rounded program that is broad in content, but also deep in areas that are identified as specific learning objectives.
The feedback from the University is that students on the ELM program perform well and they have a more mature approach to learning and have confidence in themselves and are proactive in lectures. From our industry partners they feed back that the ELM students are ahead of the curve and are promoted into positions ahead of their peers.
What have we learned from the program?
As lecturers, over the years it has become very clear that the content that we deliver must change year on year. We cannot deliver the same content as it quickly becomes out of date. The theory changes very little, but the application changes significantly, in line with the general market challenges. It is almost impossible to predict and if we sit back and look at the past 4 years this pattern is clear. We also need to refresh our knowledge and we have as much to learn from our students as they do from us. We treat them as equals and have a very good learning relationships and have open and honest debates. We always build feedback into our programs and discus how we can improve the content and delivery of the program. Without exception feedback from a year’s cohort will modify the program for the following year.
Looking ahead
We are being approached by organisations interested in the University delivering a similar program to their future leaders on a part time basis which is something we are considering. We do however recognise that this program is successful because of the experience and knowledge of the lecturers and the ability to work with small cohorts which enables a tailored approach to the program content.
We believe that collaboration with the market keeps the ELM aligned with its requirements. Equally as importantly is the collaboration with our students. They are the leaders of the future and if the market loses sight of the expectations of these future leaders, then they will fail.
The ELM not only aligns its programs with the market, it keeps the market aligned with future leaders.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.