Authors: Mr Neil Rogers (Independent Scholar); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Topic: Suitable technology for developing countries. 

Engineering disciplines: Mechanical engineering; Electrical engineering; Energy. 

Ethical issues: Sustainability; Honesty; Integrity; Public good. 

Professional situations: Communication; Bribery; Working cultures; Honesty; Transparency. 

Educational level: Advanced. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes: 

This case study requires a newly appointed engineer to make a decision about whether or not to sell unsuitable equipment to a developing country. Situated in Ghana, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations. 

The engineer’s own job security is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about honesty, integrity, the environment and its connection to human life and services. 

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

This case study is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Educational institutions: 

Journal articles: 

Professional organisations: 

News articles: 

NGOs: 

 

Pre-reading: 

To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read, the academic articles found in the resource list: ‘Environmental ethics: An overview’ or ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’ 

 

Dilemma – Part one: 

You have just graduated from university as a mechanical engineer and you are starting your first job as a sales engineer for JCD Engineering, a company that designs and manufactures pumping equipment. JCD has recently expanded operations in sub-Saharan Africa and you took the job because you were excited for the opportunity to travel and work in a country and culture different from your own.  

For your first project, you have been asked to put together quite a large bid for a water pumping aid project for some farms in northern Ghana. It just so happens that there is a trade show being held in Accra, so your manager has suggested you attend the show with a colleague to help on the company stand and combine this with a site visit to where the pumping equipment is to be installed. A representative from the aid organisation agrees to drive you to where the project will be sited before the trade show takes place. 

On arrival in Ghana, you are met by the rep to take you on your journey up country. This is your first visit to a developing country; you are excited, a little apprehensive and quite surprised by disorganisation at the airport, poor infrastructure, and obvious poverty in the villages up country. Still, you immediately see the difference that water pump installation could make to improve quality of life in villages. After two days of travelling, you eventually arrive at the village where the project JCD is bidding on will be situated. You are surprised to hear that the aid rep is quite cynical about engineering aid projects from the UK; this is because many have failed and she hopes that this won’t be another one. She is very busy and leaves you with local school teacher Amadou, who will host you during your stay and act as your interpreter. 

The local chief, farmers, and their families are very excited to see you and you are taken aback by the lavish food, dancing, and reception that they have laid on especially for you. You exchange social media contacts with Amadou, who you understand has been instrumental in winning this contract. You get excited about working with Amadou on this project and the prospect of improving the livelihoods of the locals with better access to clean water. 

After some hours you get shown some of the existing pumping equipment, but you don’t recognise it and it has obviously been left idle for some time and looks to be in a poor state. The farmers appear confused and are surprised that you aren’t familiar with the pumps. They explain that the equipment is from China and was working well for many years. They understand how it operates and have even managed to repair some of the fittings in local workshops, but there are now key parts they have been waiting many months for and they assume that you have brought them with you. 

You try to explain through Amadou that there has been some misunderstanding and that you don’t have the spares but will be quoting for replacement equipment from your company in the UK. This is not what the farmers want to hear and the mood changes. They have spent many years getting to know this kit and now they can even locally fabricate some of the parts. Why would you change it all now? The farmers start shouting and Amadou takes you to one side and suggests you should respond by offering them something in return. 

What should you offer them? 

 

Optional STOP for questions and activities: 

1. Discussion: What is your initial reaction to the miscommunication? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values? 

2. Discussion: What is your initial reaction to the reception given to you? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values? 

3. Activity: Technical integration – undertake an electrical engineering technical activity related to water pumps and their power consumption against flow rates and heads. 

4. Discussion and activity: List the potential benefits and risks to implementing water pump technology compared to traditional methods of water collection. Are these benefits and risks the same no matter which country they are implemented in? 

5. Activity: Research water pumping in developing countries. What are the main technical and logistical issues with this technology? Are there any cultural issues to consider?  

6. Activity: This activity is related to optional pre-readings on environmental ethics. Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer. 

 

Dilemma – Part two: 

You reluctantly backtrack a little on what you said earlier and convince Amadou and the farmers that you will be able to sort something out. Back in Accra at the local trade show, you manage to source only a few spares as a quick fix since you had to pay for them yourself without your colleague noticing. The aid representative agrees to take them up country next time she travels. 

You arrive back in the UK and begin to prepare the JCD bid. You are aware that the equipment from your company is very different to the Chinese kit that the farmers already have. It is designed to run on a different voltage and uses different pipe gauges throughout for the actual water pumping. The locally fabricated spares will definitely not connect to the JCD components you will be specifying. 

You voice your concerns to your manager about the local situation but your manager insists that it is not your problem and the bid will not win if it is not competitive. Sales in your department are not good at the moment, and after all you are a new employee on probation and you want to make a good first impression. 

Having further investigated some comments Amadou made on the trip, you discover that the water table has dropped by several metres in this part of Ghana over the last five years and you realise that the equipment originally quoted for might not even be up to the job! 

 

Optional STOP for questions and activities: 

1. Discussion: Should you disclose these newly discovered concerns about the water table height or keep quiet? 

2. Discussion: Do you continue to submit the bid for equipment that you know may be totally inappropriate? Why, or why not? 

3. Activity: Role-play a conversation between the engineer and the JCD manager about the issues that have been discovered. 

4. Discussion and activity: Research levels of the water table in West Africa and how they have changed over the last 50 years. Is there a link here to climate change? What other factors may be involved? 

5. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Some people find that our obligation is greater to people who exist at this moment than to those that don’t yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now? 

6. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. (Use the Mapping actors and processes article to help with this activity.) 

7. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action. 

8. Activity: Use heuristics to analyse possible courses of action. One heuristic is the Environmental ethics decision making guide. Another is the 7-step guide to ethical decision-making. 

  

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Developing an internet constellation

Activity: Anatomy of an internet satellite.

Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

 

Overview:

This enhancement is for an activity found in the Dilemma Part two section. It is based on the work done by Kate Crawford and Vladan Joler and published by the SHARE Lab of the SHARE Foundation and the AI Now Institute of New York University, which investigates the “anatomy” of an Amazon Echo device in order to “understand and govern the technical infrastructures” of complex devices. Educators should review the Anatomy of an AI website to see the map and the complementary discussion in order to prepare and to get further ideas. This activity is fundamentally focused on developing systems thinking, a competency viewed as essential in sustainability that also has many ethical implications. Systems thinking is also an AHEP outcome (area 6). The activity could also be given a supply chain emphasis.

This could work as either an in-class activity that would likely take an entire hour or more, or it could be a homework assignment or a combination of the two. It could easily be integrated with technical learning. The activity is presented in parts; educators can choose which parts to use or focus on.

 

1. What are the components needed to make an internet satellite functional?:

First, students can be asked to brainstorm what they think the various components of an internet satellite are without using the internet to help them. This can include electrical, mechanical, and computing parts.

Next, students can be asked to brainstorm what resources are needed for a satellite to be launched into orbit. This could include everything from human resources to rocket fuel to the concrete that paves the launch pad. Each of those resources also has inputs, from chemical processing facilities to electricity generation and so forth.

Next, students can be asked to brainstorm what systems are required to keep the internet satellite operational throughout its time in orbit. This can include systems related to the internet itself, but also things like power and maintenance.

Finally, students can be asked to brainstorm what resources will be needed to manage the satellite’s end of life.

Small groups of students could each be given a whiteboard to make a tether diagram showing how all these components connect, and to try to determine the path dependencies between all of them.

To emphasise ethics explicitly, educators could ask students to imagine where within the tether diagram there could be ethical conflicts or dilemmas and why. Additionally, students could reflect on how changing one part of the system in the satellite would affect other parts of the system.

 

2. How and where are those components made?:

In this portion of the activity, students can research where all the parts of those components and systems come from – including metals, plastics, glass, etc. They should also research how and where the elements making up those parts are made – mines, factories, chemical plants, etc. – and how they are then shipped to where they are assembled and the corresponding inputs/outputs of that process.

Students could make a physical map of the globe to show where the raw materials come from and where they “travel” on their path to becoming a part of the internet satellite system.

To emphasise ethics explicitly, educators could ask students to imagine where within the resources map there could be ethical conflicts or dilemmas and why, and what the sustainability implications are of materials sourcing.

 

3. The anatomy of data:

In this portion of the activity, students can research how the internet provides access to and stores data, and the physical infrastructures required to do so. This includes data centres, fibre optic cables, energy, and human labour. Whereas internet service is often quite localised (for instance, students may be able to see 5G masts or the service vans of their internet service provider), in the case of internet satellites it is very distant and therefore often “invisible”.

To emphasise ethics explicitly, educators could ask students to debate the equity and fairness of spreading the supply and delivery of these systems beyond the area in which they are used. In the case of internet satellites specifically, this includes space and the notion of space as a common resource for all. This relates to other questions and activities presented in the case study.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Ian Hobson (Senior Lecturer and Academic Mentor for Engineering Leadership Management at Swansea University and former Manufacturing Director at Tata Steel) and Dr Vasilios Samaras (Senior Lecturer and Programme Director for Engineering Leadership Management at Swansea University)

Keywords: Academia, Industry

Abstract: Throughout the MSc Engineering Leadership Management program, the students at Swansea University develop theoretical knowledge and capability around leadership in organisations. Working alongside our industry partner Tata Steel, they deploy this knowledge to help understand and provide potential solutions to specific organisational issues that are current and of strategic importance to the business. The output of this work is presented to the Tata Steel board of directors along with a detailed report.

 

Aims of the program

In today’s world, our responsibility as academics is to ensure that we provide an enabling learning environment for our students and deliver a first-class education to them. This has been our mantra for many years. But what about our responsibility to the employing organisations? It’s all well and good providing well educated graduates but if they are not aligned to the requirements of those organisations then we are missing the point. This may be an extreme scenario, but there is a real danger that as academics we can lose touch with the needs of those organisations and as time moves on the gap between what they want and what we deliver widens.

In today’s world this relationship with the employment market and understanding the requirement of it is essential. We need to be agile in our approach to meet those requirements and deliver quality employees to the market.

How did we set this collaborative approach?

In reality the only way to do this is by adopting a collaborative approach to our program designs. Our aim with the MSc Engineering Leadership Management (ELM) at Swansea University is to ensure that we collaborate fully with the employment market by integrating industry professionals into our program design and delivery processes. In this way we learn to understand the challenges that organisations face and how they need strength in the organisation to meet those challenges. This of course not an easy task to accomplish.

In our experience professionals within organisations are often overrun with workload and trying to manage the challenges that they face. A university knocking the door with an offer of collaboration is not always top of their priority list, so how do we make this happen? You need to have a balance of academics and experienced industry leaders working within the program who understand the pressures that business faces. They also often have networks within the external market who are willing to support such programs as the ELM. The power of collaboration is often overlooked. It’s often a piece of research, dealing with a specific technical issue, it is rarely a continuum of organisational alignment. If the collaboration is designed for the long-term benefit of improving employability, then organisations will see this as a way to help solve the increasing challenge of finding “good” employees in a market that is tightening. So overall this becomes a win-win situation.

How was the need for the program identified?

Our program was developed following feedback to the university from the market that graduates were joining organisations with good academic qualifications but lacked an understanding of how organisations work. More importantly how to integrate into the organisation and develop their competencies. This did come with time and support, but the graduates fell behind the expected development curve and needed significant support to meet their aspirations.

Swansea University developed the ELM to provide education on organisations and how they work and develop the skills that are required to operate in them as an employee. These tend to be the softer skills, but also developing the student’s competence in using them. Examples include working as teams and providing honest feedback via 1-1s and 360s and team reviews.

In our experience the ability to challenge in a constructive way is a competency that the students don’t possess. All our work is anchored in theory which provides reference for the content. The assignments that we set involve our industry partners and provide potential solutions to real issues that organisations face.  The outcome of their projects is presented to senior management within the host organisation. This is often the high point of the year for the students. This way the students get exposure to the organisations which extends their comfort zones preparing them for the future challenges.

What are the program outcomes?

September 2022 will be our fifth year. The program is accredited by the Institution of Engineering and Technology (IET). Our numbers have increased year on year, and we are running cohorts of up to 20 students. It’s a mix of UK and international students. The program requires collaboration between the university faculties which has brought significant benefits and provided many learning opportunities. The collaboration between the engineering and business schools has made us realise that working together we provide a rounded program that is broad in content, but also deep in areas that are identified as specific learning objectives.

The feedback from the University is that students on the ELM program perform well and they have a more mature approach to learning and have confidence in themselves and are proactive in lectures. From our industry partners they feed back that the ELM students are ahead of the curve and are promoted into positions ahead of their peers.

What have we learned from the program?

As lecturers, over the years it has become very clear that the content that we deliver must change year on year. We cannot deliver the same content as it quickly becomes out of date. The theory changes very little, but the application changes significantly, in line with the general market challenges. It is almost impossible to predict and if we sit back and look at the past 4 years this pattern is clear. We also need to refresh our knowledge and we have as much to learn from our students as they do from us. We treat them as equals and have a very good learning relationships and have open and honest debates. We always build feedback into our programs and discus how we can improve the content and delivery of the program. Without exception feedback from a year’s cohort will modify the program for the following year.

Looking ahead

We are being approached by organisations interested in the University delivering a similar program to their future leaders on a part time basis which is something we are considering. We do however recognise that this program is successful because of the experience and knowledge of the lecturers and the ability to work with small cohorts which enables a tailored approach to the program content.

We believe that collaboration with the market keeps the ELM aligned with its requirements. Equally as importantly is the collaboration with our students. They are the leaders of the future and if the market loses sight of the expectations of these future leaders, then they will fail.

The ELM not only aligns its programs with the market, it keeps the market aligned with future leaders.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors:  Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Sarah Jayne Hitt SFHEA (NMITE); Professor Thomas Lennerfors (Uppsala University); Claire Donovan (Royal Academy of Engineering); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Isobel Grimley (Engineering Professors’ Council).

Topic: Low earth orbit satellites for internet provision. 

Engineering disciplines: Electronics, Mechanical engineering.

Ethical issues: Respect for environment, Public good, Future generations.

Professional situations: Communication, Management, Working cultures.

Educational level: Intermediate.

Educational aim: Practise ethical analysis. Ethical analysis is a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action. 

 

Learning and teaching notes:

This case is about an experienced engineer leading a team at a tech start-up. The company has been awarded a contract to produce an innovative satellite that will be used in an internet constellation. While the team was initially excited about their work, some members are now concerned about the impact of the internet constellation. While mainly focused on environmental ethics, effects on human communities are also raised in this case study.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, this section enables students to practise different types of analysis and to introduce aspects of environmental ethics. It highlights the challenges of making ethical decisions with global consequences, in scenarios where policy isn’t clear. Part two develops and complicates the concepts presented in Part one to provide for additional learning by focusing on the course of actions taken by an individual engineer based on the dilemma presented in Part one. The Challenge of Environmental Ethics linked below is recommended, though not required, for students engaging with this case. Additionally, throughout the case, there is the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources: 

 

Summary: 

After years of working your way up the corporate ladder, you are now Head of Engineering for a tech start-up. The company has won a contract connected to a project creating a constellation of thousands of low Earth orbit satellites. This constellation has the potential to create a reliable system of internet access for areas of the world that are hard to reach by conventional infrastructure. Your company is one of those chosen to develop and build a low-cost, lightweight, efficient satellite that can be produced at scale. This is a huge accomplishment for you, as well as for your company. 

 

Dilemma – Part one:

A conference that brings together various project partners is met by protesters whose message is that the internet constellation has several potential negative impacts for nature and human communities. Disparaging comments have been made about your company’s participation in the project on social media. Some members of your team seem quite rattled by the protests, and you convene at a coffee shop to discuss. 

 

Optional STOP for questions and activities:

1. Discussion: Technical analysis – Undertake a technical activity in the areas of electronic and / or mechanical engineering related to internet constellations.

2. Activity: Position analysis – Divide students into three groups—constellation project managers; satellite engineers and protestors. Imagine how their positions are related to the internet constellation. What values might inform their positions? What knowledge might inform their position that the other groups do not have access to or understanding of?

3. Discussion: Environmental analysis – While nature cannot speak for itself, if it could, what might be its position on the internet constellation? What aspects of the natural world might be affected by this technology in both the short- and long-term? For example, are there any direct or indirect effects on the health of humans and the ecosystems around them? Should the natural world of space be treated the same way as the natural world on earth?

4. Discussion: Policy analysis – Who should make decisions about projects that affect nature on a global scale? What laws or regulations exist that govern internet constellations?

5. Discussion and Activity: Moral analysis – Use environmental ethics principles such as intrinsic value and anthropocentrism to debate the project. Beyond environmental concerns, how might other ethical approaches, such as consequentialism or justice, inform positions on the issue?

 

Dilemma – Part two:

You remind and explain to your team members that they, and the company, have a duty to the client. Everyone has been hired to deliver a specific project and been excited about overcoming the technical challenges to ensure the project’s success. The team agrees, but also expresses concern about aspects that aren’t in the project remit, such as how the satellite will be maintained and what will happen to it at the end of its life. They demand that you pause your work until an ethical review is conducted. 

You report all of this to the CEO, who reacts with disappointment and unhappiness at your team’s actions. She argues that the only thing your company is doing is building the satellite: it’s not your responsibility what happens to it afterwards. She feels that it’s your job to get your team back in line and on task. How do you approach this situation? 

 

Optional STOP for questions and activities:

1. Discussion and Activity: How do you respond to this situation? What responsibilities do you have to your team, your boss, and the client? How will you balance these? Are the team’s engineers right to be concerned about the impact of their satellite within the wider constellation, or is it beyond their scope? Role-play an interaction between you and the engineering team, or between you and your boss.

2. Activity: Life cycle analysis – Research life cycles of satellites and their environmental impact.

3. Discussion and Activity: Debate if, and how, we have obligations to future generations. Is it possible to have a moral contract with a person that may never be born? How do we know that people in the future, will value the same things we do now? Both creating the internet constellation and preventing its implementation seem to potentially benefit future generations. How do we balance these ‘goods’ and make a decision on how to proceed? Who gets to decide?

4. Activity: Anatomy of an internet satellite – use the Anatomy of an AI case study as an example of a tether map, showing the inputs and outputs of a device. Create a tether map showing the anatomy of an internet satellite.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

Authors: Professor Sarah Hitt SFHEA (NMITE); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).

Topic: Trade-offs in the energy transition.

Engineering disciplines: Chemical engineering, Electrical engineering, Energy.

Ethical issues: Sustainability, Honesty, Respect for the environment, Public good.

Professional situations: Communication, Bribery, Working cultures.

Educational level: Intermediate.

Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to consider, and respond to, a problem in a fair and responsible way.

 

Learning and teaching notes:

This case requires an engineer with strong convictions about sustainable energy to make a decision about whether or not to take a lucrative contract from the oil industry. Situated in Algeria, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations. The engineer’s own financial wellbeing is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about the environment and its connection to human life and services.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired. To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read the following academic articles: ‘Environmental ethics: An overview’ or ‘Mean or Green: Which values can promote stable pro-environmental behavior?’

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

You are an electrical engineer who had a three-year contract with a charity in Algeria to install solar systems on remote houses and farms that were not yet connected to the grid. The charity’s project came to an end and you have set up your own company to continue the work. It has been difficult raising money from investors to fund the project and the fledgling business is in debt. It is doubtful that your company will survive for much longer without a high-profit project.

During your time in Algeria, you have made many local and regional contacts in the energy industry. Through one of these contacts, you learn of an energy company operating a large oil field in the region that is looking to convert to solar energy to power its injection pumping, monitoring, and control systems. In doing so, the oil field will eliminate its dependency on coal-fired electricity, increasing production while boosting the company’s environmental credentials. It also hopes to make use of a governmental tax credit for businesses that make such solar conversions.

 

Optional STOP for questions and activities:

1. Discussion: What is your initial reaction to using solar energy for oil and gas production? What might your initial reaction reveal to you about your own perspectives and values?

2. Discussion and activity: List the potential benefits and risks to implementing this technology. Are these benefits and risks the same no matter which country they are implemented in?

3. Activity: Research the trend for using solar energy in oil and gas production. Which companies are promoting it and which countries are using this technology?

4. Discussion and activity related to optional pre-readings: Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer.

 

Dilemma – Part one:

The following week you receive a phone call in your home office. It is a representative of the energy company named Sami. He asks you to bid for the solar installation contract for the oilfield. At first you are reluctant, it doesn’t seem right to use solar power to extract fuel that will contribute to the ongoing climate emergency. You explain your hesitation, saying “I got into the solar business because I believe we have a responsibility to future generations to develop sustainable energy.” Sami laughs and says “While you’re busy helping people who don’t exist yet, I’m trying to provide energy to the people who need it now. Surely we have a responsibility to them too?”

Sami then quotes a figure that the company is willing to pay you for the project work. You are taken aback at how large it is – the profit made on this contract would be enough to pay off your debts and give your business financial security moving forward. Still, you hesitate, telling Sami you need some time to think it over. He agrees and persuades you to attend dinner with him and his family later that week.

 

Optional STOP for questions and activities:

1. Discussion: Have you done anything wrong by accepting Sami’s dinner invitation?

2. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Like Sami, some people find that our obligation is greater to people who exist at this moment, not to those that don’t yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now?

3. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. [use the Mapping actors and processes article to help with this activity].

4. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action.

5. Activity: Undertake technical calculations in the areas of chemical and / or electrical engineering related to carbon offset and solar installations.

 

Dilemma – Part two:

When you arrive at Sami’s house for dinner you are surprised to find you aren’t the only guest. Leila, a finance manager at the oil company is also present. During the meal, she suggests they are considering investing in your business. “After all,” she points out, “many of our employees and their families could really use solar at their homes. We have even decided to subsidise the installation as a benefit to them.”

You are impressed by the oil company’s commitment to their workers and this would also guarantee you an income stream for 3-5 years. Of course, to guarantee the investment in your company, you will have to agree to undertake the oil field installation. You comment to Leila and Sami that it feels strange to be having these formal discussions over a family meal. “This is how we do business here,” says Sami. “You become part of our family too.”

 

Optional STOP for questions and activities:

1. Discussion: Do you accept the contract to complete the installation? Do you accept the investment in your company? Why, or why not?

2. Discussion: Is this bribery? Why, or why not?

3. Activity: Role-play the conversation between Sami, Leila, and the engineer.

4. Activity: Use heuristics to analyse possible courses of action. One heuristic is the Environmental ethics decision making guide. Another is the 7-step guide to ethical decision-making.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a checklist of things for university departments to consider when proposing to get involved in degree apprenticeships.  It’s still evolving so please do contact us if you have experience or advice you would like to add.

 

Funding arrangements

There are two crucial differences in the funding arrangements for apprenticeships compared to conventional degree courses.  Firstly the body responsible for the funding is the Skills Funding Agency or SFA rather than HEFCE, and secondly with the contractual arrangements with the employer rather than the student as the primary customer (the university is essentially a contracted supplier of education services to the employer under the apprenticeship model).  The government also pays a contribution towards the cost to a pre-agreed maximum sum defined at the point of approval with the SFA.   These different funding mechanisms have a very different set of terminology and processes than those which universities are more commonly familiar.

An HEI needs to (or apply to) be included on the Skills Funding Agency’s Register of Training Organisations (ROTO).  SFA will announce when ROTO is open to new applicants.  In addition to inclusion on ROTO an HEI will until the introduction of the Apprenticeship levy need to secure an SFA ‘allocation’ to claim funding to deliver Degree Apprenticeships.  SFA has in the last 15 months run two procurement rounds opening ROTO to HEIs and inviting HEIs to apply for an allocation.  HEIs that are not on ROTO and do not have an allocation should prepare for forthcoming procurement rounds.   HEIs not on ROTO may also want to consider how they can deliver Higher and Degree Apprenticeships with an FEC that is on ROTO and has an allocation.

In summary, to deliver a higher apprenticeship an HEI must be either:

Any HEI who already holds an SFA funding agreement which contains an apprenticeships allocation can go ahead and deliver higher and degree apprenticeships.

For HEIs who do not hold an existing contract to deliver apprenticeships with the SFA, the SFA ran its first expression of interest (EOI) round for HEIs with a clear plan for higher and degree apprenticeship delivery as part of their offer to employers in March 2016; this complements the additional £13m which government allocated to further education institutions (FEIs) in late 2014 to expand their higher apprenticeship provision. Further information is available by registering on the SFA’s procurement portal.

https://www.gov.uk/guidance/skills-funding-register-for-opportunities-to-tender

HEIs may deliver the whole apprenticeship directly or, act as the lead apprenticeship provider, sharing the delivery by subcontracting with other HEIs or FEIs.

The SFA is also offering automatic entry onto the ROTO to HEIs meeting specific criteria.

  1. Those in receipt of direct public grants for HE.
  2. Those including institutes of the University of London.
  3. Those who have the right to award one or more types of UK degree
  4. Those who have not had any material concerns raised as part of the HEFCE process of financial risk assessment.

Funding

The standard undergraduate fee is £9k per annum at present. This may of course be varied in the contract with the employer, by agreement. The employer is liable for the course fees (not the student/apprentice). HEFCE have also stated that the higher cost subject premium will be available for eligible subjects (as for standard degree programmes).

In the funding model under trial for apprenticeship standards during 2014 to 2015 and 2015 to 2016, the government contributes two-thirds of the total agreed price, up to a cap, with employers contributing the other third in cash, all paid to the lead provider in a payment schedule agreed with the employer.

Funding is quite different from standard degree programmes.  It is earned against actual activity.  All apprentices must have an Individual Learner Record (ILR) file. Payments are earned by the HEI by confirming through the apprentice’s ILR record that they have received the latest employer one-third payment against their agreed payment schedule. ILR completion triggers the government’s two-thirds payment.

Development funding

The Department for Business, Innovation and Skills has also recently announced the Degree Apprenticeship Development Fund. The fund will provide £8 million starting in academic year 2016/17 to help universities and colleges work with employers to develop new degree apprenticeships ready for delivery from academic year 2017/18. The Skills Funding Agency will receive a further £2 million to encourage more learners to take up degree apprenticeships. Queries about how to apply for funding can be sent to: degreeapprenticeships@hefce.ac.uk.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a checklist of things for university departments to consider when proposing to get involved in degree apprenticeships.  It’s still evolving so please do contact us if you have experience or advice you would like to add.

 

Schedules of teaching and learning need to be agreed. These can take various forms:

There may also be periods of study on employers’ premises and at other institutions. These again have to be agreed and contracted.

Methods of grading, assessment and feedback need to be agreed and these will then be adhered to, in order to satisfy the exam board and other university regulations. The structures of assessment (presentations, experiments, lab work, practicals, as well as essays and exams) have also to be integrated throughout the programmes.

Agreeing employer-led content is vital from the above points of view. In employer led content, the university is required to have a position of ‘internal external examiner’ and in some universities this may mean that designated employer staff are given the status of adjunct employee at the university in question.

Examining employer-led content and the means by which this is done has to be agreed and contracted. It is essential to recognise that this can lead to conflicts, where for example:

University staff will therefore need to remain in close contact and regularly visiting employers’ premises in order that neither of these positions occurs. Where there are disputes over standards, there needs to be an agreed means of arbitration and reconciliation of grades and work.

Student registration is an issue because of the UK UCAS regulations that govern undergraduate admissions to programmes at this level. This may have to be agreed as a formality; if students are not to apply via UCAS then an alternative is required, that is agreed and contracted. There may be disputes also over:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a checklist of things for university departments to consider when proposing to get involved in degree apprenticeships.  It’s still evolving so please do contact us if you have experience or advice you would like to add.

 

The length of contract will vary according to particular circumstances. It appears unlikely that any contract of less than 5-6 years is going to deliver the benefits sought by all. Universities need to have the stability. Employers do not want to give the impression that they are dipping into and out of the latest ideas. This kind of stability also informs the wider branding, confidence and substantive development that this initiative needs in the eyes of all concerned – and especially, as above, students and their advisors.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website