Activity: Prompts to facilitate discussion activities.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Case Summary – Discussion prompts:
1. Professional Contexts. The question listed in the case study is meant to elicit students’ consideration of working as an engineer in a professional culture different from the one they are familiar with. To answer this question, educators could have students reflect quietly and make notes for a few minutes, or discuss with a partner before sharing with the class. If students are hesitant to engage in questions of cultural differences, they could be prompted to examine why they have that discomfort. Educators might also want to prepare for conversations like this by reviewing the guidance article Tackling tough topics in discussion.
2. Meeting Preparation. The question listed in the case study focuses on the choices that engineers make when presenting data; that is, should they show managers a complete or incomplete picture of the situation in question? What implications does that have in terms of managers’ ability to make decisions? The question also is meant to help students consider aspects of professional communication. Students could be tasked with actually doing a version of the meeting preparation as pairs in the classroom, or they could do this as a reflective exercise as well.
Dilemma – Part one – Discussion prompts:
1. Personal and Professional Responsibility. Here, students are being asked to explore their own personal responses to the informal housing situation outside the factory and interrogate whether or not that response could or should affect their professional actions. The question also investigates the scope of professional responsibility, and at what point an engineer has fulfilled this or fallen short. To engage students in this discussion, educators could split the class in half, with half the room discussing the position that Yasin does NOT have a responsibility, and why; and the other half discussing the position that Yasin DOES have a responsibility and why. Alternatively, students could be asked to write down their own answer to this question along with reasoning why or why not, and then the educator could ask volunteers to share responses in order to open up the discussion.
2. Economic Contexts. Students can use this question to expand on question 1 of this section, and in fact they may already have drawn cost into their reasoning. One way to open up this discussion is to think of the broader costs, meaning: is there a social or environmental cost that the company externalises through its polluting activities? Another way into the question is to go back to the question of responsibility, because engineers are routinely responsible for making budgets and judgements related to costs. Through this financial activity, are they able to advocate for more ethical practices, and should they?
Dilemma – Part two – Discussion prompts
1. Job Offer. This question is meant to point to the issue of bribery, and have students wrestle with the situations presented in the case. Educators could have students review various definitions of bribery, including the one in the RAEng’s Statement of Ethical Principles. They could compare this with the Engineering Council of India’s Code of Ethics. What do these two codes say about Yasin’s case? If they don’t give clear guidance, what should Yasin do? Students could discuss why or why not they think this is bribery in small or large groups, and could debate what Yasin’s action should be and why.
2. External Reporting. This question addresses whistleblowing, and what responsibilities engineers have for reporting unethical actions to professional or legal entities. Students could be asked individually to answer the question and give reasons why, based on the codes of ethics relevant to the case. They could also answer the question based on their own personal values. Then they could discuss their responses in small groups and interrogate whether or not the codes conflict with their values. Educators could at this point raise the question of whether or not there may be different cultural expectations in this area that Yasin might have to navigate, and if so, if this should make any difference to the action he should take. Students could also be asked to chart out the personal and professional repercussions Yasin could experience for either action. This discussion could be good preparation for activity #5, the debate.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Do engineers have a responsibility to warn the public if there is a chance of risk?
Author: Cortney Holles (Colorado School of Mines, USA).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 1 section of this case: Debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties (“of matters . . . which are of potential detriment to others who may be adversely affected by them” – The Society of Construction Law’s Statement of Ethical Principles).
After introducing or studying the Glass Safety case, teachers may want students to dig deeper into the ethical issues in the case through a debate. The resources and lesson plan below guide teachers through this lesson.
1. Introduce the debate assignment:
Students will debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties. Build in some time for students to prepare their arguments in small groups (either during class or as a homework assignment). Create small groups of 2-5 students that can develop positions on each of the following positions on the question of the debate:
Does Krystyna have a responsibility to warn Sir Robert or future residents of the buildings about the glass?
YES, according to the Society of Construction Laws (or other professional society’s) ethical codes or standards;
YES, according to a personal and ethical obligation of Krystyna as a young professional;
NO, according to the standards of the company and expectations by superiors and/or professional norms or standards;
NO, according to personal or ethical obligations and needs of Krystyna as a young professional.
2. Supporting the arguments in the debate with texts:
Provide students with resources that offer support for the different positions in the debate, listed below. Perhaps you have assigned readings in the class they can be asked to reference for support in the debate. Teachers could also assign students to conduct independent research on these stakeholders and positions if that matches the goals of the class.
In a previous class session or at the start of the debate, ask students to record or anonymously report their personal response to the debate question for comparison and discussion after the debate. These responses could serve as a basis for personal reflection, a progress check, or even as a component of an assessment. You could ask them to report on this question in several different ways: Do engineers have a responsibility to warn? When do engineers have a responsibility to warn? Why do engineers have a responsibility to warn? Who do engineers have a responsibility to warn?
Give students time to talk in their groups before the in-class debate begins so that they can compare notes on their argument and evidence/reasoning, and decide who will speak. You may want to direct how students in the groups will divide the speaking responsibilities for their position, especially for time management or participation according to the limitations or requirements of your teaching situation.
Consider what amount of time you have for the debate and provide students with a structure with time limits for each argument and response. For example, let each of the four positions present their case for 2-3 minutes, followed by a minute for each other position to offer rebuttals and ask questions of that position.
Teachers could also give themselves a minute or two to ask questions or offer insights or ethical issues the groups may have missed in between. At the least, the teacher should monitor the time, provide transitions between positions, and moderate the debate.
As a comprehension and application activity during the debate, you could ask students to take notes on the other positions’ presentations as they listen – you might ask them to restate the positions, identify the underlying values presented, or describe which ethical issues or stakeholders they find most compelling for each position. This could also be done via a “live blog”, or via a role play scenario where other students act as journalists reporting on what is happening in the debate.
After all sides have been presented, allow time for students to revisit their original positions on the debate. They could cast their votes on a web platform anonymously or you can collect paper ballots. In class or as homework, students could reflect on what arguments and values impacted their personal stance on the debate.
Take time to debrief the positions and the ethical decisions presented at the end of this class session or in a subsequent class session. Teachers could ask students to discuss how they navigated conflicting values and needs of stakeholders and which ethical principles were most compelling to them.
Key concepts this debate can cover:
environmental ethics concepts
power dynamics between managers, clients, and engineers
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Diana Martin (Eindhoven University of Technology); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Topic: Participatory approaches for engaging with a local community about the development of risky technologies.
Engineering disciplines: Nuclear engineering; Energy; Chemical engineering.
Ethical issues: Corporate Social Responsibility; Risk; Accountability; Respect for the Environment.
Professional situations: Conflicts of interest; Public health and safety; Communication.
Educational level: Advanced.
Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.
Learning and teaching notes:
This case study involves an early career engineer tasked with leading the development of plans for the construction of the first nuclear plant in a region. The case can be customised by instructors when specifying the name of the region, as to whether the location of the case study corresponds to the location of the educational institution or if a more remote context is preferred. The case incorporates several components, including stakeholder mapping, participatory methods for assessing risk perception and community engagement, qualitative risk analysis, and policy-making.
The case study asks students to identify and define an open-ended risk problem in engineering and develop a socially acceptable solution, on the basis of limited and possibly contradictory information and differing perspectives. Additionally, students can gain awareness of broader responsibilitiesof engineers in the development of risky technologies, as well as the role of engineers in public debates and community engagement related to the adoption or development of risky technologies.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
apply their ethical judgement to a case study focused on the adoption of a risky technology;
understand the national and supranational policy context related to the development of novel technologies;
analyse engineering risks related to the development of a novel technology;
investigate the risk perception of the population about the development and operation of a risky technology;
debate how to factor risks as well as community preferences and risk perceptions into decision-making related to the development and operation of a risky technology;
identify the key stakeholder groups in the adoption and operation of risky technology in a local and national setting;
reflect on how risks may differ for different demographic groups and identify the stakeholder groups most vulnerable to the negative effects of risky technologies;
propose methods for communicating and engaging with stakeholders during the adoption, development and operation stages of a risky technology.
Teachers have the opportunity to:
introduce a range of ethical considerations related to risk, risk perception and responsibility;
create a theoretical context for applying methods for qualitative risk analysis, stakeholder mapping and engagement;
provide an opportunity for group reflection and debate on the topic of a contested and polarising technology;
present the link between novel technologies and national or supranational targets and plans towards climate neutrality;
adapt the range and complexity of issues to the characteristics and levels of the class.
You are an early career engineer working in the civil nuclear industry for Ultra Nuclear. This is a major company overseeing the construction of new power stations that has a strong reputation as a leader in the field with no controversies associated with its activity. Indeed, you have been impressed with Ultra Nuclear’s vision that the transition to using more nuclear energy can significantly reduce carbon emissions, and their development of next-generation nuclear technologies. After two years of working on the strictly technical side of the business, you have been promoted to a project manager role which requires you to do more public engagement. Your manager has assigned your first major project which involves making the plans for the development of a new power plant.
Optional STOP for questions and activities:
1. Activity:Societal context – What is the context in which Ultra Nuclear operates? Identify the national and supranational policies and regulation in your country related to the adoption of nuclear energy. Reflect on the broader rationale given for the adoption of nuclear energy. Research the history of nuclear technological developments (including opposition and failures) in your country. When tracing the context, you may consider:
What is your country’s policy on nuclear energy?
What are your country’s main sources of energy?
What are your country’s targets for climate neutrality?
Will this target be reached?
What is the current and projected level of emissions?
How do these national targets fit with EU targets or targets of major economies?
2. Discussion: Personal values – What is your initial position on the adoption of nuclear energy? What are the advantages and disadvantages that you see for the adoption of nuclear energy in your country? What alternatives to nuclear energy do you deem more suitable and why?
3. Discussion: Risk perception – How do you perceive the risk of nuclear energy? How do your family and friends see this risk? How is nuclear energy portrayed in the media? Do you see any differences in how people around you see these risks? Why do you think this is so?
4. Activity: Risk mapping – Using a qualitative risk matrix, map the risks of a nuclear power plant.
Dilemma – Part two:
As it happens, this will be the first power plant established in the region where you were born, and your manager counts on your knowledge of the local community in addition to your technical expertise. To complete your project successfully, you are expected to ensure community approval for the new nuclear power plant. In order to do this, you will have to do some research to understand different stakeholders and their positions.
Optional STOP for questions and activities:
1. Activity:Stakeholder mapping – Who are all the groups that are involved in the scenario?
1.a. Activity:Read the article bySven Ove Hansson, which puts forward a method for categorising stakeholders as risk-exposed, beneficiaries, or decision-makers (including overlaps of the three categories). Place each stakeholder group in one of these categories.
1.b. Discussion:Why are some groups risk-exposed, others beneficiaries, and others decision-makers? Why is it undesirable to have stakeholder groups solely in one of the categories?
1.c. Discussion: What needs to change for some stakeholder groups to be not only in the category of risk-exposed, but also in the category of beneficiaries or decision-makers?
2. Activity: Stakeholder mapping– How does each stakeholder group view nuclear energy? For each stakeholder group identified, research the arguments they put forward, their positions and preferences in regard to the adoption of nuclear energy. In addition to the stakeholder groups previously identified, you may consider:
The Green party
Other political parties
Member of the public
Local residents
Advocates of other sources of energy
Environmental groups and activists (such as Extinction Rebellion, including local chapters, if they exist)
Human rights activists
Power plant workers
The Union of Concerned Scientists
Climate change deniers
The Ultra Nuclear company
Any other stakeholder?
For your research, you may consult the webpage of the stakeholder group (if it exists); any manifesto they present; mass media features (including interviews, podcasts, news items or editorials); flyers and posters.
3. Discussion: How convincing are these arguments according to you? Do you see any contradictions between the arguments put forward by different groups?
3.a. Discussion: Which group relies most on empirical data when presenting their position? Which stakeholders take the most extreme positions, according to you (radical either against or for nuclear energy), and why do you think this is so?
3.b. Discussion: In groups of five students, rank the stakeholders from those that provide the most convincing to the least convincing arguments, then discuss these rankings in plenary.
3.c. Roleplay (with students divided into groups): Each group is assigned a stakeholder, and gets to prepare and make the case for why their group is right, based on the empirical data and position put forward publicly by the group. The other groups grade on different criteria for how convincing the group is (such as 1. reliability of data, 2. rhetoric, 3. soundness of argument).
4. Guest speaker activity:The instructor can invite as a guest speaker a representative of one of the stakeholder groups to talk with students about the theme of nuclear energy. Students can prepare a written reflection after the session on the topic of “What I learned about risks from the guest speaker” or “What I learned about my responsibility as a future engineer in regard to the adoption of nuclear energy.”
Dilemma – Part three:
You arrive at the site of the intended power plant. You are received with mixed emotions. Although you are well liked and have many friends and relatives here, you are also warned that some residents are against the plans for the development of nuclear energy in the area. Several people with whom you’ve had informal chats have significant concerns about the power plant, and whether their health or safety will be negatively affected. At the same time, many people from the surrounding area do not yet know anything about the plans for building the nuclear site. In addition, in the immediate vicinity of the power plant site, the community hosts a small number of refugees who, having just arrived, are yet to be proficient in the language, and whose communication relies mostly on a translator. How will you ensure that this community is well informed of the plans for developing the power plant in their region and approves the plans of Ultra Nuclear? How will you engage with the community and towards what aims?
Optional STOP for questions and activities:
1. Activity: Research empirical data on the risk awareness and risk perception of public attitudes about nuclear energy, and sum up any findings that you find interesting or relevant for the case study.
1.a. Discussion: According to you, is risk awareness and perception the same thing? How do they differ as concepts? Considering the research you just did, is there a relation between people’s risk awareness and perception? What does this imply?
1.b Discussion: Do you identify any differences in the risk perception of the public (based on gender, age, geographical location, educational level)? Why do you think this is so?
1.c. Discussion: Does the public see the same risks about nuclear energy as technical experts do? Why is this so?
The entire island of Ireland, comprising The Republic of Ireland and Northern Ireland (part of the UK), has never produced any electricity from nuclear power stations. Previous plans have been opposed as early as the 1970s through large public rallies, concerts, and demonstrations against the production of nuclear energy on the island. At the time, Carnsore Point was proposed as a site for the development of four nuclear reactors by the Electricity Supply Board. Public opposition led to the cancelling of this nuclear project and its replacement with a coal burning power station at Moneypoint. Since the 2000s there has been a renewed interest in the possibilities for producing nuclear energy on the island, in response to climate change and the need to ensure energy security. Surveys for identifying public acceptance and national forums have been proposed as ways to identify current perceptions and prospects for the development of nuclear energy. Nevertheless, nuclear energy in the Republic of Ireland is still prohibited by law, through the Electricity Regulation Act (1999). Nuclear energy is currently a contentious topic of debate, with many involved parties holding varying positions and arguments.
Example of stakeholders: The Irish government; the UK government; political parties; electricity supply board (state owned electricity company); BENE – Better Environment with Nuclear Energy (lobby group); Friends of the Irish Environment (environmental group), Friends of the Earth – Ireland (environmental group); The Union of Concerned Scientists; Wind Aware (lobby group); local community (specified further based on demographic characteristics, such as the Traveller community); scientists in the National Centre for Plasma Science & Technology at Dublin City University (university researchers).
Sources used for the description of the roles: Policy documents; official websites; institutional or group manifestos; news articles, editorials and other appearances in the media.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Mr Neil Rogers (Independent Scholar); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Topic: Suitable technology for developing countries.
Ethical issues: Sustainability; Honesty; Integrity; Public good.
Professional situations: Communication; Bribery; Working cultures; Honesty; Transparency.
Educational level: Advanced.
Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way.
Learning and teaching notes:
This case study requires a newly appointed engineer to make a decision about whether or not to sell unsuitable equipment to a developing country. Situated in Ghana, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations.
The engineer’s own job security is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about honesty, integrity, the environment and its connection to human life and services.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
This case study is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
analyse value assumptions related to environmental ethics;
consider whether decisions made by an engineer are ethically acceptable or unacceptable;
undertake cost-benefit and value trade-off analysis in the context of an ethical dilemma;
practise argument and reasoning related to an ethical dilemma;
use heuristics to help ethical decision-making.
Teachers have the opportunity to:
introduce concepts related to values in environmental ethics;
informally evaluate students’ argument and reasoning skills;
integrate technical content in the areas of electrical or mechanical engineering related to remote water supplies;
highlight heuristics as tools for ethical decision-making;
address cultural and professional norms in different countries.
To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read, the academic articles found in the resource list: ‘Environmental ethics: An overview’ or ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’
Dilemma – Part one:
You have just graduated from university as a mechanical engineer and you are starting your first job as a sales engineer for JCD Engineering, a company that designs and manufactures pumping equipment. JCD has recently expanded operations in sub-Saharan Africa and you took the job because you were excited for the opportunity to travel and work in a country and culture different from your own.
For your first project, you have been asked to put together quite a large bid for a water pumping aid project for some farms in northern Ghana. It just so happens that there is a trade show being held in Accra, so your manager has suggested you attend the show with a colleague to help on the company stand and combine this with a site visit to where the pumping equipment is to be installed. A representative from the aid organisation agrees to drive you to where the project will be sited before the trade show takes place.
On arrival in Ghana, you are met by the rep to take you on your journey up country. This is your first visit to a developing country; you are excited, a little apprehensive and quite surprised by disorganisation at the airport, poor infrastructure, and obvious poverty in the villages up country. Still, you immediately see the difference that water pump installation could make to improve quality of life in villages. After two days of travelling, you eventually arrive at the village where the project JCD is bidding on will be situated. You are surprised to hear that the aid rep is quite cynical about engineering aid projects from the UK; this is because many have failed and she hopes that this won’t be another one. She is very busy and leaves you with local school teacher Amadou, who will host you during your stay and act as your interpreter.
The local chief, farmers, and their families are very excited to see you and you are taken aback by the lavish food, dancing, and reception that they have laid on especially for you. You exchange social media contacts with Amadou, who you understand has been instrumental in winning this contract. You get excited about working with Amadou on this project and the prospect of improving the livelihoods of the locals with better access to clean water.
After some hours you get shown some of the existing pumping equipment, but you don’t recognise it and it has obviously been left idle for some time and looks to be in a poor state. The farmers appear confused and are surprised that you aren’t familiar with the pumps. They explain that the equipment is from China and was working well for many years. They understand how it operates and have even managed to repair some of the fittings in local workshops, but there are now key parts they have been waiting many months for and they assume that you have brought them with you.
You try to explain through Amadou that there has been some misunderstanding and that you don’t have the spares but will be quoting for replacement equipment from your company in the UK. This is not what the farmers want to hear and the mood changes. They have spent many years getting to know this kit and now they can even locally fabricate some of the parts. Why would you change it all now? The farmers start shouting and Amadou takes you to one side and suggests you should respond by offering them something in return.
What should you offer them?
Optional STOP for questions and activities:
1. Discussion: What is your initial reaction to the miscommunication? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
2. Discussion: What is your initial reaction to the reception given to you? Does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
3. Activity: Technical integration – undertake an electrical engineering technical activity related to water pumps and their power consumption against flow rates and heads.
4. Discussion and activity: List the potential benefits and risks to implementing water pump technology compared to traditional methods of water collection. Are these benefits and risks the same no matter which country they are implemented in?
5. Activity: Research water pumping in developing countries. What are the main technical and logistical issues with this technology? Are there any cultural issues to consider?
6. Activity: This activity is related to optional pre-readings on environmental ethics. Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer.
Anthropocentrism versus Biocentrism: are humans above or a part of the environment?
Intrinsic versus Instrumental: is nature inherently valuable or only valuable because of the use humans can make of it?
Holism versus Individualism: are certain elements of the environment more valuable than others, or does every part of the ecosystem have equal value?
Egoism versus Altruism: do we care about the environment as a result of what we gain from it, or regardless of human benefits?
Obligations to future generations: do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change?
Dilemma – Part two:
You reluctantly backtrack a little on what you said earlier and convince Amadou and the farmers that you will be able to sort something out. Back in Accra at the local trade show, you manage to source only a few spares as a quick fix since you had to pay for them yourself without your colleague noticing. The aid representative agrees to take them up country next time she travels.
You arrive back in the UK and begin to prepare the JCD bid. You are aware that the equipment from your company is very different to the Chinese kit that the farmers already have. It is designed to run on a different voltage and uses different pipe gauges throughout for the actual water pumping. The locally fabricated spares will definitely not connect to the JCD components you will be specifying.
You voice your concerns to your manager about the local situation but your manager insists that it is not your problem and the bid will not win if it is not competitive. Sales in your department are not good at the moment, and after all you are a new employee on probation and you want to make a good first impression.
Having further investigated some comments Amadou made on the trip, you discover that the water table has dropped by several metres in this part of Ghana over the last five years and you realise that the equipment originally quoted for might not even be up to the job!
Optional STOP for questions and activities:
1. Discussion: Should you disclose these newly discovered concerns about the water table height or keep quiet?
2. Discussion: Do you continue to submit the bid for equipment that you know may be totally inappropriate? Why, or why not?
3. Activity: Role-play a conversation between the engineer and the JCD manager about the issues that have been discovered.
4. Discussion and activity: Research levels of the water table in West Africa and how they have changed over the last 50 years. Is there a link here to climate change? What other factors may be involved?
5. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Some people find that our obligation is greater to people who exist at this moment than to those that don’t yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now?
6. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. (Use the Mapping actors and processes article to help with this activity.)
7. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
This enhancement is for an activity found in the Dilemma Part two section. It is based on the work done by Kate Crawford and Vladan Joler and published by the SHARE Lab of the SHARE Foundation and the AI Now Institute of New York University, which investigates the “anatomy” of an Amazon Echo device in order to “understand and govern the technical infrastructures” of complex devices. Educators should review the Anatomy of an AI website to see the map and the complementary discussion in order to prepare and to get further ideas. This activity is fundamentally focused on developing systems thinking, a competency viewed as essential in sustainability that also has many ethical implications. Systems thinking is also an AHEP outcome (area 6). The activity could also be given a supply chain emphasis.
This could work as either an in-class activity that would likely take an entire hour or more, or it could be a homework assignment or a combination of the two. It could easily be integrated with technical learning. The activity is presented in parts; educators can choose which parts to use or focus on.
1. What are the components needed to make an internet satellite functional?:
First, students can be asked to brainstorm what they think the various components of an internet satellite are without using the internet to help them. This can include electrical, mechanical, and computing parts.
Next, students can be asked to brainstorm what resources are needed for a satellite to be launched into orbit. This could include everything from human resources to rocket fuel to the concrete that paves the launch pad. Each of those resources also has inputs, from chemical processing facilities to electricity generation and so forth.
Next, students can be asked to brainstorm what systems are required to keep the internet satellite operational throughout its time in orbit. This can include systems related to the internet itself, but also things like power and maintenance.
Finally, students can be asked to brainstorm what resources will be needed to manage the satellite’s end of life.
Small groups of students could each be given a whiteboard to make a tether diagram showing how all these components connect, and to try to determine the path dependencies between all of them.
To emphasise ethics explicitly, educators could ask students to imagine where within the tether diagram there could be ethical conflicts or dilemmas and why. Additionally, students could reflect on how changing one part of the system in the satellite would affect other parts of the system.
2. How and where are those components made?:
In this portion of the activity, students can research where all the parts of those components and systems come from – including metals, plastics, glass, etc. They should also research how and where the elements making up those parts are made – mines, factories, chemical plants, etc. – and how they are then shipped to where they are assembled and the corresponding inputs/outputs of that process.
Students could make a physical map of the globe to show where the raw materials come from and where they “travel” on their path to becoming a part of the internet satellite system.
To emphasise ethics explicitly, educators could ask students to imagine where within the resources map there could be ethical conflicts or dilemmas and why, and what the sustainability implications are of materials sourcing.
3. The anatomy of data:
In this portion of the activity, students can research how the internet provides access to and stores data, and the physical infrastructures required to do so. This includes data centres, fibre optic cables, energy, and human labour. Whereas internet service is often quite localised (for instance, students may be able to see 5G masts or the service vans of their internet service provider), in the case of internet satellites it is very distant and therefore often “invisible”.
To emphasise ethics explicitly, educators could ask students to debate the equity and fairness of spreading the supply and delivery of these systems beyond the area in which they are used. In the case of internet satellites specifically, this includes space and the notion of space as a common resource for all. This relates to other questions and activities presented in the case study.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: An ethical evaluation of the technology and its impacts.
Author: Dr Fiona Truscott (UCL).
Overview:
This enhancement is for an activity found in the Dilemma Part one, Point 1 section of the case: “Identify different aspects of the production process where ethical concerns may arise, from production to delivery to consumption.” Below are prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
In this group activity, students will act as consultants brought in by the Power to Food team to create an ethical evaluation of the technology and any impacts it may have throughout its lifetime. The aim here is for students to work together to discuss the potential ethical issues at each stage of the production process as well as thinking about how they might be addressed. Groups will need to do research, either in class or at home. Depending on the timeframe you may want to give them a starting point and some basic information found in the case study’s learning and teaching resources.
Suggested timeline:
Introduce students to the Power to Food case study (this could be pre-reading) and what they will be doing in their teams.
Some facilitated workshop time/space for Q&As; this may be more or less open-ended depending on where your students are in their programme. Depending on time, you may want to centre workshops around harms or values or a particular stage of the production process. You can use the questions below to structure a discussion session or get teams to look at alternative viewpoints.
Teams present/submit their work.
Team briefing:
You are a team of consultants brought in by the company who has developed Power to Food technology. Before they go to market they want to understand the ethical issues that may arise from the technology and address them if possible. They want you to look at the process as a whole and identify any ethical issues that might come up. They also want to know how easy these issues might be to address and want you to suggest potential ways to address them. You will need to provide the company with a briefing on your findings.
Tools:
It’s useful to give teams some frameworks through which they can do an analysis of the production process. One of those is to discuss who is harmed by the process at each stage. This is harm in the widest possible sense: physical, environment, political, reputational etc. What or who could be impacted and how? Another framework is the values of the people or entities involved in the process: what are they trying to achieve or what do they want and are any of these in conflict? Topics such as sustainability and accessibility also have an ethical dimension, and using these as a lens can help students to look at the problem from a different viewpoint.
Prompts for questions:
These are questions that you can get students to answer in class or suggest that they cover in an assessment. This could also be information you give the team so that they can use it as a foundation.
Identify the different stages of the Power to Food production process and the contexts that they happen in.
What harms might happen in each stage? Who or what might be harmed, how likely is it and what impact would it have?
What values might each person or entity that is involved with each have? What would they want and what are their responsibilities? Is there conflict between these?
Is there anything outside of harms and values that might cause an ethical issue?
What happens if you use a sustainability lens? Or a risk lens? What about accessibility?
Think about how you might address these ethical issues. Sort your identified ethical issues out into those that might be easy to address and those that aren’t.
Why are some easier than others to address?
Assessment:
This group activity lends itself to a few different assessment formats, depending on what fits with your programme and timeframe. The two key things to assess are whether students can understand and identify ethical issues across the whole Power to Food production process and whether they can discuss ways to address these issues and the complexities that can be involved in addressing these issues. These two things can be assessed separately; for example through a written report where teams discuss the potential issues and a presentation where they talk about how they might address these issues. Or one assessment can cover both topics. This can be a written report, a live or recorded presentation, a video, podcast or a poster. Teams being able to see other teams’ contributions is both a good way of getting them to discuss different viewpoints and makes for a fun session. You can get teams to present their final work or a draft to each other.
Depending on the timeframe, you may also want to build in some skills assessment too. The AAC&U’s VALUE rubrics are a great starting point for assessing skills and IPAC is a good tool for assessing teamwork via peer assessment.
Understanding and identification of ethics issues across the whole Power to Food production process
Has identified and understood context specific ethical issues across the production process. May have shown some understanding of how issues may impact on each other.
Has identified and understood broad/general ethical issues around production processes but hasn’t linked much to the specific context of the case study. Some stages may be more detailed than others.
Has not identified many or any ethical issues and seems to have not understood what we’re looking for.
Discussing ways to address these issues and the complexities that can be involved
Has identified context specific ways to address the ethical issues raised and has understood the potential complexities of addressing those ethical issues.
Has identified broad/general ways to address the ethical issues raised and made some reference to differing levels of complexity in addressing ethical issues.
Has not identified many or any ways to address the ethical issues raised and seems to have not understood what we’re looking for.
Communication
Very clear, engaging and easy to understand communication of the ethical issues involved and ways to address them. Right language level for the audience.
Generally understandable but not clear in places or uses the wrong level of language for the audience (assumes too much or not enough prior knowledge).
Difficult to understand the point being made either due to language used or disconnection to the point of the assessment or topic.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Role-play the council meeting, with students playing different characters representing different perspectives.
Author: Cortney Holles (Colorado School of Mines, USA).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 6 section: “Role-play the council meeting, with students playing different characters representing different perspectives.” Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Prompts for questions:
After discussing the case in class, and completing the stakeholder mapping activity (Dilemma Part one, Point 4 – repeated below) from the Water Wars case study, this lesson guides teachers through conducting a role-play of the council meeting scenario.
1. Discuss the stakeholder mapping activity: Who are all the characters in the scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully?
2. To prepare for the council meeting role-play activity, assign students in advance to take on different stakeholder roles (randomly or purposefully), or let them self-assign based on their interests. Roles can include any of the following:
Suggestions from Stakeholder mapping activity:
Data Storage Solutions
Farmers’ union
Local Green party
Local council
Member of the public
Stakeholders who use DSS’s data storage services (such as the local hospital and schools)
Non-human stakeholders – for example, the fish, birds and insects.
Additional stakeholders to consider:
Councillors – you can choose to have them represent different political stances in your area
Environmental representatives or activists – speaking on behalf of the ecosystem and the species within it
Local citizens worried about their water supply
Local citizens in support of DSS and its economic importance in the area
DSS employee representatives – arguing on behalf of the company and their jobs
Farmers who are worried about their crops and the water supply
Clients of DSS who use data storage (hospitals, schools)
Others you or your students want to include (businesses, community groups, local politicians).
3. Before the class session in which the role-play will occur, students should research their stakeholder to get a sense of their values and motivations in regard to the case. Where no information is available, students can imagine the experiences and perspectives of the stakeholder with the goal of articulating what the stakeholder values and what motivates them to come to the council meeting to be heard on this issue. Students should prepare some statements about the stakeholder position on the water use by DSS, what the stakeholder values, and what the stakeholder proposes the solution should be. Students assigned to be council members will prepare for the role-play by learning about the conflict and writing potential questions they would want to ask of the stakeholders representing different views on the conflict.
4. In class, students prepare to role-play the council meeting by first connecting with others in the same stakeholder role (if applicable – you may have few enough students to have only one student assigned to a stakeholder) and deciding who can speak (you may want to require each student to speak or ask that one person be nominated to speak on behalf of the stakeholder group).
5. As the session begins, remind students to jot down notes from the various perspectives’ positions so there can be a debrief conversation at the end. Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the council meeting. If they were a lead member of the council, what solution would they propose or vote for?
6. As the Council Meeting begins, the teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the students representing the Council members. Council members will open the meeting with their description of the matter at hand between DSS and other local parties. They set the tone for the meeting with a call for feedback from the community members. The teacher can help the Council members call up the stakeholders in turn. Each stakeholder group will have a chance to state their argument, values, and reasons for or against DSS’ water use. Each stakeholder will have an opportunity to suggest a proposed solution and Council members can engage in discussion with each stakeholder to clarify anything about their position that was unclear.
7. At the end of the meeting, the council members privately confer and then publicly vote on a resolution for the community. All students, no matter their role, end the class by reflecting on the outcome and their original position on the case. Has anything shifted in their position or rationale after the council meeting? Why or why not?
8. The whole class could then engage in a discussion about the outcome of the council meeting. Teachers could focus on an analysis of how the process went, a discussion about the persuasiveness of different values and positions, and/or an exploration of the internal thinking students went through to arrive at their positions.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Martin Griffin (Knight Piésold Consulting, United Kingdom).
Keywords: Equity; Equality, diversity and inclusion (EDI); Collaboration; Bias; Social responsibility; Design.
Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for.
Premise:
No engineer is an island; it is not good for an engineer to act in isolation. Rather engineers need to be part of a welcoming community in order to thrive. How an engineering professional interacts with either other engineers and non-engineers is essential for building a culture and professional environment of collaboration, creating environments where engineers can create meaningful bonds with one another and feel comfortable communicating openly. This requires recognising and understanding how unconscious bias and privileges can create divides and foster negative professional (toxic) environments, and being committed to establishing standards of conduct for and addressing issues related to EDI. There is a great need to advocate for fellow engineers providing places to belong and empowering them to thrive in their chosen profession and career pathways. This includes people who are part of one or more underrepresented groups that have been historically, persistently, and systemically marginalised in society based on their identity, such as race, colour, religion, marital status, family status, disability, sex, sexual orientation, gender identity, and age.
The Royal Academy of Engineering and EngineeringUK (2018) frequently publish reports on the demographics of engineers and the skills shortage in the workforce. These reports highlight the under-representation of people from ethnic and minority groups, those with a disability or impairment, or those who are LGBTQ+. In addition, the Institute of Engineering and Technology recently reported that only 9% of businesses take particular action to increase underrepresented groups into their workforces.
Engineering and technology are for everyone. It is morally right to ensure that everyone has equal opportunities and by doing so we can improve our world, shape our future, and solve complex global challenges. In order to accomplish these moral imperatives, we need to include a diversity of talent and knowledge. Furthermore, in the UK we still face a nationwide skills shortage threatening our industry. To address this and ensure the sustainability of our industry we must support equal opportunities for all and be truly inclusive.
The three values:
The three values of EDI are timeless and should be embedded into the way that engineering professionals act, starting with recognition that the unfair treatment of others exists. This unfair treatment may take the form of bullying, harassment, discrimination (either direct or indirect), victimisation, microaggressions, gaslighting, bias and inequity. An engineer’s role must also include advocating for the support of others in this regard too. Each of the three values are very different, but all three together are essential to create opportunities for engineers to grow and thrive, and for a productive and creative engineering community to flourish.
Equity encourages fair processes, treatment, and possibilities for everyone, resulting in an equal playing field for all. It acknowledges that oppressive systems have created varied circumstances for different engineers. By valuing equity, engineers must commit to fairly redistributing resources and power to address inequalities that systems have intentionally or unintentionally created, diminishing the impact of such circumstances and ensuring equitable opportunities. Equality relates to ensuring engineers and groups are treated fairly and have access to equal opportunities. Note, it should be emphasised that equity is not the same as equality; in the simplest terms, equality means ‘sameness,’ and equity means ‘fairness’. Thus, equality has become synonymous with ‘levelling the playing field’, whereas equity is synonymous with ‘more for those who need it’.
Diversity refers to how diverse or varied a particular environment is, be it an engineering consultancy, academic funded research team, interdisciplinary joint venture designing as part of a national megaproject, and so on. Diversity involves professional openness and conscientiousness towards diverse social interactions. Therefore, diversity also involves intentional representation and collaboration with others from different demographic characteristics, identities, and differing experiences. Engineers should feel welcome to be their full self without the need to mask, being able to contribute and bring fresh perspectives where they are in attendance.
Inclusion refers to a state of conscious belonging, meaning all are respected, empowered, and valued. Inclusivity should therefore be ingrained in an engineer’s daily operations and surrounding culture, being able to feel comfortable being their authentic selves. Inclusion involves extensive representation across roles, levels (grades) and the aforementioned demographic characteristics, recognising who is and is not in the room and the valuable perspectives and experiences they can bring. Inclusion also relates to ensuring all engineers feel valued and supported, where the benefits of creativity, innovation, decision making and problem solving are realised.
Incorporating EDI in engineering education:
It is not possible to place EDI in a box and open it occasionally such as for annual awareness weeks or as an induction week module. It is a lifestyle, a conscious choice, and it needs to be embedded in an engineer’s values, approach and behaviours. Making engineering EDI an integral part of engineering ethics education will not involve an abstract ethical theory of EDI but rather a case-based approach. The teaching of EDI within engineering ethics through case studies helps students consider their philosophy of technology, recognise the positive and negative impact of technology, imagine ethical conduct, and then apply these insights to engineering situations. Moreover, when similar ethical modules have touched students, they are likely to remember the lessons learned from those cases. Several case studies found in the Ethics Toolkit that reference EDI concerns are listed at the end of this article.
Good contemporary practical examples should be presented alongside case studies to promote and demonstrate why EDI ought to be embedded into a professional engineer’s life. The need to raise awareness, highlightthe issues faced, and accelerate inclusion of Black people is provided in the Hamilton Commission report, focusing on all aspects of UK Motorsport including engineering. The importance of gender inclusivity in engineering design and how user-centred practices address this are addressed by Engineers Without Borders UK. Creating accessible solutions for everyone, including those who are disabled, is seen in the ongoing development of Microsoft’s Accessibility Technology & Tools. BP has launched a global framework for action to help them stay on track and progress in a positive way. The further benefits EDI brings to design and delivery in construction engineering are demonstrated by Mott Macdonald.
Inclusive Engineering (similar to the principles of Universal Design) ensures that engineering products and services are accessible and inclusive of all users. Inclusive Engineering solutions aim to be as free as possible from discrimination and bias, and their use will help develop creative and enlightened engineers. Ethical responsibility is key to all aspects of engineering work, but at the design phase it is even more important, as we can literally be designing biases and discrimination into our technological solutions, thus amplifying existing biases. Recommended guidance is provided within PAS 6463:2022 as part of the engineering design process; this is a new standard written to give guidance on designing the built environment for our neurodiverse society. With the right design and management, it is possible to eliminate, reduce or adjust potentially negative impacts to create places where everyone can flourish equally.
It is vital to recognise that achieving true equality, diversity, and inclusion is complex and cannot be ‘fixed’ quickly. An engineer must participate in active learning and go on a six stepped journey of self-awareness from being ‘not listening,’ ‘unaware,’ ‘passive,’ ‘curious,’ and ‘ally,’ to ‘advocate.’ A ‘not listening’ attitude involves shaming the unaware, speaking on behalf of others, invalidating others, clumsy behaviours, being bigoted, prejudiced, antagonistic and unwilling to listen and learn. Cultivating an ‘ally’ attitude is being informed and committed, routinely and proactively championing inclusion by challenging accepted norms, and taking sustained action to make positive change. It is for this reason the values of EDI should be part of an engineering professional’s ongoing lifestyle to have any real and lasting effect on engineering environments.
Therefore, the importance of EDI needs to influence how an engineering professional thinks, acts, includes others and where engineers seek collaborative input. The concept of engineering is far more important than any individual engineer and sometimes engineers need to facilitate opportunities for voices to be heard. This involves respect and empathy to create trusted relationships and the need for self-awareness and self-development. Sometimes this means stepping back so that other engineers can step forward.
Resources and support:
Specific organisations representing protected characteristics such as InterEngineering have the goal to connect, inform and empower LGBTQ+ engineers. Likewise, the Women’s Engineering Society (WES) and the Association for Black Engineers (AFBE-UK) provide support and promote higher achievements in education and engineering. The aforementioned organisations are partnered with the Royal Academy of Engineering to highlight unheard voices, raise awareness of the barriers faced by minority groups, and to maximise impact. Many other umbrella groups, for instance Equal Engineers, also raise awareness of other underrepresented groups, such as the neurodivergent in engineering, by documenting case studies, undertaking surveys, holding regular careers events and annual conferences, and more.
There is evidence to support the widely accepted view that supporting and managing EDI is a crucial element in increasing productivity and staff satisfaction. Diverse experiences and perspectives bring about diversity of thought which leads to innovation. It allows everybody to be authentic at work and provides the opportunity for diverse voices to be heard. Consequently, implementing EDI has proven to increase performance, growth, and innovation, as well as improvements in health, safety and wellbeing. EDI will therefore help to prepare students with the fundamental attitudes that are needed as practitioners and human beings.
Finally, engineering with EDI embedded into a professional engineer’s lifestyle will make a difference to those most in need. In a globalised world it will put us in a good position to bring innovation and creativity to some of the biggest challenges we face together. Equitable, diverse and inclusive engineering must be at the heart of finding sustainable solutions to help shape a bright future for all.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Prompts to facilitate discussion activities.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. The discussion prompts for Dilemma Part three are already well developed in the case study, so this enhancement focuses on expanding the prompts in Parts one and two.
Dilemma Part one – Discussion prompts:
1. Legal Issues. Give students ten minutes to individually or in groups do some online research on GDPR and the Data Protection Act (2018). In either small groups or as a large class, discuss the following prompts. You can explain that even if a person is not an expert in the law, it is important to try to understand the legal context. Indeed, an engineer is likely to have to interpret law and policy in their work. These questions invite critical thinking and informed consideration, but they do not necessarily have “right” answers and are suggestions that can help get a conversation started.
a. Are legal policies clear about how images of living persons should be managed when they are collected by technology of this kind?
b. What aspects of these laws might an engineer designing or deploying this system need to be aware of?
c. Do you think these laws are relevant when almost everyone walking around has a digital camera connected to the internet?
d. How could engineers help address legal or policy gaps through design choices?
2. Sharing Data. Before entering into a verbal discussion, either pass out the suggested questions listed in the case study on a worksheet or project on a screen. Have students spend five or ten minutes jotting down their personal responses. To understand the complexity of the issue, students could even create a quick mind map to show how different entities (police, security company, university, research group, etc.) interact on this issue. After the students spend some time in this personal reflection, educators could ask them to pair/share—turn to the person next to them and share what they wrote down. After about five minutes of this, each pair could amalgamate with another pair, with the educator giving them the prompt to report back to the full class on where they agree or disagree about the issues and why.
3. GDPR Consent. Before discussing this case particularly, ask students to describe a situation in which they had to give GDPR consent. Did they understand what they were doing, what the implications of consent are, and why? How did they feel about the process? Do they think it’s an appropriate system? This could be done as a large group, small group, or through individual reflection. Then turn the attention to this case and describe the change of perspective required here. Now instead of being the person who is asked for consent, you are the person requiring consent. Engineers are not lawyers, but engineers often are responsible for delivering legally compliant systems. If you were the engineer in charge in this case, what steps might you take to ensure consent is handled appropriately? This question could be answered in small groups, and then each group could report back to the larger class and a discussion could follow the report-backs.
4. Institutional Complexity. The questions listed in the case study relate to the fact that the building in which the facial recognition system will be used accommodates many different stakeholders. To help students with these questions, educators could divide the class into small groups, with each group representing one of the institutions or stakeholder groups (college, hospital, MTU, students, patients, public, etc.). Have each group investigate whether regulations related to captured images are different for their stakeholders, and debate if they should be different. What considerations will the engineer in the case have to account for related to that group? The findings can then be discussed as a large class.
Dilemma Part two – Discussion prompts:
The following questions relate to macroethical concerns, which means that the focus is on wider ethical contexts such as fairness, equality, responsibility, and implications.
1. Benefits and Burdens. To prepare to discuss the questions listed in the case study, students could make a chart of potential harms and potential benefits of the facial recognition system. They could do this individually, in pairs or small groups, or as a large class. Educators should encourage them to think deeply and broadly on this topic, and not just focus on the immediate, short-term implications. Once this chart is made, the questions listed in the case study could be discussed as a group, and students asked to weigh up these burdens and benefits. How did they make the choices as to when a burden should outweigh a benefit or vice versa?
2. Equality and Utility. To address the questions listed in the case study, students could do some preliminary individual or small group research on the accuracy of facial recognition systems for various population groups. The questions could then be discussed in pairs, small groups, or as a large class.
3. Engineer Responsibility. Engineers are experts that have much more specific technical knowledge and understanding than the general public. Indeed, the vast majority of people have no idea how a facial recognition system works and what the legal requirements are related to it, even if they are asked to give their consent. Does an engineer therefore have more of a responsibility to make people aware and reassure them? Or is an engineer just fulfilling their duty by doing what their boss says and making the system work? What could be problematic about taking either of those approaches?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Defending a profit-driven business versus a non-profit-driven business.
Author: Dr Sandhya Moise (University of Bath).
Overview:
This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Session structure:
1. As pre-class work, the students can be provided the case study in written format.
2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):
An introduction to Ethics in Engineering
Professional Code of Ethics and their relevance to engineering situations
Refers to strategies that a company develops and executes as part of its corporate governance to ensure the company’s operations are ethical and beneficial for society.
Can be categorised as Environmental, Human rights, Philanthropic and Economic responsibility.
Also benefits the organisation by strengthening their brand image and reputation, thereby increasing sales and customer loyalty, access to funding and reduced regulatory burden.
ESG Mandate Resources:
In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:
In 2006, the ESG mandate was set up by a group of investors to create a more sustainable financial system for companies to operate in, and to use as part of their annual reporting of performance indicators.
In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?
Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.
Background on Maria: CTO; lead inventor; electrical and electronics engineer; lives in the UK; hails from a lower socioeconomic background (UK); dislikes perpetuating economic disparity.
Technology developed: Devices that detect water leaks early, lowering the risk of damage to infrastructure that impacts local communities; also saves corporations millions each year by detecting low-level water loss that currently remains undetected.
Hydrospector’s Business goal: Secure contracts for their new business; find customers.
Group activity 1:
Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.
Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).
Ask the students to consider discussing Maria’s personal values which might be causing the internal conflict.
Should she involve her personal experiences/values in a business decision making process? If Maria was from an affluent area/background, how may this have affected her perspective?
Ask the students to assess how the Professional Bodies’ Codes of Conduct are applicable to this scenario and how would they inform the decision making process.
Ask the students to consider the wider impact of the business decision (beyond the business itself) and if focusing on profit alone is morally inferior to prioritising ESG.
Pros and Cons of each approach:
Group 1: Defend a profit-driven business model:
Advantages and ethical impact:
Will improve the company’s market and profits; quicker adoption of technology which will benefit employees, open up more job opportunities and benefit local society and industries.
Disadvantage and ethical impacts:
Will benefit those in affluent areas without helping those in disadvantaged socioeconomic regions, thereby exacerbating societal inequalities.
Does not align with ESG mandate of operating as a more sustainable business.
Group 2: Defend a non-profit driven business:
Advantages and ethical impact:
Aligns strongly with Maria’s personal values, so could potentially affect her future loyalty and performance within the company.
Abides by Professional Bodies Codes of Conduct.
Disadvantage and ethical impacts:
Maria’s personal values, without sufficient evidence to show that they will also improve the business, might cause conflict later regarding her leadership approach. Would she have behaved differently had she been from an affluent background and unaware of the impact of societal inequalities?
Could lead to failure of the company due to reduced profits, and lack of adoption of technology, which in turn will affect the organisation’s employees.
Relevant ethical codes of conduct examples:
Royal Academy’s Statement of Ethical Principles:
“Engineering professionals work to enhance the wellbeing of society.”
“Leadership and communication: Engineering professionals have a duty to abide by and promote equality, diversity and inclusion.”
Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.
Discussion and summary:
This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.
If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.
However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.
If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.