This month marked a milestone for the engineering education community, as the EPC and E-DAP launched their practical, step-by-step Deaf Awareness Toolkit* to a wider audience for the first time.

Designed for engineers at all career stages, the toolkit offers practical training to build inclusive skills, implement meaningful measures, and encourage open participation, ultimately improving engineering outcomes through greater accessibility and communication.

 

Breaking new ground in Engineering inclusion

Hosted by EPC CEO Johnny Rich, the toolkit’s accompanying webinar ‘Being heard: How everyone benefits from deaf awarenessbrought together over 50 attendees from more than 29 institutions. It marked the first time the UK engineering community has come together in this way to explore how deaf awareness can unlock stronger communication, collaboration and innovation across the sector.

The panel featured voices from RNID, the EPC, E-DAP and professionals with lived experience, offering engineers practical, experience-led guidance grounded in real-world insight—not just theory.

 

Closed captions: a simple shift, a big impact

One key takeaway is that closed captions do more than support communication. They encourage presenters to structure content more clearly, making complex ideas easier to follow. This is especially important in engineering, where technical information needs to be communicated accurately across classrooms, meetings, and fast paced R&D environments.

Lucia Capogna (E-DAP) showed just how simple this can be in practice, giving a live demonstration of how to activate captions in PowerPoint. It is a small shift that can make a big difference, and it is easier to implement than many people realise.

 

Key messages from the panel

Frankie Garforth (RNID)
Frankie addressed widespread misconceptions around deafness, hearing loss and tinnitus, reminding us that over 18 million people in the UK are affected. “You’ll know people living with this,” she said. “It’s good to support them.” She highlighted how deaf-aware technologies like closed captions can significantly improve communication – often in ways people don’t realise until they experience it first hand.

Dr. Sarah Jayne Hitt (EPC)
Sarah Jayne emphasised that some of the most impactful accessibility technologies are already freely available. Many were showcased earlier in the webinar, and others can be explored via the EPC website. These tools, she explained, complement the learning that happens through real human connection – like her own journey learning ASL from a school teacher and later embedding deaf awareness in everyday university life.

Ellie Haywood (E-DAP)
Ellie shared how she took personal responsibility to embed deaf awareness into her workplace a few years ago. Her goal: to make accessibility part of the default way her team operated, so no one would need to ask for special measures. The impact was immediate – improving team efficiency and communication well beyond the deaf community. This inclusive approach proved particularly effective in high-tech R&D projects.

 

Pilot and student feedback

E-DAP piloted the Deaf Awareness Toolkit with nearly 500 first-year students across civil, mechanical and other engineering disciplines. Feedback was overwhelmingly positive, particularly among non-native English speakers, who reported being better able to follow lectures and understand the content.

One simple innovation, using a blank PowerPoint slide during Q&A, made a big difference in helping students catch questions that might otherwise be lost in the noise of a busy classroom.

Survey responses showed nearly two-thirds of students felt neutral to strongly positive about captions and wanted to see them used more widely.

 

Resources and tools available now

The Deaf Awareness Toolkit is designed to help educators and engineers improve everyday communication and inclusion. It includes:

 

Beyond communication: safety, inclusion and culture

Deaf awareness goes beyond communication. In engineering environments, visual alarms and clear auditory cues support safety. Inclusive meeting behaviours, accessible research environments, and awareness of hearing health can all contribute to a more inclusive and effective working culture. Clear communication isn’t just a benefit for deaf individuals, it supports better outcomes for everyone.

 

The vision: One Million Engineers

This is just the beginning. Our goal is to engage one million engineers with accessibility.

With the EPC platform reaching 7,500 engineering academics across 82 institutions, and 179,000 students enrolled in those institutions, we are taking our first steps towards that vision.

Accessibility isn’t an optional extra. It’s a core part of engineering education and inclusion that we want to instil in future engineers.

 

What’s next

E-DAP and the EPC are now working together to embed deaf awareness more deeply into engineering practice and culture. Future activities will include:

 

*E-DAP’s Role as an Ally

E-DAP is an active ally to the Deaf and deaf communities. We do not speak for them, but work in partnership with experts, advocates, and individuals with lived experience to improve awareness and inclusion in engineering and education.

We collaborate with the community to learn and co-create. Our goal is to support engineering innovation by enabling better communication for everyone, and to implement inclusion in engineering through technology, tools, learning, and partnerships that embed inclusive practices and create lasting change.

A Note on Language

Language matters. Whether someone identifies as Deaf, deaf, has hearing loss or tinnitus, they are all individuals, and respectful language helps create more inclusive spaces. If you’re unsure how to phrase something, ask. It’s always better to check than assume. Helpful guidance on terminology is available from the RNID.  

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr. Kieran Higgins(Ulster University); Dr. Alison Calvert (Queen’s University Belfast).

Topic: Integrating Education for Sustainable Development (ESD) into higher education curricula.

Type: Guidance

Relevant disciplines: Any.

Keywords: Curriculum design; Global responsibility; Sustainability; SDGs; Course design; Higher education; Pedagogy;

Sustainability competency: Anticipatory; Integrated problem-solving; Strategic; Systems thinking.

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).

Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.

Who is this article for?:  This article should be read by educators at all levels of higher education looking to embed and integrate ESD into curriculum, module, and / or programme design.

Link to resource: AdvanceHE’s Education for Sustainable Development Curriculum Design Toolkit

 

Learning and Teaching Notes:
Supported by AdvanceHE, this Toolkit provides a structured approach to integrating Education for Sustainable Development (ESD) into higher education curricula. It uses the CRAFTS methodology and empowers educators to enhance their modules and programs with sustainability competencies aligned with UN Sustainable Development Goals.

Key Features:
• Five-Phase Process: Analyse stakeholder needs, map current provision, reflect on opportunities for development, redesign with an ESD focus, and create an action plan for continuous enhancement.
• Practical Tools: Includes templates for stakeholder analysis, module planning, active learning activities, and evaluation.
• Flexible Implementation: Designed for use at both module and programme level.
• Competency-Based: Focuses on developing authentic learning experiences across cognitive, socio-emotional, and behavioural domains.

Benefits
• Identify stakeholder sustainability needs
• Map existing ESD elements in your curriculum
• Reflect on opportunities to enhance ESD integration
• Redesign modules with active learning approaches of ESD
• Create actionable plans for implementation and evaluation

Click here to access the Toolkit.

Read more here.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

Authors: Dr. Kieran Higgins (Ulster University); Dr. Alison Calvert (Queen’s University Belfast).

Keywords: Curriculum design; Global responsibility; Sustainability; SDGs; Course design; Higher education; Pedagogy.

Who is this article for?: This article should be read by module coordinators, programme directors, and teaching teams in higher education who want to meaningfully integrate ESD into their curriculum design and delivery.

 

It’s always a struggle to get started on something new in the time- and resource-poor environment that is higher education. Sustainability can become just another box to tick rather than the world-changing priority it should be.

That’s why we have created the Education for Sustainable Development Curriculum Design Toolkit to build sustainability into the curriculum in a way that stimulates the critical reflection it needs to truly embed it within modules.

We knew there was more to ESD than simply labelling a module handbook with the SDG logos, especially when it was only SDG4 because it happens to mention education. There was a need to become familiar and comfortable with a deeper perspective on the SDGs and their related targets and indicators – without becoming intimidated by them. ESD should prepare students to tackle unforeseen challenges and navigate complex systems, rather than focusing on content alone. As higher education professionals, we recognised the inherent challenges of this.

As a result, we developed our CRAFTS (Co-Designing Reflective Approaches for the Teaching of Sustainability) model of curriculum design, based on an adaptation of Design Thinking, to provide a structured and usable, yet accessible, flexible, and not discipline-specific means of embedding and embodying ESD in the curriculum. We were then approached by AdvanceHE to develop this further into a practical, systematic resource that would empower educators to take genuine ownership of sustainability in their teaching and assessment.

The Toolkit helps tackle these issues in a straightforward way by breaking them down into five stages.

First, it shows how to analyse what stakeholders like students, employers and accrediting bodies want and need from a module when it comes to sustainability.

Then, it guides educators to map exactly what is being taught as the curriculum stands, aligning it to the SDGs and the ESD Competencies. This is a moment of real relief for many people, who discover that much of what they already do aligns perfectly with ESD.

After that, there’s a guided reflection to see where stronger integration might happen or where superficial coverage can be expanded into something more meaningful.

The redesign process helps to embed active learning and authentic assessments and finishes off with an action plan for moving forward and measuring impact for future evaluation.

We find it heartening to watch colleagues pivot from feeling like ESD is an add-on to realising it can enhance what they already do. Instead of worrying that they must become experts in every single SDG, the Toolkit reminds them that authentic engagement with a few well-chosen goals can lead to the deeper kind of learning we all aspire to provide.

This personal, reflective approach has helped academics overcome the sense that sustainability in the curriculum is an overwhelming requirement. They see it as a powerful lens through which students learn to handle uncertainty, become resilient critical thinkers and gain the confidence to tackle real-world problems.

We hope the Toolkit continues to spark conversations and encourage more creative approaches to ESD across disciplines. We don’t believe there’s a one-size-fits-all solution. It has been inspiring to see colleagues reclaim that sense of possibility and excitement, reassured that teaching for a sustainable future can be woven into what they’re already doing – just with an extra layer of intentionality and reflection.

If you’re looking for a way to bring ESD into your own classroom, we hope the Toolkit will be a reliable companion on that journey.

Dr Kieran Higgins (Lecturer in Higher Education Practice, Ulster University) and Dr Alison Calvert (Senior Lecturer in Biological Sciences, Queen’s University Belfast) have collaborated on Education for Sustainable Development projects for over 4 years, drawing on extensive and wide ranging experiences of higher education and sustainability. Their vision is of transformed global higher education curricula that empowers all graduates, regardless of discipline or career path, to become champions of a sustainable future.

 

This post is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

Overview

The Engineering Deaf Awareness Project (E-DAP) is a pioneering initiative dedicated to making deaf awareness a standard in engineering. E-DAP is a movement for meaningful, measurable change in the number of people who proactively use accessibility tech in their daily lives, supporting everyone around them. By embedding accessibility into the fabric of engineering, E-DAP is breaking down barriers, changing perceptions and creating a future where engineering truly works to make everyone’s lives more effective

Imagine a world where talented individuals and dynamic growth oriented companies are turbo charged by removing barriers in communication and understanding. In engineering—a field where communication is critical to innovation, being proactive and embedding accessibility at the norm is critical. At E-DAP, we believe technology for accessibility is the foundation for accessibility and increased performance and ground-breaking ideas. By fostering technology for accessibility and increased performance, we’re not just improving workplaces—we’re demonstrating how inclusivity fuels economic growth, creativity, collaboration and benefits everyone.

The EPC has published E-DAP resources in a toolkit in solidarity with the Project’s aims.

 

Mission and Strategic Aims

E-DAP’s mission is to embed deaf awareness into the core of engineering practices, ensuring that the profession is accessible and for all . Our strategic aims include:

 

Challenges

The engineering sector has historically faced challenges in creating inclusive environments for deaf individuals, including:

 

Initiatives and Activities

To address these challenges, E-DAP is implementing several key initiatives:

 

Toolkit Content

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

PowerPoint Subtitles Guidelines

 

1. Benefits of subtitles

 

2. Main steps

STEP 1: Activate the subtitles (See section 3)

STEP 2: Customise your settings (See section 4)

2.1. Select the language to be used
2.2. Select the subtitles position
2.3. Customise subtitles appearance (background, text size and colour)

STEP 3: Create your slide to leave room for the subtitles in line with your settings (avoid overlapping)

Note 1: You need to be connected to the internet for the subtitles to work.
Note 2: You need to change your security settings to authorise PowerPoint to access the microphone.
Note 3: You do not have to customise your settings for each presentation unless you wish to change something.

 

3. How do you activate the subtitles?

Open PowerPoint and on the main task bar select “Slide show” and tick “Always Use Subtitles” on the ribbon:

 

4. Subtitles settings

When activated, you can customise the subtitles:

 

Subtitles position

“Below slide” and “Above slide”

If one of the following options is selected

● Below slide
● Above slide

you do not have to worry about the subtitle background overlapping with slide content. However, the overall dimension of the projected slide will be reduced, so please check that it is still ok.

The examples below show the difference between “Bottom (Overlaid)” and “Below slide”.

Bottom (Overlaid)

 

Below slide

 

“Bottom (Overlaid)” and “Top (Overlaid)”

Important: If you select one of the following options

● Bottom (Overlaid)
● Top (Overlaid)

you will need to prepare your slides to leave room for the subtitles in line with your settings, and change the subtitle settings to improve visibility (see “Subtitles” > “More settings”).

The example below uses “Bottom (Overlaid)” and default settings for text and background.

On the above example we can see that the subtitles overlap with both the logo and the contents of the slide, making the visibility poor. In addition, the size of the subtitles text appears to be quite small.

The following example shows how the settings may provide better visibility of the subtitles and the contents of the slide.

More settings: Text size and colour, background colour and transparency

1) Change the settings to use a “Large Text” or “Extra Large Text” and colours that improve visibility (e.g. yellow on solid black)

2) If you cannot rework the master slides and move the logo, select a solid background to provide more visibility to the subtitles. (Although you will make the logo less visible, this should give a better experience to the people attending the presentation.)

 

Subtitles background colour

How can the slide background influence the colour of the subtitles background and text colour?

• What colour is the slide background?

If the slide background is white or a light colour, you should consider using a dark colour as subtitle background to create the right level of contrast and improve the visibility of the subtitles. Similarly, if the slide background is black or another dark colour, you should consider using a light colour as subtitle background.

The subtitles text colour should in turn be in contrast with the subtitles background colour.

• Where is the logo? Are the subtitles overlapping with the logo? Can you re-work the master slides and move it?

If you cannot move the logo, you may want to consider this:

The subtitle background is not a solid colour by default, but has a certain degree of transparency. This may still be ok if there are no other objects (like a logo) under the subtitles background. Otherwise, you may need to update this setting to have a solid colour as background.

 

5. Guidance scope and feedback

Thank you for reading this guide and for your interest in E-DAP. We hope that this guide will help you to implement deaf awareness practises.

If you’d like to be involved in any further E-DAP led events, training materials or to join the E-DAP mailing list, please complete the form via the link below or scan the QR code.

Your feedback is important to us, as it allows us to improve our events and materials for others. Please provide your feedback on this guideline and on the subtitles usage by completing the following form:

Link to form

 

Additionally, to find out more about E-DAP or to contact us, find us on LinkedIn.

You can also downloaded this guide here.

Also see How to add subtitles in PowerPoint: Demo video.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This content is published under a Creative Commons Attribution 4.0 International license.

Also see How to add subtitles in PowerPoint: Guidelines.

 

 

 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This content is published under a Creative Commons Attribution 4.0 International license.

Here you will find additional resources related to the deaf awareness.

 

E-DAP resources

 

EPC/E-DAP resources

 

Ellie Hayward blogs 

 

RNID resources

 

Other resources

 

Got a relevant resource to share? Email w.attwell@epc.ac.uk

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case study example: Water wars: managing competing water rights

Activity: Assessment. This example demonstrates how the questions provided in Assessing ethics: Rubric can be used to assess the competencies stipulated at each level.

Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).

Related content:

 

Water wars: managing competing water rights 

This example demonstrates how the questions provided in the accompanying rubric can be used to assess the competencies stipulated at each level. Although we have focused on ‘Water Wars’ here, the suggested assessment questions have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma. 

Year 1 

Personal values: What is your initial position on the issue? Do you see anything wrong with how DSS are using water? Why, or why not?

Professional responsibilities: What ethical principles and codes of conduct are relevant to this situation?

Ethical principles and codes of conduct can be used to guide our actions during an ethical dilemma. How does the guidance provided in this case align/differ with your personal views? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What are the moral values involved in this case and why does it constitute an ethical dilemma? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What role should an engineer play in influencing the outcome? What are the implications of not being involved? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Year 2 

Formulate a moral problem statement which clearly states the problem, its moral nature and who needs to act. (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Stakeholder mapping: Who are all the stakeholders in the scenario? What are their positions, perspective and moral values?

Stakeholder  Perspectives/interests  Moral values 
Data Storage Solutions (DSS)  Increasing production in a profitable way; meeting legal requirements; good reputation to maintain/grow customer base.  Accountability; sustainability (primarily economic). 
Farmers’ union  Represent farmers who suffer from economic implications associated with costly irrigation.  Accountability; environmental sustainability; justice. 
Farm  The farm (presumably) benefits from DSS using the land.  Ownership and property; environmental sustainability; justice. 
Local Green Party  Represent views of those concerned about biodiversity. May be interested in opening of green battery plant.  Human welfare; environmental sustainability; justice. 
Local Council  Represent views of all stakeholders and would need to consider economic benefits of DSS (tax and employment), the need of the university and hospital, as well as the needs of local farmers and environmentalists. May be interested in opening of green battery plant.  Human welfare and public health; trust; accountability; environmental sustainability; justice. 
Member of the public  This may depend on their beliefs as an individual, their employment status and their use of services such as the hospital and university. Typically interested in low taxes/responsible spending of public money. May be interested in opening of green battery plant.  Human welfare; trust; accountability; environmental sustainability; justice. 
Stakeholders using DSS data storage  Reliable storage. They may also be interested in being part of an ethical supply chain.  Trust; privacy; accountability; autonomy. 
Non-human stakeholders  Environmental sustainability. 

 

What are some of the possible courses of action in the situation. What responsibilities do you have to the various stakeholders involved? What are some of the advantages and disadvantages associated with each? (Reworded from case study.)

What are the relevant facts in this scenario and what other information would you like to help inform your ethical decision making? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

 

 

Year 2/Year 3  

(At Year 2, students could provide options; at Year 3 they would evaluate and form a judgement.) 

Make use of ethical frameworks and/or professional codes to evaluate the options for DSS both short term and long term. How do the uncertainty and assumptions involved in this case impact decision making?

Option  Consequences  Intention  Action 
Keep using water  May lead to expansion and profit of DSS and thus tax revenue/employment and supply. 

Reputational damage of DSS may increase. Individual employee piece of mind may be at risk. 

Farmers still don’t have water and biodiversity still suffers which may have further impact long term. 

Intention behind action not consistent with that expected by an engineer, other than with respect to legality  Action follows legal norms but not social norms such as good will and concern for others. 
Keep using the water but limit further work  May limit expansion and profit of DSS and thus tax revenue/employment and supply. 

Farmers still don’t have water and biodiversity still suffers and may have further impact long term. This could still result in reputation damage. 

Intention behind action partially consistent with that expected by an engineer.  Action follows legal norms but only partially follow social norms such as good will and concern for others. 
Make use of other sources of water  Data storage continues. 

Potential for reputation to increase. 

Potential increase in cost of water resulting in less profit potentially less tax revenue/employment. 

Farmers have water and biodiversity may improve.

Alternative water sources may be associated with the same issues or worse. 

Intention behind action seems consistent with that expected by an engineer. However, this is dependent upon 

whether they chose to source sustainable water with less impact on biodiversity etc. 

This may be dependent on the degree to which DSS proactively source sustainable water. 
Reduce work levels or shut down  Impact on profit and thus tax revenue/employment and supply chain. Farmers have water and biodiversity may improve. 

May cause operational issues for those whose data is stored. 

Seems consistent with those expected of engineer. Raises questions more generally about viability and feasibility of data storage.  Action doesn’t follow social norms of responsibility to employees and shareholders. 
Investigate other cooling methods which don’t require as much water/don’t take on extra work until another method identified. 
May benefit whole sector. 

May cause interim loss of service. 

 

This follows expectations of the engineering profession in terms of evidence-based decision making and consideration for impact of engineering in society.  It follows social norms in terms of responsible decision making. 

 

Downloads:

Assessing ethics: Guidance

Assessing ethics: Rubric

Assessing ethics: Case study assessment example: Water Wars

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).

Keywords: Assessment; Accreditation, AHEP, Competencies; Curriculum design; Pedagogy.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.

Related content:

 

Guidance

Premise:

As engineering educators, it is uncommon that we were taught or assessed on ethical thinking within our own degree programmes. Although we may be able to think of plenty of ethical scenarios from our own experience, we may not necessarily be able to identify the best way to assess the ability of a student to engage in ethical thinking in a systematic and robust manner, something which is critical for both the evaluation of learning and teaching (as explained further here).

Furthermore, the complex, ill-structured nature of ethical dilemmas, which often involve a variety of diverse stakeholders, perspectives and cultural norms, necessitates an ability to navigate tensions and compromise. This results in situations in which multiple possible courses of action can be identified, meaning that there is not one single ‘good’ or ‘correct’ answer to ethical questions posed.

It is also necessary to evidence that students are able to meet the criteria outlined by accreditation bodies. Within the UK context, it is the Engineering Council (EC) that is responsible for providing the principal framework which guides engineering course content and sets accreditation threshold standards of competence through AHEP, the Accreditation of Higher Education Programs, as part of The UK Standard for Professional Engineering Competence (UKSPEC).

The knowledge, skills and attributes expected of engineering graduates constantly shifts, and since the advent of AHEP in 2004 there has been increased focus on strengthening design, and consideration for economic, ethical, environmental, legal, and social factors.

In-keeping with a need to assess engineering ethics in a robust manner, this article provides step-by-step considerations for designing assessment and is primarily intended to be used in conjunction with an existing ethics case study, such as those available through the EPC’s Engineering Ethics Toolkit (we later make use of the existing ‘Water Wars’ case study to exemplify the points made).

The guidance and accompanying rubric have been designed in a way that encourages students to grapple with the numerous tensions involved in ethical decision making, and the focus is thus on assessment of the decision-making process as opposed to the ‘answer’ given, the decision made or the outcome of the scenario.

 

Assessment purpose:

The first consideration is the year group you are assessing, and the competencies they have already acquired (for example in the case of Level 5 and Level 6 students). You may want to consider the (partial) learning outcome (LO) as defined by AHEP4 LO8 (Table 1). Whilst this shouldn’t act to limit what you choose to assess, it is a good place to start in terms of the level of ability your students should be demonstrating.

Note that the Engineering Council (EC) claim “This fourth edition of AHEP has reduced the total number of learning outcomes in order to focus attention on core areas, eliminate duplication and demonstrate progression between academic levels of study”. They are thus interested in the differences between level. You are recommended to make this explicit in module specification and associated assessment description. Key differentiations are shown in Table 1. For example, at Level 5 you may be more interested in students’ abilities to identify an ethical situation, whereas at Level 6 you may want them to be able to reason through options or make a judgement.

Table 1: AHEP4 Learning Outcomes

Year 1
(Level 4)
Year 2
(Level 5)
Year 3
(Level 6)
M Level
(Level 7)
LO8 Apply ethical principles and recognise the need for engineers to exercise their responsibilities in an ethical manner and in line with professional codes of conduct. Identify ethical concerns and make reasoned ethical choices informed by professional codes of conduct. Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct. Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct (MEng).
Interpretation Awareness of issues, obligations, and responsibilities; sensitising students to ethical issues. Ability to resolve practical problems; identify ethical issues and to examine opposing arguments. Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments. Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments.

 

The final row in Table 1 provides our interpretation of the LO, making use of language similar to that within the EPC’s Ethics Learning Landscape. We believe this is more accessible and more easily operationalised.

The following steps outline the process involved in designing your assessment. Throughout we make reference to an existing EPC case study (Water Wars) to exemplify the points made.

1.) The first consideration is how much time you have and how much of the case study you want to use. Many of the case studies have multiple stages and could be spread over several sessions depending on time constraints.

2.) Linked to this is deciding whether you want to assess any other LOs within the assessment. For example, many of the case studies have technical elements. Furthermore, when using reports, presentations, or debates as methods of assessment you may also want to assess communication skills. Whatever you decide you should be careful to design the assessment in such a way that assesses LO8 in a robust manner, whereby the student could not pass the element without demonstrating they have met the individual LO to the required level (this is a key requirement to meet AHEP4). For example, in an assessment piece where ethics is worth 50% of the grade, a student could still pass the element as a whole (with 40%) by achieving high scores in the other grading criteria without the need to demonstrate their ability to meet LO8.

3.) Once you are aware how much of a case study you have time for and have decided which LOs (other than LO8) you are assessing, you should start to determine which questions are aligned with the level of study you are considering and/or the ability of the students (for example you may query whether students at Level 5 have already developed the skills and competencies suggested for Level 4). At each level you can make use of the accompanying rubric to help you consider how the relevant attributes might be demonstrated by students. As an example, please refer to the accompanying document where we provide our thoughts about how we would assess Water Wars at Levels 4-6.

4.) Once you have selected questions you could look to add any complementary activities or tasks (that do not necessarily have to be assessed) to help the students broaden their understanding of the problem and ability to think through their response. For example, in the Water Wars case study, there are multiple activities (for example Part 1, Q3 and Part 2, Q3, Q4, Q6, Q7) aimed at helping students understand different perspectives which may help them to answer further ethical questions. There are also technical questions (for example Part 1, Q5) which help students understand the integrated nature of technical and social aspects and contextualise scenarios.

5.) Once you have selected your questions you will need to make a marking rubric which includes details of the weightings given for each component of the assessment. (This is where you will need to be careful in selecting whether other LOs are assessed e.g., communication, and whether a student can pass the assessment/module without hitting LO8). You can then make use of the guidance provided in terms of expectations at a threshold and advanced level, to write criteria for what is expected at each grade demarcation.

Although we have focused on ‘Water Wars’ here, the suggested assessment questions within the accompanying rubric have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma.

 

Other considerations:

As acknowledged elsewhere within the toolkit (see here), there are “practical limits on assessment” (Davis and Feinerman, 2012) of ethics, including demands on time, pressure from other instructors or administrators, and difficulty in connecting assessment of ethics with assessment of technical content. These are some other considerations you may wish to make when planning assessment.

• Number of students and/or marking burden: With large student numbers you may be more inclined to choose a group assessment method (which may also be beneficial in allowing students to share perspectives and engage in debate), or a format which is relatively quick to mark/allows automated marking (e.g. a quiz). In the case of group work it is important to find a way in which to ensure that all students within each group meet the LO in a robust manner. Whilst assessment formats such as quizzes may be useful for assessing basic knowledge, they are limited in their ability to ensure that students have developed the higher-level competencies needed to meet the LO at output level.

• Academic integrity: As with any LO there is a need to ensure academic integrity. This may be particularly difficult for large cohorts and group work. You may wish to have a range of case studies or ensure assessment takes place in a controlled environment (e.g. an essay/report under exam conditions). This is particularly important at output level where you may wish to provide individual assessment under exam conditions (although competencies may be developed in groups in class).

• Logistics/resourcing: Many of the competencies associated with ethics are heavily linked to communication and argumentation, and answers tend to be highly individual in nature. Role play, debates, and presentations may therefore be considered the most suitable method of assessment. However, their use is often limited by staffing, room, and time constraints. Many of these methods could, instead, be used within class time to help students develop competencies prior to formal assessment. You may also choose to assess ethics in another assessment which is more heavily resourced (for example design projects or third year projects).

• Staged assessment: The ethical reasoning process benefits from different perspectives. It may therefore be desirable to stage assessment in such a way that individuals form their own answer (e.g. a moral problem statement), before sharing within a group. In this way a group problem statement, which benefits from multiple perspectives and considerations, can be formed. Similarly, individuals may take the role of an individual stakeholder in an ethical dilemma before coming together as a group.

• Use of exams: Whilst we see an increasing movement away from exams, we feel that a (closed book) exam is a suitable method of assessment of ethics based LOs in the situation that:

o There is a need to ensure academic integrity, and that each student meets the LO at output level.

o The exam is assessing competencies (e.g. ethical argumentation) as opposed to knowledge.

o All the relevant information needed is provided and there is limited content for students to learn in advance (aside from argumentation, justification, decision making skills etc developed in class).

Their use may therefore be limited to Level 6.

 

Rubric

This document provides the partial AHEPLO8 at each level. The competences involved in meeting this LO have then been identified, along with what students would need to demonstrate to evidence meeting a threshold level, or advanced level. Example questions are given to show how students may demonstrate their competence at each level. For each question there is an explanation of how the question supports achievement of LO at that level. The rubrics should be used alongside the accompanying guidance document which offers practical suggestions and advice.

Year 1: This year focuses on developing awareness of issues, obligations, and responsibilities, and sensitising students to ethical issues.

Year 2: This year focuses on developing the ability to identify ethical issues and to examine opposing arguments, all of which is needed to examine, analyse, and evaluate ethical dilemmas in Year 3.

Year 3: This year focuses on ensuring that students can satisfy LO8 at an output level in a robust manner.

 

References:

Davis, M. and A. Feinerman. (2012). ‘Assessing graduate student progress in engineering ethics’, Science and Engineering Ethics, 18(2), pp. 351-367.

 

Downloads:

Assessing ethics: Guidance

Assessing ethics: Rubric

Assessing ethics: Case study assessment example: Water Wars

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

December 2024

November 2024

October 2024

July 2024

As academics know, it’s been “conference season” recently, with the usual rush of meetings and symposia and events that mark the beginning of summer. We’re pleased that the Engineering Ethics Toolkit has been featured at several of these, both home and abroad:

Between February 2022 and April 2025 the Ethics Toolkit has had over 60,000 views, so we know you’re looking at it, but we also want to know where you’re talking about the Ethics Toolkit! Have you featured a resource in a conference presentation or meeting? Tell us about how the resources have helped you over the past year—we’d love to feature your story.

 

This post is also available here.

Let us know what you think of our website