Authors: Emma Crichton CEng MICE and Dr Jonathan Truslove MEng PhD (Engineers Without Borders UK).Ā 

Topic: How to talk about sustainability in engineering education.Ā 

Tool type: Guidance.Ā 

Relevant disciplines: Any.Ā 

Keywords: Advocacy; Collaboration; Global responsibility; Sustainability; Systems change; Climate change; AHEP; Higher education; Pedagogy.Ā 
 
Sustainability competency: Self-awareness; Strategic; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action).Ā 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development.

Who should read this article? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It’s especially useful in helping educators, heads of departments and deans to engage in a constructive or uncomfortable conversation if you don’t see yourself as a sustainability expert.Ā Ā 

 

Premise:Ā 

To not have conversations because they make you uncomfortable is the definition of privilege. Your comfort is not at the centre of this discussion. That’s not how it works. We have to be able to choose courage over comfort, we have to be able to say, ā€˜Look, I don’t know if I’m going to nail this but I’m going to try because I know what I’m sure as hell not going to do is stay quiet.ā€™ā€ Brene BrownĀ Ā 

 

Some of the best conversations you can have in life are not comfortable to initiate:Ā 

Think about a time you’ve participated in a meaningful conversation. These are not easy conversations, but they can also be the ones we look back to as very powerful, even if they took courage to initiate. And sometimes in a conversation, especially a constructive conversation, people disagree. People debate. People have different perspectives. And that’s the beauty of conversation and the beautiful rich diversity of people. It would be so boring if we all had the same life experiences, expertise and thoughts. If we only wanted to hear our own perspective, you can do that in a voice note to yourself, in your journal or by talking to the mirror.Ā Ā 

There can also be different conversations depending on the values of those having the conversation. What they see as important, scary or what environment they live in helps form their core understanding. But despite our differences, humans are hard-wired for connection, to listen and talk with others. We discuss ideas in order to find common ground, and/or to learn about an experience we didn’t have ourselves. Difficult, constructive conversations build relationships, while avoiding them leads to a less deep connection.Ā Ā 

Ā 

Why talk about sustainability?Ā 

Educators, you have permission to start and facilitate a conversation about something you don’t know much about or are not an expert in. Just be honest about what you know and be driven to learn more.Ā Ā Ā Ā 

This relates to conversations around the topic of sustainability. When we talk about how we can live within our planetary limits, whilst meeting the needs of all people, questions about justice, inequality and fairness often crop up. We don’t have one right answer here, we don’t have a magic fix or one person to blame. No one is an expert here. Sure, some know more about the science, others more about people’s lived experiences and others can feel they don’t know enough. But we all have a right to participate in conversations about our collective humanity. For example, conversations you could have with students about sustainability could cover:Ā 

After all, sustainability is about imagining our future: One where we have less impact on our safe climate and biodiversity and less inequality. But we may see that future world differently. We may worry about the impact any change might have on our lives and the things we value most. Some may struggle with the idea of repurposing golf courses to address our housing crisis, others may struggle with the idea of policies stopping people from flying frequently (but they might be okay with this being imposed on those with private jets). Others may despair at the slow levels of change, where we don’t move from our default trajectory and risk climate breakdown.Ā Ā 

On our current trajectory, we are looking at living in a world where our climate exceeds 1.5 degrees of warming, where there is mass migration, sea level rise, etc. This world may be worse, where more people suffer. But would you change how we engineer to make it better or play a role in another way to shift our trajectory?Ā 

 

How to initiate conversations about sustainability in engineering education:Ā 

To not have these important conversations means we don’t see any role for ourselves or the organisations we work for in creating change – and that’s not true, since sustainability requires systemic change to how we engineer AND to how we educate. For example, we asked hundreds of engineering educators and educationalists what they hope to see as the future of engineering education. Their responses are visualised below:Ā 

Discussing your opinions about these responses could be one way to start a conversation with a colleague.Ā 

It is also really important to engage in regular conversations about sustainability with students as a feature of their university education. Be a role model for how to participate in constructive conversations respectfully. Help them practise how to hold and present themselves in these spaces.Ā Ā 

So, with this in mind, what can you do?Ā Ā 

Ā 
Initiate the conversation. Prepare to do so. Here are some tips and tricks.Ā Ā 

Be humble! Learning from others is key. Degrees can be designed so that students can frequently hear and learn about different perspectives and develop the ability to speak with economists, social scientists, scientists, humanities experts, ecologists, and those with expertise gained through lived experience. Be willing to learn from others and acknowledge that it’s okay they don’t have all the answers either. In our experience, students usually respect this attitude of humility.Ā Ā 

It can be helpful to work with those with experience. Recognise who is leading changes and creating ways for educators to feel safe in leading and making change. Sometimes all it takes is the offer of a coffee with a colleague to form a connection and get a shared understanding of how to move forward.Ā 

Seek (and give) advice and share your experience. Share resources, barriers, insights and position initiatives to support in an organised and collaborative way.Ā Ā 

Work in partnership with students. Students also have a critical role to play in this shift, not just because they are increasingly demanding to see more sustainability in the curriculum. For many emerging students, sustainability is the topic of their lifetime. Listen to the perspectives of international students, who can bring more diverse perspectives on global responsibility.Ā Ā 

 

ā€œSustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.ā€ 2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course)Ā 

Ā 

Useful resources to get talking:Ā 

There are some excellent resources out there that can help us get started framing and having conversations about sustainability with others:Ā 

1. The Talk Climate Change campaign tracks climate discussions to share messages and inspire others around the world. It provides advice, conversation starters and allows you to add your discussions with family, friends, and communities about sustainability to their interactive map and explore conversations submitted by others.Ā 

2. Listen to podcasts such as the Liberating Sustainability podcast by Students Organising for Sustainability UK (SOSUK) who bring together leaders from student liberation movements and academia to deconstruct the exclusivity of sustainability activism and education, or An Idiot’s Guide to Saving the World which dives into each of the Sustainable Development Goals and focuses in on ā€˜who is affected?’, ā€˜What are solutions on a global scale?’, and ā€˜what can I as an individual do?’.Ā 

3. Watch the presentation on ā€˜Imagining 2050’ from James Norman, a current educator (who will be 72 years old in 2050) and Cleo Parker, an engineering student (who will be 49 in 2050) during the Institution of Structural Engineers Annual Academics Conference 2022. You can also read the main learning points from the conference in this blog post.Ā Ā 

4. The World Café methodology is an example of creating a space for collaborative dialogue around questions that matter and sharing insights and lessons learned. You can see an example of this by the UK Green Building Council (UKGBC) who run Collaboration Cafes on Climate Resilience, here. 

5. Watch the TED talks playlists on sustainability covering key questions and visionary ideas on the question of our generation.Ā Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

To view a plain text version of this resource, click here to download the PDF.

Authors: Dr Gilbert Tang; Dr Rebecca Raper (Cranfield University).Ā 

Topic: Considering the SDGs at all stages of new robot creation.Ā 

Tool type: Guidance.Ā 

Relevant disciplines: Computing; Robotics; Electrical; Computer science; Information technology; Software engineering; Artificial Intelligence; Mechatronics; Manufacturing engineering; Materials engineering; Mechanical engineering; Data.Ā 

Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes.Ā 

Sustainability competency: Systems thinking; Anticipatory; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production).Ā 

Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.

Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering.Ā 

 

Premise:Ā Ā 

There is an urgent global need to address the social and economic challenges relating to our world and the environment (Raper et al., 2022). The United Nations Sustainable Development Goals (SDGs) provide a framework for individuals, policy-makers and industries to work to address some of these challenges (Gutierrez-Bucheli et al., 2022). These 17 goals encompass areas such as clean energy, responsible consumption, climate action, and social equity. Engineers play a pivotal role in achieving these goals by developing innovative solutions that promote sustainability and they can use these goals to work to address broader sustainability objectives.Ā 

Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment.Ā 

Ā 

1. During research and problem definition:

Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005.Ā 

 

2. At design and conceptualisation:

Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset.Ā 

 

3. During creation and manufacturing:

The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation.Ā 

 

4. Deployment:

Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life.Ā 

 

5. Disposal:

Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal.Ā 

Ā 

Conclusion:Ā 

Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly.Ā Ā 

 

References:Ā 

Dias, M. B., Mills-Tettey, G. A., & Nanayakkara, T. (2005, April). Robotics, education, and sustainable development. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 4248-4253). IEEE.Ā 

Eidenskog, M., Leifler, O., Sefyrin, J., Johnson, E., & Asplund, M. (2023). Changing the world one engineer at a time–unmaking the traditional engineering education when introducing sustainability subjects. International Journal of Sustainability in Higher Education, 24(9), 70-84.Ā Ā 

Gutierrez-Bucheli, L., Kidman, G., & Reid, A. (2022). Sustainability in engineering education: A review of learning outcomes. Journal of Cleaner Production, 330, 129734.Ā 

Hristov, I., & Chirico, A. (2019). The role of sustainability key performance indicators (KPIs) in implementing sustainable strategies. Sustainability, 11(20), 5742.Ā 

Karastoyanov, D., & Karastanev, S. (2018). Reuse of Industrial Robots. IFAC-PapersOnLine, 51(30), 44-47.Ā 

Leifler, O., & Dahlin, J. E. (2020). Curriculum integration of sustainability in engineering education–a national study of programme director perspectives. International Journal of Sustainability in Higher Education, 21(5), 877-894.Ā 

Raper, R., Boeddinghaus, J., Coeckelbergh, M., Gross, W., Campigotto, P., & Lincoln, C. N. (2022). Sustainability budgets: A practical management and governance method for achieving goal 13 of the sustainable development goals for AI development. Sustainability, 14(7), 4019.Ā 

SDG Indicators — SDG Indicators (2018) United Nations (Accessed: 19 February 2024)Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.Ā 

 

To view a plain text version of this resource, click here to download the PDF.

Author: Cigdem Sengul, Ph.D. FHEA (Computer Science, Brunel University).Ā 

Topic: Embedding SDGs into undergraduate computing projects using problem-based learning and teamwork.Ā 

Tool type: Guidance.Ā 

Relevant disciplines: Computing; Computer science; Information technology; Software engineering.Ā Ā 

Keywords: Sustainable Development Goals; Problem-based learning; Teamwork; Design thinking; Sustainability; AHEP; Pedagogy; Higher education; Communication; Course design; Assessment; STEM; Curriculum design.Ā 
 
Sustainability competency: Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All 17; see specific examples below for SDG 2 (Zero Hunger); SDG 13 (Climate Action).Ā 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment.

Who is this article for? This article should be read by educators at all levels in Higher Education who wish to embed sustainable development goals into computing projects.Ā 

Supporting resources:Ā Ā 

Ā 

Premise:Ā Ā 

Education for Sustainable Development (ESD) is defined by UNESCO (2021) as:Ā  “the process of equipping students with the knowledge and understanding, skills and attributes needed to work and live in a way that safeguards environmental, social and economic wellbeing, in the present and for future generations.” All disciplines have something to offer ESD, and all can contribute to a sustainable future. This guide presents how to embed the Sustainable Development Goals (SDGs) into undergraduate computing projects, using problem-based learning and teamwork as the main pedagogical tools (Mishra & Mishra, 2020).Ā Ā 

 

Embedding Sustainable Development Goals (SDGs) into computing group projects:Ā 

Typically, the aim of the undergraduate Computing Group Project is to:Ā 

This type of project provides students with an opportunity to integrate various skills, including design, software development, project management, and effective communication.Ā Ā 

Ā 

In this project setting, the students can be asked to select a project theme based on the SDGs. The module team then can support student learning in three key ways:Ā 

1. Lectures, labs, and regular formative assessments can build on lab activities to walk the project groups through a sustainability journey that starts from a project pitch, continues with design, implementation, and project progress reporting, and ends with delivering a final demo.

2. Blending large classroom teaching with small group teaching, where each group is assigned a tutor, to ensure timely support and feedback on formative assessments.

3. A summative assessment based on a well-structured project portfolio template, guiding students to present and reflect on their individual contribution to the group effort. This portfolio may form the only graded element of their work, giving the students the opportunity to learn from their mistakes in formative assessments and present their best work at the end of the module.Ā Ā 

 

Mapping the learning outcomes to the eight UNESCO key competencies for sustainability (Advance HE, 2021), the students will have the opportunity to experience the following:Ā 

 

More specifically, sustainable development can be embedded following a lecture-lab-formative assessment-summative assessment path:Ā 

1. Introduction lecture: Introduce the SDGs and give real-life examples of software that contribute to SDGs (examples include: for SDG 2 – Zero Hunger, the World Food Programme’s Hunger Map; SDG 13 – Climate Action, Climate Mind ). The students then can be instructed to do their own research on SDGs.Ā 

2. Apply design thinking to project ideation: In a lecture, students are introduced to design thinking and the double-diamond of design to use a diverge-converge strategy to first “design the right thing” and second “design things right.ā€ In a practical session, with teaching team support, the students can meet their groups for a brainstorming activity. It is essential to inform students about setting ground rules for discussion, ensuring all voices are heard. Encourage students to apply design thinking to decide which SDG-based problem they would like to work on to develop a software solution. Here, giving students an example of this process based on a selected SDG will be useful.Ā 

3. Formative assessment – project pitch deliverable: The next step is to channel students’ output of the design thinking practical to a formative assessment. Students can mould their discussion into a project pitch for their tutors. Their presentation should explain how their project works towards one or more of the 17 SDGs.Ā 

4. Summative assessment – a dedicated section in project portfolio: Finally, dedicating a section in a project portfolio template on ideation ensures students reflect further on the SDGs. In the portfolio, students can be asked to reflect on how individual ideas were discussed and feedback from different group members was captured. They should also reflect on how they ensured the chosen problem fits one or more SDGs, describe the selection process of the final software solution, and what alternative solutions for the chosen SDG they have discussed, elaborating on the reasons for the final choice.Ā 

 

Conclusion:Ā 

Computing projects provide an excellent opportunity to align teaching, learning, and assessment activities to meet key Sustainable Development competencies and learning outcomes. The projects can provide transformational experiences for students to hear alternative viewpoints, reflect on experiences, and address real-world challenges.Ā 

Ā 

References:Ā 

Advance HE. (2021) Education for sustainable development guidance. (Accessed: 02 January 2024).Ā 

Lewrick, M., Link, P., Leifer, L.J. & Langensand, N. (2018). The design thinking playbook: mindful digital transformation of teams, products, services, businesses, and ecosystems. New Jersey: John Wiley & Sons, Inc, Hoboken.Ā 

Mishra, D. and Mishra, A. (2020) ā€˜Sustainability Inclusion in Informatics Curriculum Development’, Sustainability, 12(14), p. 5769.Ā Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.Ā 

Ā 
To view a plain text version of this resource, click here to download the PDF.

Authors: Peter Mylon MEng PhD CEng FIMechE PFHEA NTF and SJ Cooper-Knock PhD (The University of Sheffield).Ā 

Topic: Maker Communities and ESD.Ā 

Tool type: Knowledge.Ā 

Relevant disciplines: Any.Ā 

Keywords: Interdisciplinary; Education for sustainable development; Makerspaces, Recycling or recycled materials; Employability and skills; Inclusive learning; Local community; Climate change; Student engagement; Responsible consumption; Energy efficiency; Design; Water and sanitation; AHEP; Sustainability; Higher education; Pedagogy.Ā 
 
Sustainability competency: Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action).Ā 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Cross-disciplinarity.

Who is this article for? This article should be read by educators at all levels in higher education who are curious about how maker spaces and communities can contribute to sustainability efforts in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.Ā 

 

Premise:Ā Ā 

Makerspaces can play a valuable role in Education for Sustainable Development (ESD). In this article, we highlight three specific contributions they can make to ESD in Engineering: Makerspaces enable engineering in real-world contexts; they build cross-disciplinary connections and inclusive learning; and they promote responsible consumption.Ā Ā Ā 

 

A brief introduction to makerspaces:Ā 

In recent years, a ā€˜makerspace’ movement has emerged in Higher Education institutions. While most prevalent in the US, there are now a number of university-based makerspaces in the UK, including the iForge at the University of Sheffield, the Institute of Making at UCL, and the Makerspace at King’s College London. So what is a makerspace, and what do they have to do with Education for Sustainable Development (ESD)?Ā Ā 

Makerspaces are part of a larger ā€œmaker movementā€ that includes maker fairs, clubs and magazines. Within universities, they are ā€œfacilities and cultures that afford unstructured student-centric environments for design, invention, and prototyping.ā€ (Forest et al., 2016). Successful and inclusive makerspaces are student led. Student ownership of makerspace initiatives deepens student motivation, promotes learning, and encourages peer-to-peer collaboration. Successful makerspaces produce thriving learning communities, through which projects can emerge organically, outside of curriculum structures and discipline boundaries.Ā Ā 

In terms of Education for Sustainable Development (ESD), this means that students can bring their passion to make a difference, and can meet other students with similar interests but complementary skill sets. With support from the University, they can then be given opportunities to put their passion and skills into practice. Below, we focus on three concrete contributions that makerspaces can make to ESD:Ā  Opportunities for applied learning; expanded potential for cross-disciplinary learning, and the chance to deepen engaged learning on sustainable consumption.Ā Ā 

Ā 

1. Maker communities enable engineering in real world contexts:

1.1 ESD rationaleĀ 

ESD enables students to think critically about possible solutions to global challenges. It encourages students to consider the social, economic, and political context in which change takes place. ESD also spurs students to engage, where possible, with those beyond the university.Ā Ā 

It may be tempting to think of engineering as simply a technical exercise: one in which scientific and mathematical knowledge is taken and applied to the world around us. In practice, like all other professions, engineers do not simply apply knowledge, they create it. In order to do their work, engineers build, hold, and share ideas about how the world works: how users will behave; how materials will function; how they can be repaired or disposed of; what risks are acceptable, and why. These ideas about what is reasonable, rational, and probable are, in turn, shaped by the broader social, political, and economic context in which they work. This context shapes everything from what data is available, to what projects are prioritised, and how risk assessments are made. Rather than trying to ignore or remove these subjective and context-based elements of engineering, we need to understand them. In other words, rather than ask whether an engineering process is impacted by social, political, and economic factors we need to ask how this impact happens and the consequences that it holds. ESD encourages students to think about these issues.Ā Ā 

Ā 

1.2 The contribution of makerspacesĀ 

The availability of both equipment and expertise, and the potential for practical solutions, means that makerspaces often attract projects from outside the university. These provide opportunities to practise engineering in real-world contexts, where there is the possibility for participatory design. All such projects will require some consideration of social, political, or economic factors, which are at the heart of the Sustainable Development Goals.Ā Ā 

One example of this is SheffHEPP, a hydroelectric power project at the University of Sheffield. In response to requests for help from local communities, students are designing and building small-scale hydroelectric power installations in a number of locations. This multidisciplinary project requires an understanding of water engineering, electrical power generation, battery storage and mechanical power transmission, as well as taking into consideration the legal, financial, and environmental constraints of such an undertaking. But it also requires Making – students have made scale models and tested them in the lab, and are now looking to implement their designs in situ. Such combinations of practical engineering and real-world problems that require consideration of the wider context provide powerful educational experiences that expose students to the realities of sustainable development.Ā 

 

There are a number of national and international organisations for students that promote SDGs through competitions and design challenges. These include:Ā 

 

Student engagement with such activities is growing exponentially, and makerspaces can benefit students who are prototyping ideas for the competitions. At Sheffield, there are over 20 co-curricular student-led projects in engineering, involving around 700 students, many of which engage with the SDGs. In addition to SheffHEPP and teams entering all of the above competitions, these include teams designing solutions for rainwater harvesting, vaccine storage, cyclone-proof shelters for refugees, plastics recycling, and retrofitting buildings to reduce energy consumption. As well as the employability benefits of such activities, students are looking for ways to use engineering to create a better future, with awareness of issues around climate change and sustainability increasing year on year. And none of these activities would be possible without access to maker facilities to build prototypes.Ā Ā 

 

Linked to the makerspace movement is the concept of hackathons – short sprints where teams of students compete to design and prototype the best solution to a challenge. At Sheffield, these have included:Ā 

 

In summary, Makerspaces enable students to access multiple initiatives through which they can engage in learning that is potentially participatory and applied. These forms of learning are critical to ESD and have the potential to address multiple Sustainable Development Goals.Ā Ā 

Ā 

2. Maker communities build cross-disciplinary connections and encourage inclusive learning:

2.1 ESD rationaleĀ 

Global complex challenges cannot be resolved by engineers alone. ESD encourages students to value different forms of knowledge, from within and beyond academia. Within academia, makerspaces can provide opportunities for students to collaborate with peers from other disciplines. Cross-disciplinary knowledge can play a crucial role in understanding the complex challenges that face our world today. Makerspaces also offer an opportunity for students to engage with other forms of knowledge – such as the knowledge that is formed through lived experience – and appreciate the role that this plays in effective practices of design and creation. Finally, makerspaces can help students to communicate their knowledge in ways that are understandable to non-specialist audiences. This inclusive approach to knowledge creation and knowledge sharing enables students to think innovatively about sustainable solutions for the future.Ā Ā 

 

2.2 The contribution of makerspacesĀ Ā Ā 

Cross-disciplinary spacesĀ Ā 

Student-led makerspaces encourage students to lead in the creation of cross-disciplinary connections. For example, at the University of Sheffield, the makerspace has primarily been used by engineering students. Currently, however, the students are working hard to create events that will actively draw in students from across the university. This provides students with a co-created space for cross-disciplinary exchange as students train each other on different machines, learning alongside each other in the space. At other times, staff from different disciplines can come together to create shared opportunities for learning.Ā 

The cross-disciplinary nature of makerspaces and the universality of the desire to create encourages a diverse community to develop, with inclusivity as a core tenet. They can often provide opportunities for marginalised communities. Makerspaces such as the ā€˜Made in Za’atari’ space in Za’atari refugee camp have been used to give women in the camp a space in which they can utilise, share, and develop their skills both to improve wellbeing and create livelihoods. Meanwhile, projects such as Ambessa Play have provided opportunities for young people in refugee camps across the world to learn about kinetic energy and electronic components by creating a wind-up flashlight.Ā Ā 

Ā 

Spaces of inclusive learningĀ Ā 

Maker projects also allow students to engage with their local communities, whether creating renewable energy installations, restoring community assets or educating the next generation of makers. Such projects raise the profile of sustainable development in the wider public and give students the opportunity to contribute to sustainable development in their neighbourhoods.Ā 

Ā 

3. Maker communities promote responsible consumption:

3.1 ESD rationaleĀ 

ESD does not just influence what we teach and how we teach; it also shapes who we are. A central tenet of ESD is that it helps to shape students, staff, and educational communities. When this happens, they are – in turn – better able to play their part in shaping the world around them.Ā Ā 

Ā 

3.2 The contribution of makerspacesĀ Ā 

Even before the concept was popularised by the BBC’s ā€˜The Repair Shop’, repair cafes had begun to spring up across the country. Such facilities promote an ethos of repair and recycling by sharing of expertise amongst a community, a concept which aligns very closely with the maker movement. Items repaired might include furniture, electrical appliances, and ornaments. Related organisations like iFixit have also helped to promote responsible consumption and production through advocacy against built-in obsolescence and for the ā€˜Right to Repair’.Ā 

The same principles apply to Making in textiles – sustainable fashion is a topic that excites many students both within and outside engineering, and makerspaces offer the opportunity for upcycling, garment repair and clothes shares. Students can learn simple techniques that will allow them to make better use of their existing wardrobes or of used clothing and in the process begin to change the consumption culture around them. At the University of Sheffield, our making community is currently planning an upcycled runway day, in which students will bring clothing that is in need of refresh or repair from their own wardrobes or from local charity shops. Our team of peer-instructors and sewing specialists will be on hand to help students to customise, fit, and mend their clothes. In doing so, we hope to build an awareness of sustainable fashion amongst our students, enabling an upcycling fashion culture at the university.Ā Ā 

Ā 

Conclusion:Ā 

Education for Sustainable Development plays a vital role in enabling students to expand the knowledge and skills that they hold so that they can play their part in creating a sustainable future. Makerspaces offer a valuable route through which engineering students can engage with Education for Sustainable Development, including opportunities for applied learning, cross disciplinary connections, and responsible consumption.Ā Ā 

 

References:Ā 

Forest, C. et al. (2016) ā€˜Quantitative survey and analysis of five maker spaces at large, research-oriented universities’, 2016 ASEE Annual Conference & Exposition Proceedings [Preprint]. (Accessed 19 February 2024).Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.Ā 

Ā 
To view a plain text version of this resource, click here to download the PDF.

Author: Onyekachi Nwafor (CEO, KatexPower).Ā 

Topic: Harmonising economic prosperity with environmental responsibility.Ā 

Tool type: Knowledge.Ā 

Relevant disciplines: Any. Ā 

Keywords: Environmental responsibility; Pedagogy; Economic growth; Ethical awareness, Interdisciplinary; Collaboration; AHEP; Sustainability; Environment; Biodiversity; Local community; Climate change; Higher education.Ā 
 
Sustainability competency: Integrated problem-solving; Strategic; Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 8 (Decent work and economic growth); SDG 10 (Reduced Inequalities); SDG 13 (Climate action).Ā 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels in higher education who wish to consider how to navigate tradeoffs between economic and environmental sustainability as they apply to engineering. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.Ā 

 

Premise:Ā Ā 

In the face of the ever-growing need for economic progress and the escalating environmental crises, the engineering profession finds itself at a crossroads. Striking a delicate balance between economic growth and environmental sustainability is no longer an option but an imperative. This article delves into the pivotal role of engineering educators in shaping the mindset of future engineers, offering an expanded educational framework that fosters a generation capable of harmonising economic prosperity with environmental responsibility.Ā 

Ā Ā 

The uneasy truce:Ā Ā 

Developing nations, with burgeoning populations and aspirations for improved living standards, grapple with the paradox of rapid economic expansion at the expense of environmental degradation. This necessitates a shift in focus for engineering educators, who bear the responsibility of cultivating engineers with a foresighted perspective. Rather than demonising economic growth, the goal is to instill a nuanced understanding of its interdependence with environmental well-being. For example, in developing countries like Brazil, rapid economic expansion driven by industries such as agriculture and logging has resulted in extensive deforestation of the Amazon region. This deforestation not only leads to the loss of valuable biodiversity and ecosystem services but also contributes to climate change through the release of carbon dioxide. Similarly, in industrialised nations, the pursuit of economic growth has often led to the pollution of air, water, and soil, causing adverse health effects for both humans and wildlife.Ā 

Ā 

Equipping our future stewards:Ā 

To navigate this delicate landscape, educators must move beyond traditional technical expertise, fostering a holistic approach that integrates ethical awareness, interdisciplinary collaboration, localised solutions, and a commitment to lifelong learning.Ā 

1. Ethical awareness: One potential counterargument to the expanded educational framework may be that the focus of engineering education should remain solely on technical expertise, with the assumption that ethical considerations and interdisciplinary collaboration can be addressed later in a professional context. However, research has shown that integrating ethical awareness and interdisciplinary collaboration early in engineering education not only enhances problem-solving skills but also cultivates a sense of responsibility and long-term thinking among future engineers.Ā 

2. Holistic thinking: Research has shown that interdisciplinary collaboration between engineering and social science disciplines can lead to more effective and sustainable solutions. For instance, a study conducted by the World Bank’s Water and Sanitation Program (WSP) found that by involving sociologists and anthropologists in the design and implementation of water infrastructure projects in rural communities, engineers were able to address cultural preferences and local knowledge, resulting in higher acceptance and long-term maintenance of the infrastructure. Similarly, a case study of a renewable energy project in Germany demonstrated how taking into account the geographic nuances of the region, such as wind patterns and solar radiation, led to more efficient and cost-effective energy solutions. Presently, Germany boasts the world’s fourth-largest installed solar capacity and ranks amongst the top wind energy producers.  

3. Localised solutions: Students must be required to consider the social, cultural, and geographic nuances of each project. This means moving away from one-size-fits-all approaches and towards an emphasis on the importance of context-specific solutions. This ensures that interventions are not only technologically sound but also culturally appropriate and responsive to local needs, fostering sustainability at both the project and community levels.Ā 

4. Lifelong learning: Empower students with the skills to stay abreast of emerging technologies, ethical frameworks, and policy landscapes. Recognise that the landscape of sustainability is dynamic and ever evolving. Foster a culture of continuous learning and adaptability to ensure that graduates remain true stewards of a sustainable future, equipped to navigate evolving challenges throughout their careers.Ā 

 

A compass for progress:Ā Ā 

By integrating these principles into engineering curricula, educators can provide students with a moral and intellectual compass—an ethical framework guiding decisions toward a future where economic progress and environmental responsibility coexist harmoniously. Achieving this paradigm shift will require collaboration, innovation, and a willingness to challenge the status quo. However, the rewards are immeasurable: a generation of engineers empowered to build a world where prosperity thrives alongside a healthy planet—a testament to the true potential of the engineering profession.Ā 

Engineering teachers can raise a generation of engineers who can balance economic growth with environmental responsibility by embracing a broader educational framework that includes ethical awareness, cross-disciplinary collaboration, localised solutions, and a commitment to lifelong learning. Through the adoption of these principles, engineering curricula can provide students with a moral and intellectual compass, guiding them toward a future where economic progress and environmental sustainability coexist harmoniously.Ā 

 

References:Ā 

International Renewable Energy Agency (IRENA) (2023). ā€˜Pathways to Carbon Neutrality: Global Trends and Solutions’, Chapter 3.Ā 

Sharma, P. (2022) ā€˜The Ethical Imperative in Sustainable Engineering Design’, Chapter 5.Ā 

United Nations (2021) ā€˜Goal 13: Climate Action. In Sustainable Development Goals: Achieving a Balance between Growth and Sustainability’. (pp. 120-135).Ā 

World Bank (2022) ā€˜Renewable Energy in Developing Nations: Prospects and Challenges’, pp.10-15.Ā 

World Bank Group (2023) Cleaner cities, Brighter Futures: Ethiopia’s journey in urban sanitation, World Bank. (Accessed: 05 February 2024).Ā Ā Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.Ā 
 

To view a plain text version of this resource, click here to download the PDF.

Author: Professor Manuela Rosa (Algarve University, Institute of Engineering).Ā 

Topic: Engineering for ecological sustainability.Ā 

Tool type: Knowledge.Ā 

Relevant disciplines: Any.Ā 

Keywords: Curriculum; Engineering professionals; Ecology; Ecosystem services; Natural resources; Interdisciplinary; Biodiversity; Water and sanitation; Climate change; AHEP; Sustainability; Higher education; Pedagogy.Ā 
 
Sustainability competency: Systems thinking; Collaboration; Integrated problem-solving; Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.Ā 

Related SDGs: SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 7 (Affordable and clean energy); SDG 12 (Responsible consumption and production); SDG 14 (Life below water).Ā 
 
Reimagined Degree Map Intervention: Cross-disciplinarity; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels in higher education who wish to embed environmental and ecological sustainability into the engineering curriculum or design modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.Ā 

 

Premise:Ā 

Engineering has always responded to the societal challenges of humanity, contributing to its progress and economic development. However, the synergetic effects of fossil-based economic growth together with large-scale engineering projects have also caused great pressures on natural resources and ecosystems leading to over-exploitation and degradation. In consequence, in the last decades, a multidimensional perspective on sustainability perspective has arisen, and has been acknowledged by social movements, governments and institutions.Ā Ā Ā 

Meanwhile, this assumes deep epistemological changes, requiring holistic and transdisciplinary approaches that must be considered by engineering professionals, establishing communication based on new ways of thinking. There is the need to interweave disciplines, to establish complementary relationships, to create associations in order to root new knowledge, enabling communication between the sciences. In doing so, transdisciplinary science has emerged, i.e. the science that can develop from these communications. It corresponds to a higher stage succeeding the stage of interdisciplinary relationships, which would not only cover interactions or reciprocities between specialised research projects, but would place these relationships within a total system without any firm boundaries between disciplines (Piaget, 1972).Ā Ā 

Currently, the complexity associated with climate change and the uncertainty of the link between global loss of biodiversity and current loss of public health, are demanding innovative knowledge, needing those holistic and transdisciplinary approaches.Ā  Engineering professionals must therefore give additional attention to ecological sustainability.Ā 

Ā 

The challenges of sustainability:Ā 

The term ā€œsustainabilityā€ portrays the quality of maintenance of something which can continue for an indefinite time, such as biological species and ecosystems. Sustainability is based on a dynamic balance between natural and human ecosystems, in order to maintain the diversity, complexity and functions of the ecological systems that support life, while contributing to prosperous and harmonious human development (Costanza, 1997). This strong perspective of sustainability needs to have a prominent place in land use management which must consider the carrying capacity of natural ecosystems.Ā Ā 

Ecological sustainability in particular aims to maintain the earth’s natural potential and the biosphere, its stock of natural resources, atmosphere and hydrosphere, ecosystems and species. Ecosystems should be kept healthy by preserving their ā€œecological integrityā€, i.e. the capacity to maintain the structure and function of its natural communities, which includes biogeochemical cycles.Ā Ā 

Engineering professionals must therefore understand the global limits for water, land, and energy use (contributing to less atmospheric carbon emissions), and preserve other natural resources, such as nutrients or biodiversity. In the technical decision-making process, they need to understand the ecological impacts of big scale projects, such as transportation infrastructures, dams, deforestation, and others. Alongside other professionals, they need to contribute to the restoration, conservation and preservation of ecosystem services, e. g. support services, production services, regulating services and cultural services. These services result in benefits that people and organisations receive from ecosystems and constitute determinants of well-being (Millennium Ecosystem Assessment, 2005).Ā Ā 

Until now, technical solutions often focused on highly visible man-made structures, many of which stopped or disrupted natural processes. Presently, the importance of regulating natural ecosystem services such as water purification, water supply, erosion and flood control, carbon storage and climate regulation is beginning to be perceived. These are considered as soft engineering tools and must be highlighted by engineering educators and assumed in the practice.Ā 

This ecological mindset would enable solutions that recognise management and restoration of natural ecosystems in order to curb climate change, protect biodiversity, sustain livelihoods and manage rainstorms. Nature-based solutions are a natural climate solution in cities, contributing to the mitigation and adaptation of climate change through green roofs, rain gardens, constructed wetlands that can minimise damaging runoff by absorbing stormwater, reducing flood risks and safeguarding freshwater ecosystems. They are essential in climate refuges for city residents during heatwaves and other extreme climate events. These solutions need specific and new knowledge made by ecologists working with engineers and others, which demands action beyond disciplinary silo, i.e., a transdisciplinary approach.Ā Ā 

Within this context, engineering professionals must consider specific operating principles of sustainability:Ā 

These principles must be considered in engineering education, and require deep changes in teaching, because there is a great difficulty in studying and managing the socio-ecological system according to the Cartesian paradigm which breaks up and separates the parts of a whole. New ecological thinking emphasises holistic approaches, non-linearity, and values focused on preservation, conservation and collaboration (Capra, 1996). The transdisciplinary approach needs dialogic and recursive thinking, which articulates from the whole to the parts and from the parts to the whole, and can only be unchained with the connection of the different fields of knowledge, including knowledge from local communities in specific territories.Ā Ā Ā 

In higher education, engineering students should establish face-to-face contacts with ecology students in order to better understand ecological sustainability and generate empathy on the subject. Engineering students must develop skills of collaboration and inter-cultural communication tools (Caeiro-RodrĆ­guez et al., 2021) that will facilitate face to face workshops with other professionals and enrich learning experiences.Ā Ā 

In the 21st century, beyond the use of technical knowledge to solve problems, engineering professionals need communicational abilities to consider ecological sustainability, requiring networking, cooperating in teams, and working with local communities. Engineering educators must include trans-sectoral and transdisciplinary research and holistic approaches which make clear progress in tackling ecological sustainability.Ā 

Ā 

Conclusion:Ā 

The interconnected socio-ecological system must be managed for sustainability by multiple stakeholders.Ā  Engineering professionals need to develop a set of skills and competencies related with the ability to work with other ones (e.g. from the natural sciences) and citizens. Currently, beyond the use of technical knowledge to solve problems, engineers need to consider the sustainable development goals, requiring networking, cooperating in teams, and working with communities through transdisciplinary approaches.Ā Ā 

Education for Sustainable Development is required to empower engineering professionals to adopt strong sustainable actions that simultaneously ensure ecological integrity, economic viability and a just society for the current and future generations. Education is a fundamental tool for achieving the Sustainable Development Goals, as recognised in the 2030 Education Agenda, coordinated by UNESCO (2020).Ā Ā 

 

References:Ā 

Ā 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Ā 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.Ā 

 

To view a plain text version of this resource, click here to download the PDF.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourĀ Get InvolvedĀ page.

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development  Assessment materialsĀ  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materialsĀ  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materialsĀ  General
Times Higher Education – Impact Rankings 2022 Accreditation materialsĀ  General
Times Higher Education, Impact Rankings 2023 Accreditation materialsĀ  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materialsĀ  General

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get InvolvedĀ page.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourĀ Get InvolvedĀ page.

 

To view a page that only lists library links from a specific category type:

 

Knowledge tools

Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.

Resource Topic Discipline
UN SDG website Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO’s Education for Sustainable Development Toolbox Education for Sustainable Development and UN Sustainable Development Goals General
Newcastle University’s Guide to Engineering and Education for Sustainable Development Education for Sustainable Development and UN Sustainable Development Goals General
International Institute for Sustainable Development Knowledge Hub Education for Sustainable Development and UN Sustainable Development Goals General
PBL, SDGs, and Engineering Education WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Re-setting the Benchmarks for Engineering Graduates with the Right Skills for Sustainable Development WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHE’s Guidance on embedding Education for Sustainable Development in HE Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO Engineering ReportĀ  Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHEEducation for Sustainable Development: a review of the literature 2015-2022  (only accessible to colleagues from member institutions at AdvanceHE – this is a member benefit until October 2025) Education for Sustainable Development and UN Sustainable Development Goals General
Wackernagel, M., Hanscom, L. and Lin, D. (2017) Making the Sustainable Development Goals consistent with sustainability, Frontiers. (Accessed: 01 February 2024). Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development (VIP4SD), University of Strathclyde (Video) Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development, University of Strathclyde (Study with us) Education for Sustainable Development and UN Sustainable Development Goals General
Siemens Skills for Sustainability Network Roundtable Article – August 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Network Roundtable Article – October 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Report: World Engineering Day – Engineering for One Planet (2024) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Student Survey Student Voice   Engineering-specific
Students Organising for Sustainability Learning Academy  Student Voice   General
Students Organising for Sustainability – Sustainability Skills Survey Student Voice   General
Engineers Without Borders-UK Global Responsibility Competency Compass  Competency Frameworks for SustainabilityĀ  Engineering-specific
Institute of Environmental Management and Assessment Sustainability Skills Map  Competency Frameworks for SustainabilityĀ  General
Arizona State School of Sustainability Key Competencies  Competency Frameworks for SustainabilityĀ  General
EU GreenComp: the European Sustainability Competence Framework  Competency Frameworks for SustainabilityĀ  General
International Engineering Alliance Graduate Attributes & Professional Competencies Competency Frameworks for SustainabilityĀ  General
Engineering for One Planet (EOP) – The EOP Framework Competency Frameworks for SustainabilityĀ  Engineering-specific
Ellen Macarthur Foundation’s Circular Economy website  Broader Context , Circular economy Engineering-specific
GreenBiz’s Cheat Sheet of EU Sustainability Regulations  Broader Context , Regulations General
Green Software Practitioner – Principles of Green Software Broader Context , Software Engineering-specific
Microsoft’s Principles of Sustainable Software Engineering  Broader Context , Software Engineering-specific
Engineering Futures – Sustainability in Engineering WebinarsĀ  (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.) Broader Context, Engineering Engineering-specific
Innes, C. (2023) AI and Sustainability: Weighing up the environmental pros and cons of Machine Intelligence Technology., Jisc – Infrastructure.Ā  (Accessed: 01 February 2024). Broader Context, Artificial Intelligence Engineering-specific
Arnold, W. (2020a) The structural engineer’s responsibility in this climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2017) Structural engineering in 2027, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2020b) The institution’s response to the climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Litos , L. et al. (2023) An investigation between the links of sustainable manufacturing practices and Innovation, Procedia CIRP. (Accessed: 01 February 2024). Broader Context, Manufacturing Engineering-specific
UAL Fashion SEEDS: Fashion Societal, Economic and Environmental Design-led Sustainability Broader Context, Design General
ISTRUCTE – Sustainability Resource Map
Broader Context, Engineering Engineering-specific

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get InvolvedĀ page.

We’ve collated a library of links to groups, networks, organisations, and initiatives that connect you with others who are working on embedding sustainability in engineering education.

 

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of
engineering education resources on sustainability below. Please note, the resources linked
below are all open-source. If you want to suggest a resource that has helped you, find out how
on ourĀ Get InvolvedĀ page.

 

To view a page that only lists library links from a specific category type:

 

Collaboration resources

Organisation Type Sustainability focus
Students Organising for Sustainability (SOS) Student groups General
European Students of Industrial Engineering and Management (ESTIEM) Student groups Engineering-specific
People & Planet Student groups General
Student Platform For Engineering Education Development (SPEED) Student groups Engineering-specific
Global Spark Student groups General
Board of European Students of Technology (BEST) Student groups General
UN regional centre for expertise Networks General
Alliance for Sustainability Leadership in Education(EAUC) Networks General
RCE Scotland – Learning for Sustainability Scotland Networks General
UN Global Compact Network Networks General
Global Engineering Deans Council (GEDC ) Networks Engineering-specific
International Federation of Engineering Education Societies (IFEES) Networks Engineering-specific
Engineering for Change Networks Engineering-specific
Higher Education Sustainability Initiative(HESI) Organisations / Initiatives General
UK Fires Organisations / Initiatives Engineering-specific
Engineering for One Planet (EOP) Organisations / Initiatives Engineering-specific
Engineers Without Borders UK (EWB-UK) Organisations / Initiatives Engineering-specific
SEFI Sustainability Special Interest Group Organisations / Initiatives Engineering-specific
Inter-University Sustainable Development Research Programme (IUSDRP) Organisations / Initiatives General

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This post is also availableĀ here.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get InvolvedĀ page.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourĀ Get InvolvedĀ page.

 

Jump to a section on this page:

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development  Assessment materialsĀ  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materialsĀ  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materialsĀ  General
Times Higher Education – Impact Rankings 2022 Accreditation materialsĀ  General
Times Higher Education, Impact Rankings 2023 Accreditation materialsĀ  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materialsĀ  General

Ā 

Collaboration resources

Click to view our Collaboration resources page where you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others.Ā 

Ā 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline

AdvanceHE’s Education for Sustainable Development Curriculum Design Toolkit

Curriculum Development   General
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical toolsĀ  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical toolsĀ  General
Siemens – Engineering student softwareĀ  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

Ā 

Knowledge tools

Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.

Resource Topic Discipline
UN SDG website Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO’s Education for Sustainable Development Toolbox Education for Sustainable Development and UN Sustainable Development Goals General
Newcastle University’s Guide to Engineering and Education for Sustainable Development Education for Sustainable Development and UN Sustainable Development Goals General
International Institute for Sustainable Development Knowledge Hub Education for Sustainable Development and UN Sustainable Development Goals General
PBL, SDGs, and Engineering Education WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Re-setting the Benchmarks for Engineering Graduates with the Right Skills for Sustainable Development WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHE’s Guidance on embedding Education for Sustainable Development in HE Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO Engineering ReportĀ  Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHEEducation for Sustainable Development: a review of the literature 2015-2022  (only accessible to colleagues from member institutions at AdvanceHE – this is a member benefit until October 2025) Education for Sustainable Development and UN Sustainable Development Goals General

Wackernagel, M., Hanscom, L. and Lin, D. (2017) Making the Sustainable Development Goals consistent with sustainability, Frontiers. (Accessed: 01 February 2024).

Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development (VIP4SD), University of Strathclyde (Video) Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development, University of Strathclyde (Study with us) Education for Sustainable Development and UN Sustainable Development Goals General
Siemens Skills for Sustainability Network Roundtable Article – August 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Network Roundtable Article – October 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Report: World Engineering Day – Engineering for One Planet (2024)
Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Student Survey Student Voice   Engineering-specific
Students Organising for Sustainability Learning Academy  Student Voice   General
Students Organising for Sustainability – Sustainability Skills Survey Student Voice   General
Engineers Without Borders-UK Global Responsibility Competency Compass  Competency Frameworks for SustainabilityĀ  Engineering-specific
Institute of Environmental Management and Assessment Sustainability Skills Map  Competency Frameworks for SustainabilityĀ  General
Arizona State School of Sustainability Key Competencies  Competency Frameworks for SustainabilityĀ  General
EU GreenComp: the European Sustainability Competence Framework  Competency Frameworks for SustainabilityĀ  General
International Engineering Alliance Graduate Attributes & Professional Competencies Competency Frameworks for SustainabilityĀ  General
Engineering for One Planet (EOP) – The EOP Framework Competency Frameworks for SustainabilityĀ  Engineering-specific
Ellen Macarthur Foundation’s Circular Economy website  Broader Context , Circular economy Engineering-specific
GreenBiz’s Cheat Sheet of EU Sustainability Regulations  Broader Context , Regulations General
Green Software Practitioner – Principles of Green Software Broader Context , Software Engineering-specific
Microsoft’s Principles of Sustainable Software Engineering  Broader Context , Software Engineering-specific
Engineering Futures – Sustainability in Engineering WebinarsĀ  (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.) Broader Context, Engineering Engineering-specific
Innes, C. (2023) AI and Sustainability: Weighing up the environmental pros and cons of Machine Intelligence Technology., Jisc – Infrastructure.Ā  (Accessed: 01 February 2024). Broader Context, Artificial Intelligence Engineering-specific
Arnold, W. (2020a) The structural engineer’s responsibility in this climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2017) Structural engineering in 2027, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2020b) The institution’s response to the climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Litos , L. et al. (2023) An investigation between the links of sustainable manufacturing practices and Innovation, Procedia CIRP. (Accessed: 01 February 2024). Broader Context, Manufacturing Engineering-specific
UAL Fashion SEEDS: Fashion Societal, Economic and Environmental Design-led Sustainability
Broader Context, Design General
ISTRUCTE – Sustainability Resource Map
Broader Context, Engineering Engineering-specific

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get InvolvedĀ page.

This post is also available here.

Let us know what you think of our website