Toolkit: Complex Systems Toolkit.

Author: James C Atuonwu, PhD, MIET, FHEA (NMITE).

Topic: Simulating pinch analysis and multi-stakeholder trade-offs.

Title: Modelling complexity in industrial decarbonisation.

Resource type: Teaching activity.

Relevant disciplines: Energy engineering; Chemical engineering; Process systems engineering; Mechanical engineering; Industrial engineering.

Keywords: Available soon.

Licensing: This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. It is based upon the author’s 2025 article “A Simulation Tool for Pinch Analysis and Heat Exchanger/Heat Pump Integration in Industrial Processes: Development and Application in Challenge-based Learning”. Education for Chemical Engineers 52, 141–150. 

Related INCOSE Competencies: Toolkit resources are designed to be applicable to any engineering discipline, but educators might find it useful to understand their alignment to competencies outlined by the International Council on Systems Engineering (INCOSE). The INCOSE Competency Framework provides a set of 37 competencies for Systems Engineering within a tailorable framework that provides guidance for practitioners and stakeholders to identify knowledge, skills, abilities and behaviours crucial to Systems Engineering effectiveness.   A free spreadsheet version of the framework can be downloaded.

This resource relates to the Systems Thinking, Systems Modelling and Analysis and Critical Thinking INCOSE competencies.

AHEP mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):  Analytical Tools and Techniques (critical to the ability to model and solve problems), and Integrated / Systems Approach (essential to the solution of broadly-defined problems). In addition, this resource addresses the themes of Science, mathematics and engineering principles; Problem analysis; and Design. 

Educational level: Intermediate.

Educational aim: To equip learners with the ability to model, analyse, and optimise pathways for industrial decarbonisation through a complex-systems lensintegrating technical, economic, and policy dimensionswhile linking factory-level design decisions to wider value-chain dynamics, multi-stakeholder trade-offs, and long-term sustainability impacts. 
 

 

Learning and teaching notes: 

This teaching activity explores heat integration for the decarbonisation of industrial processes through the lens of complex systems thinking, combining simulation, systems-level modelling, and reflective scenario analysis. It is especially useful in modules related to energy systems, process systems, or sustainability 

Learners analyse a manufacturing site’s energy system using a custom-built simulation tool to explore the energy, cost and carbon-emission trade-offs of different heat-integration strategies. They also reflect on system feedback, stakeholder interests and real-world resilience using causal loop diagrams and role-played decision frameworks.  

This activity frames industrial heat integration as a complex adaptive system, with interdependent subsystems such as process material streams, utilities, technology investments and deployments, capital costs, emissions, and operating constraints. 

Learners run the simulation tool to generate outputs to explore different systems integration strategies: pinch-based heat recovery by heat exchangers, with and without heat pump-based waste heat upgrade. Screenshots of the tool graphical user interface are attached as separate files:

The learning is delivered in part, through active engagement with the simulation tool. Learners interpret the composite and grand composite curves and process tables, to explore how system-level outcomes change across various scenarios. Learners explore, using their generated simulation outputs, how subsystems (e.g. hot and cold process streams, utilities) interact nonlinearly and with feedback effects (e.g., heat recovery impacts), shaping global system behaviour and revealing leverage points and emergent effects in economics, emissions and feasibility. 

Using these outputs as a baseline, and exploring other systems modelling options, learners evaluate trade-offs between heat recovery, capital expenditure (CAPEX), operating costs (OPEX), and carbon emissions, helping them develop systems-level thinking under constraints. 

The activity embeds scenario analysis, including causal loop diagrams, what-if disruption modelling, and stakeholder role-play, using multi-criteria decision analysis (MCDA) to develop strategic analysis and systems mapping skills. Interdisciplinary reasoning is encouraged across thermodynamics, economics, optimisation, engineering ethics, and climate policy, culminating in reflective thinking on system boundary definitions, trade-offs, sustainability transitions and resilience in industrial systems.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Downloads: 

 

Learning and teaching resources:

 

About the simulation tool (access and alternatives):

This activity uses a Streamlit-based simulation tool, supported with process data (Appendix A, Table 1, or an educator’s equivalent). The tool is freely available for educational use and can be accessed online through a secure link provided by the author on request (james.atuonwu@nmite.ac.uk or james.atuonwu@gmail.com). No installation or special setup is required; users can access it directly in a web browser. The activity can also be replicated using open-source or online pinch analysis tools such as OpenPinch, PyPinch PinCH, TLK-Energy Pinch Analysis Online. SankeyMATIC can be used for visualising energy balances and Sankey diagrams. 

Pinch Analysis, a systematic method for identifying heat recovery opportunities by analysing process energy flows, forms the backbone of the simulation. A brief explainer and further reading are provided in the resources section. Learners are assumed to have prior or guided exposure to its core principles. A key tunable parameter in Pinch Analysis, ΔTmin, represents the minimum temperature difference allowed between hot and cold process streams. It determines the required heat exchanger area, associated capital cost, controllability, and overall system performance. The teaching activity helps students explore these relationships dynamically through guided variation of ΔTmin in simulation, reflection, and trade-off analysis, as outlined below. 

 

Introducing and prioritising ΔTmin trade-offs:

ΔTmin is introduced early in the activity as a critical decision variable that balances heat recovery potential against capital cost, controllability, and safety. Students are guided to vary ΔTmin within the simulation tool to observe how small parameter shifts affect utility demands, exchanger area, and overall system efficiency. This provides immediate visual feedback through the composite and grand composite curves, helping them connect technical choices to system performance. 

Educators facilitate short debriefs using the discussion prompts in Part 1 and simulation-based sensitivity analysis in Part 2. Students compare low and high ΔTmin scenarios, reasoning about implications for process economics, operability, and energy resilience. 

This experiential sequence allows learners to prioritise competing factors (technical, economic, and operational), while recognising that small changes can create non-linear, system-wide effects. It reinforces complex systems principles such as feedback loops and leverage points that govern industrial energy behaviour. 

 

Data for decisions:

The simulator’s sidebar includes some default values for energy prices (e.g. gas and electricity tariffs) and emission factors (e.g. grid carbon intensity), which users can edit to reflect their own local or regional conditions. For those replicating the activity with other software tools, equivalent calculations of total energy costs, carbon emissions and all savings due to heat recovery investments can be performed manually using locally relevant tariffs and emission factors. 

The Part 1–3 tasks, prompts, and assessment suggestions below remain fully valid regardless of the chosen platform, ensuring flexibility and accessibility across different teaching contexts. 

 

Educator support and implementation notes:

The activity is designed to be delivered across 3 sessions (6–7.5 hours total), with flexibility to adapt based on depth of exploration, simulation familiarity, or group size. Each part can be run as a standalone module or integrated sequentially in a capstone-style format. 

 

Part 1: System mapping: (Time: 2 to 2.5 hours) – Ideal for a classroom session with blended instruction and group collaboration:

This stage introduces students to the foundational step of any heat integration analysis: system mapping. The aim is to identify and represent energy-carrying streams in a process plant, laying the groundwork for further system analysis. Educators may use the Process Flow Diagram of Fig. 1, Appendix A (from a real industrial setting: a food processing plant) or another Process Diagram, real or fictional. Students shall extract and identify thermal energy streams (hot/cold) within the system boundary and map energy balances before engaging with software to produce required simulation outputs. 

 

Key activities and concepts include: 

 

Discussion prompts: 

 

Student deliverables: 

 

Part 2: Running and interpreting process system simulation results (Time: 2 to 2.5 hours) – Suitable for lab or flipped delivery; only standard computer access is needed to run the tool (optional instructor demo can extend depth):

Students use the simulation tool to generate their own results. The process scenario of Fig. 1, Appendix A, with the associated stream data (Table 1) can be used as a baseline.
 

Tool-generated outputs:

 

Learning tasks:

1. Scenario sweeps
Run different scenarios (e.g., different ΔTmin levels, tariffs, emission factors, and Top-N HP selections).
Prompts: How do QREC, QHU/QCU, HX area, and CAPEX/OPEX/CO₂ shift across scenarios? Which lever moves the needle most? 

2. Group contrast (cases A vs B: see time-phased operations A & B in Appendix A)
Assign groups different cases; each reports system behaviours and trade-offs.
Prompts: Where do you see CAPEX vs. energy-recovery tension? Which case is more HP-friendly and why? 

3. Curve reading
Use the Composite & Grand Composite Curves to identify pinch points and bottlenecks; link features on the curves to the tabulated results.
Prompts: Where is the pinch? How does ΔTmin change the heat-recovery target and utility demands? 

4. Downstream implications
Trace how curve-level insights show up in HX sizing/costs and HP options.
Prompts: When does adding HP reduce utilities vs. just shifting costs? Where do stream temperatures/CP constrain integration? 

5. Systems lens: feedback and leverage
Map short causal chains from the results (e.g., tariffs → HP use → electricity cost → OPEX; grid-carbon → HP emissions → net CO₂).
Prompts: Which levers (ΔTmin, tariffs, EFs, Top-N) create reinforcing or balancing effects? 

 

Outcome:

Students will be able to generate and interpret industrial simulation outputs, linking technical findings to economic and emissions consequences through a systems-thinking lens. They begin by tracing simple cause–effect chains from the simulation data and progressively translate these into causal loop diagrams (CLDs) that visualise reinforcing and balancing feedback. Through this, learners develop the ability to explain how system structure drives performance both within the plant and across its broader industrial and policy environment. 

Optional extension: Educators may provide 2–3 predefined subsystem options (e.g., low-CAPEX HX network, high-COP HP integration, hybrid retrofit) for comparison. Students can use a decision matrix to justify their chosen configuration against CAPEX, OPEX, emissions, and controllability trade-offs. 

 

Part 3: Systems thinking through scenario analysis (Time: 2 to 2.5 hours) – Benefits from larger-group facilitation, a whiteboard or Miro board (optional), and open discussion. It is rich in systems pedagogy:

Having completed simulation-based pinch analysis and heat recovery planning, learners now shift focus to strategic implementation challenges faced in real-world industrial settings. In this part, students apply systems thinking to explore the broader implications of their heat integration simulation output scenarios, moving beyond process optimisation to consider real-world dynamics, trade-offs, and stakeholder interactions. The goal is to encourage students to interrogate the interconnectedness of decisions, feedback loops, and unintended consequences in process energy systems including but not limited to operational complexity, resilience to disruptions, and alignment with long-term sustainability goals. 

Activity: Stakeholder role play / Multi-Criteria Decision Analysis 
Students take on stakeholder roles and debate which design variant or operating strategy should be prioritised. They then conduct a Multi-Criteria Decision Analysis (MCDA), evaluating each option based on criteria such as CAPEX, OPEX savings, emissions reductions, risk, and operational ease. 

Stakeholders include:

The team must present a strategic analysis showing how the heat recovery system behaves as a complex adaptive system, and how its implementation can be optimised to balance technical, financial, environmental, and human considerations. 

 

Optional STOP for questions and activities:

Before constructing causal loop diagrams (CLDs), learners revisit key results from their simulation — such as ΔTmin, tariffs, emission factors, and system costs — and trace how these parameters interact to influence overall system performance. Educators guide this transition, helping students abstract quantitative outputs (e.g., changes in QREC, OPEX, or CO₂) into qualitative feedback relationships that reveal cause-and-effect chains. This scaffolding helps bridge the gap between process simulation and systems-thinking representation, supporting discovery of reinforcing and balancing feedback structures. 

 

Instructor guidance:
Each student or small subgroup first constructs a causal loop diagram (CLD) from the viewpoint of their assigned stakeholder (e.g., operations, finance, environment). They then reconvene to integrate these perspectives into a single, shared system map, revealing conflicting goals, reinforcing and balancing feedback, and common leverage points. This two-step approach mirrors real-world decision dynamics and strengthens collective systems understanding. Support materials such as a CLD starter template and a stakeholder impact matrix may be provided to assist instructors in scaffolding systems-thinking activities.

 

Discussion prompts:

 

Instructor debrief (engineering context with simulation linkage):
After students share their CLDs, the educator facilitates a short discussion linking their identified reinforcing and balancing loops to common dynamic patterns observable in the simulation results. For instance: 

This reflection connects quantitative model outputs (e.g. QREC, OPEX, CAPEX, emissions) to qualitative system behaviours, helping learners recognise leverage points and understand how design choices interact across technical, economic, and social dimensions of decarbonisation. 

Activity: Explore “What if?” scenarios 

Working in groups, students choose one scenario to explore using a systems lens:

Each group evaluates the resilience and flexibility of the proposed integration design. They consider:

Educators may add advanced scenarios (e.g. carbon tax introduction, supplier failure, or project delay) to challenge students’ resilience modelling and stakeholder negotiation skills.

 

Stakeholder impact reflection:

To extend systems reasoning beyond the technical domain, students assess how their chosen design scenarios (e.g., low vs. high ΔTmin, with or without heat pump integration) affect each stakeholder group. For instance: 

Each team member rates perceived benefits, risks, or compromises under each design case, and the results are summarised in a stakeholder impact matrix or discussion table. This exercise links quantitative system metrics (energy recovery, emissions, cost) to qualitative stakeholder outcomes, reinforcing the “multi-layered feedback” perspective central to complex systems analysis. 

 

Learning Outcomes (Part 3): 

By the end of this part, students will be able to:

 

Instructor Note – Guiding CLD and archetype exploration:

Moving from numerical heat-exchange and cost data to CLD archetypes can be conceptually challenging. Instructors are encouraged to model this process by identifying at least one reinforcing loop (e.g. “energy savings → lower OPEX → more investment in recovery → further savings”) and one balancing loop (e.g. “higher capital cost → reduced investment → lower heat recovery”). Relating these loops to common system archetypes such as “Limits to Growth” or “Balancing with Delay” helps students connect engineering data to broader system dynamics and locate potential leverage points. The activity concludes with students synthesising their findings from simulation, systems mapping, and stakeholder analysis into a coherent reflection on complex system behaviour and sustainable design trade-offs. 

 

Assessment guidance: 

This assessment builds directly on the simulation and systems-thinking activities completed by students. Learners generate and interpret their own simulation outputs (or equivalent open-source pinch analysis results), using these to justify engineering and strategic decisions under uncertainty. 

Assessment focuses on students’ ability to integrate quantitative analysis (energy, cost, carbon) with qualitative reasoning (feedbacks, trade-offs, stakeholder dynamics), demonstrating holistic systems understanding. 

 

Deliverables (portfolio; individual or group):

1. Reading and interpretation of simulation outputs

Use the outputs you generate (composite & grand composite curves: HX match/area/cost tables; HP pairing/ranking; summary sheets of QHU, QCU, QREC, COP, CAPEX, OPEX, CO₂, paybacks) for a different industrial process (from the one used in the main learning activity) to: 

2. Systems mapping and scenario reasoning 

3. Decision memo (max 2 pages) 

Students should include a short reflective note addressing assumptions, feedback insights, and how their stakeholder perspective shaped their recommendation. 

 

Appendix A: Example process scenario for teaching activity:

The following process scenario explains the industrial context behind the main teaching activity simulations. A large-scale food processing plant operates a milk product manufacturing line. The process, part of which is shown in Fig. 1, involves the following: 

In real operations, the evaporation subprocess occurs at different times from the cooking/separation, oven and pre-finishing operations. This means that their hot and cold process streams are not simultaneously available for direct heat exchange. For a realistic industrial pinch analysis, the process is thus split into two time slices: 

Separate pinch analyses are performed for each slice, using the yellow-highlighted sections of Table 1 as stream data for time slice A, and the green-highlighted sections as stream data for time slice B. Any heat recovery between slices would require thermal storage (e.g., a hot-water tank) to bridge the time gap. 

Fig.1. Simplified process flowsheet of food manufacturing facility.

 

Note on storage and system boundaries:

Because the two sub-processes occur at different times, direct process-to-process heat exchange between their streams is not possible without thermal storage. If storage is introduced: 

 

Table 1. Process stream data corresponding to flowsheet of Fig. 1. Yellow-highlighted sections represent processes available at time slice A, while green-highlighted sections are processes available at time slice B.

 

Appendix B: Suggested marking rubric (Editable):

Adopter note: The rubric below is a suggested template. Instructors may adjust criteria language, weightings and band thresholds to align with local policies and learning outcomes. No marks depend on running software. 

1) Interpretation of Simulation Outputs — 25% 

2) Systems Thinking & Scenario Analysis — 30% 

3) Stakeholder & Implementation Insight — 20% 

4) Decision Quality & Justification — 15% 

5) Communication & Presentation — 10% 

 

References:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.  

Author: Dr Gill Lacey, SFEA, MIEEE (Teesside University). 

Topic: Calculating effects of implementing energy-saving standards. 

Tool type: Teaching. 

Relevant disciplines: Energy; Civil engineering; Construction; Mechanical engineering. 

Keywords: Built environment; Housing; Energy efficiency; Decarbonisation; AHEP; Sustainability; Higher education; Pedagogy. 

Sustainability competency: Systems thinking; Critical thinking; Integrated problem-solving.

AHEP mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and the following specific themes from Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 11 (Sustainable Cities and Communities); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action). 

Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.

Educational level: Beginner / intermediate. Learners are required to have basic (level 2) science knowledge, and ability to populate a mathematical formula and use units correctly. 

 

Learning and teaching notes: 

This activity allows students to consider the dilemmas around providing housing that is cheap to heat as well as cheap to buy or rent. It starts with researching these issues using contemporary news and policy, continues with an in-depth study of insulation, together with calculations of U values, heat energy and indicative costs.

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources:  

To prepare for these activities, teachers may want to explain, or assign students to pre-read articles relating to heating a house with respect to: 

 

Introduction to the activity (teacher): 

Provide the stimulus to motivate the students by considering the dilemma: How do we provide affordable housing whilst minimising heating requirement? There are not enough homes in the UK for everyone who needs one. Some of the houses we do have are expensive to run, poorly maintained and cost a fortune in rent. How do we get the housing builders to provide enough affordable, cheap to run housing for the population? 

One possible solution is adopting Passivhaus standards. The Passivhaus is a building that conforms to a standard around heating requirements that ensures the insulation (U value) of the building material, including doors, windows and floors, prevents heat leaving the building so that a minimum heating requirement is needed. If all houses conformed to Passivhaus standards, the running costs for the householder would be reduced. 

 

Teaching schedule: 

Provide stimulus by highlighting the housing crisis in the UK:  

Students can then research and find the answers to the following questions using the following links, or other websites: 

 

Housing crisis in the UK: 

 

Students can work in groups to work on the extent of the problem from the bullet points provided. This activity can be used to develop design skills (Define the problem) 

 

1. Get the engineering knowledge about preventing heat leaving a house:

If you can prevent heat leaving, you won’t need to add any more, it will stay at the same temperature. Related engineering concepts are:   

 

2. Task:

a. Start with a standard footprint of a three-bed semi, from local estate agents. Make some assumptions about inside and outside temperatures, height of ceilings and any other values that may be needed.

b. Use the U value table to calculate the heat loss for this house (in Watts). The excel table has been pre-populated or you can do this as a group

  1. With uninsulated materials (single glazing, empty cavity wall, no loft insulation. 
  2. With standard insulation (double glazing, loft insulation, cavity wall insulation. 
  3. If Passivhaus standards were used to build the house. 

 c. Costs

  1. Find the typical cost for heating per kWh
  2. Compare the costs for replacing the heat lost.

 d. Final synoptic activity

  1. Passivhaus costs a lot more than standard new build. How do housebuilders afford it?
  2. Provide examples of the cost of building a Passivhaus standard building materials and reduced heating bills.
  3. Suggest some ‘carrots’ and ‘sticks’ that could be used to make sure housing in the UK is affordable to rent/buy and run.

 

3. Assessment:

The spreadsheet can be assessed, and the students could write a report giving facts and figures comparing different levels of insulation and the effects on running costs. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Ramiro Jordan (University of New Mexico). 

Topic: Communicating river system sustainability.  

Tool type: Teaching. 

Relevant Disciplines: Civil; Mechanical. 

Keywords: Water and sanitation; Infrastructure; Community sustainability; Health; Government policy; Social responsibility; AHEP; Higher education; Sustainability; Project brief; Water quality control.
 
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Integrated problem-solving; Strategic.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 hereand navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 8 (Decent work and economic growth). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.

Educational level: Intermediate. 

 

Learning and teaching notes:  

This is an example project that could be adapted for use in a variety of contexts. It asks students to devise a “sustainability dashboard” that can not only track indicators of river system sustainability through technical means, but also communicate the resulting data to the public for the purpose of policy decisions. Teachers should ideally select a local river system to focus on for this project, and assign background reading accordingly. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources: 

 

Introduction: 

Two vital and unique resources for the planet are water and air. Any alterations in their composition can have detrimental effects on humans and living organisms. Water uses across New Mexico are unsustainable. Reduced precipitation and streamflows cause increased groundwater use and recharge.  Serious omissions in state water policy provide no protection against complete depletion of groundwater reserves.   

The water governance status quo in New Mexico will result in many areas of New Mexico running out of water, some sooner, some later, and some already have. Because Water is Life, water insecurity will cause economic insecurity and eventual collapse.   

Water resources, both surface and groundwater, and total water use, determine the amount of water use that can be sustained, and then reduce total water use if New Mexico is to have water security.  The public must therefore recognise that action is required. Availability of compiled, accessible data will lead to and promote our critical need to work toward equitable adaptation and attain sustainable resiliency of the Middle Rio Grande’s common water supply and air quality. 

A data dashboard is needed to provide on-line access to historical, modern, and current perspectives on water, air quality, health, and economic information.  A dashboard is needed to help inform the public about why everyone and all concerned citizens, institutions and levels of government must do their part! 

 

Project brief:  

The Middle Rio Grande region of New Mexico has particular sustainability and resilience requirements and enforceable legal obligations (Rio Grande Compact) to reduce water depletions of the Rio Grande and tributary groundwater to sustainable levels.  However, there is a lack of accessible depictions of the Middle Rio Grande’s water supply and demand mismatch. Nothing publicly accessible illustrates the surface water and groundwater resources, water uses, and current water depletions that cannot be sustained even if water supplies were not declining.  Therefore, there is a corresponding lack of public visibility of New Mexico’s water crisis, both in the Middle Valley and across New Mexico. Local water institutions and governments are siloed and have self-serving missions and do not recognise the limits of the Middle Valley’s water resources.   

A water data dashboard is needed to provide online open access to historical, modern, and current perspectives on water inflows, outflows, and the change in stored surface and groundwater.  This dashboard should inform the public about why everyone and all water institutions and levels of government must do their part! 

 

Given:  

 

Objectives:   

 

Acknowledgements: The 2023 Peace Engineering summer cohort of Argentine Fulbright Scholars who analysed the Middle Rio Grande Case Study concluded that water in the Middle Rio Grande is a community problem that requires a community driven solution.   

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Jing Zhao (University of West of England). 

Topic: Investigating the decarbonisation transition. 

Type: Teaching. 

Relevant disciplines: Civil; Structural; Chemical; Mechanical; Electrical; Computing. 

Keywords: Decarbonisation, Housing, Built environment; Net zero, Carbon emissions; Energy efficiency; Sustainable energy; Local community; Curriculum; Higher education; Sustainability; Assessment. 
 
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 7 (Affordable and clean energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 11 (Sustainable cities and communities). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindsets; Authentic assessment.

Educational level: Beginner. 

 

Learning and teaching notes: 

The purpose of this exercise is to encourage students to think in a socio-technical perspective of delivering extreme low carbon housing (e.g. Passivhaus), in order to support the occupants in adapting to new technologies and low-carbon lifestyle, shifting the paradigm from building isolated energy efficient homes to forming low-carbon communities.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources: 

  

Terminology: 

Before beginning the activity, teachers and learners will want to become familiar with the following concepts. 

 

Activity overview:  

Students will role-play the post occupancy stage of inhabiting a Passivhaus home by playing different characters with different priorities (and personalities). Students will need to learn what new technologies and features are included in Passivhaus and what difficulties/problems the residents might encounter, and at the same time familiarise themselves with contemporary research on energy behaviour, performance gap, rebound effect, as well as broader issues in decarbonisation transition such as social justice and low carbon community building. Through two community meetings, the community manager needs to resolve the residents’ issues, support the residents in learning and adapting their behaviours, and devising an engagement plan to allow the residents to form a self-governed low-carbon community. 

 

Step one: Preparation prior to class: 

Provide a list of reading materials on ‘performance gap’, ‘rebound effect’, ‘adaptive comfort’, energy behaviour, usability and control literature, as well as on Passivhaus and examples of low-carbon features and technologies involved to get a sense of what difficulties residents might encounter.  

To prepare for the role-play activity, assign students in advance to take on different roles (randomly or purposefully), or let them self-assign based on their interests. They should try to get a sense of their character’s values, lifestyle, priorities, abilities. Where no information is available, students can imagine the experiences and perspectives of the residents. Students assigned to be community managers or building associations will prepare for the role-play by learning about the Passivhaus system and prepare ways to support occupants’ learning and behaviour adaptation. The goal is to come up with an engagement plan, facilitate the residents to form their own community knowledge base and peer support. (Considering 1. Who are you engaging (types of residents and their characteristics); 2. How are you engaging (level of engagement, types of communication; 3. When are you engaging (frequency of engagement) 

 

Step two: In class, starting by giving prompts for discussions: 

Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. 

 

  1. Discuss what support the residents might need in post occupancy stage? Who should provide (/pay for) the support? For how long? Any examples or best practice that they might know? Does support needs to be tailored to specific groups of people? (see extra prompts at the end for potential difficulties)
  2. Discuss what the risks are involved in residents not being sufficiently supported to adapt their behaviour when living in a low-carbon house or Passivhaus? (reflect on literature)
  3. Discuss what are the barriers to domestic behaviour change? What are the barriers to support the residents in changing behaviour and to build low-carbon community? 

 

Step three: Class 1 Role Play  

Prior to the Role Play, consider the following prompts: 

Consider the variety of residents and scenarios:

Their varying demographics, physical and mental abilities, lifestyle and priorities. The following characters are examples. Students can make up their own characters. Students can choose scenarios of  

1) social housing or; 

2) private owner-occupier  

Social housing tenants will likely have a more stretched budget, higher unemployment rate and a bigger proportion of disabled or inactive population. They will have different priorities, knowledge and occupancy patterns than private owner-occupier, and will be further disadvantaged during decarbonisation transition (Zhao, 2023). They will need different strategies and motivations to be engaged. The characters of residents could be chosen from a variety of sources (e.g. RIBA Brief generator), or based on students’ own experiences. Each character needs to introduce themselves in a succinct manner. 

 

Other stakeholders involved include: 

They are role-specific characters that don’t necessarily need a backstory. They are there to listen, take notes, give advice and come up with an engagement plan. 

 

Consider the post occupancy in different stages: 

  1. Prior to move-in 
  2. Move-in day 
  3. The initial month 
  4. Change of season  
  5. Quarterly energy audit meeting 

 

Consider the difficulties the residents might encounter: 

 

Consider the different engagement levels of the residents: 

 

The role-play consists of two community meetings over two classes. The first meeting is held at two weeks after move-in date. The second meeting at 6 months of occupancy. The meeting should include a variety of residents on one side, and the ‘chair’ of the meeting on the other. (Consider the accessibility and inclusivity of the meetings as when and where those will be held). In the first meeting, residents will get to know each other, ask questions about house-related problems occurred in the first two weeks, voice concerns. Community managers/council members will chair the meeting, take notes and make plans for support. The teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the ‘chair’ of the meeting. The ‘chair’ of the meeting will open the meeting with the purpose of the meeting – to support the residents and facilitate a self-governed low carbon community. They then ask the residents to feedback on their experience and difficulties. At the end of the first meeting, the group of students will need to co-design an engagement plan, including setting agendas for the second meeting in a 6-month interval (but in reality will happen in the second class) and share the plan with the residents and the class. The teacher and class will comment on the plan. The group will revise the plan after class so it’s ready for the second meeting. 

 

Step four: Homework tasks: Revising the plan 

The students will use the time before the second class to revise the plan and prepare for challenges, problems occurred over the 6-months period. 

Optional wild cards could be used as unpredictable events occur between the first and second meeting. Such events include: 

 

Step five: Class 2 Role play 

The second meeting in the second class will either be chaired by community managers/council members, or be chaired by a few residents, monitored by community managers/council members. The second meeting begins the same way. The students playing residents should research/imagine problems occurred during the 6 months period (refer to literature), and what elements of the engagement plan devised at the end of the first meeting worked and what hasn’t worked. The ‘chair’ of the meeting will take notes, ask questions or try to steer the conversations. At the end of the second meeting, the ‘chair’ of the meeting will reflect on the support and engagement plan, revise it and make a longer-term plan for the community to self-govern and grow. At the end of this class, the whole class could then engage in a discussion about the outcome of the meetings. Teachers could focus on an analysis of how the process went, a discussion about broader themes of social justice, community building, comfort, lifestyle and value system. Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the meeting. 

 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Aditya Johri (George Mason University). 

Topic: Sustainability implications in mobility and technology development.   

Type: Teaching. 

Relevant disciplines: Electrical, Robotics, Civil, Mechanical, Computing. 

Keywords: Design; Accessibility; Technology Policy; Electric Vehicles; Mobility, Circularity; AHEP; Sustainability; Higher education.
 
Sustainability competency: Normative; Self-awareness; Strategic; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation, and infrastructure), SDG 12 (Responsible consumption and production); SDG 13 (Climate action).   
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development.

Educational aim: The objective of this activity is to provide students with an understanding of the complexity of technology development and different considerations that need to be made by stakeholders in the design and implementation of a technology. The activity is set up as a role-play where students are assigned different roles as members of an expert panel providing feedback on the use of E-Scooters on a college campus. 

Educational level: Beginner. 

 

Learning and teaching notes: 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources: 

Several different ethical frameworks, codes, or guidelines can be provided to students to prepare for the discussion or to reflect upon during their discussion depending on the students’ disciplinary composition. Here are a few examples:  

 

Background readings and resources: 

One of the goals of this exercise is to motivate students to undertake their own research on the topic to prepare for the activity. But it is important to provide them with preliminary material to start their own research. Here are a few useful resources for this case:  

Readings: 

 

Videos: 

 

Role-play instructions: 

  1. Each student is assigned a role a week before the discussion.
  2. Students assigned to the role of Eva Walker serve as the moderator and lead the conversation based on the script below.
  3. The script provided below is there to guide the discussion, but you should leave room for the conversation to flow naturally and allow everyone to contribute.

One way to ensure students are prepared for the discussion is to assign a few questions from the script as a pre-discussion assignment (short answers). Similarly, to ensure students reflect on the discussion, they can be assigned the last question from the script as a post-discussion exercise. They can also be asked specifically about frameworks and concepts related to sustainability.  

 

Role-play scenario narrative and description of roles: 

Eva Walker recently started reporting about on-campus traffic issues for the student newspaper. She would have preferred to do more human-interest stories, but as a new member of the staff who had just moved from intern to full-time, she was happy to get whatever opportunity she could. Eva was studying both journalism and creative writing, and this was her dream on-campus job. She also realised that, even though many stories at first didn’t appear to her as though she would be interested in them, as she dug deeper she eventually found an angle with which she could strongly relate.  

One weekday morning, Eva was working on yet another story on parking woes when Amina Ali, one of the editorial staff members, texted her to say that there had been an accident on campus; she just passed it at the intersection of the library and the recreation building, and it might be worth covering. Eva was at the library, and within no time, reached the spot of the accident.  

When Eva arrived, a police vehicle, an ambulance, and a fire engine were all present at the scene, and near the accident site, an e-scooter lay smashed into a tree. It looked like the rider was sitting in the ambulance and was being treated by the medical staff. A little further away, Eva noticed the police speaking to a young woman in a wheelchair. Although Eva’s first instinct was to try to talk to the police or the medical staff to ascertain what had happened, she realised this probably wasn’t the best moment and she would have to wait until later for the official version of the event.  

She looked around and saw a group of four students leaning against a wall with drinks in their hands. A couple of them were vaping. Eva thought that they looked like they had been here for a while, and she walked over to ask them what had happened. From the account they gave her, it appeared as if the e-scooter rider was coming around the bend at some speed, saw the woman in the wheelchair a little too late to ride past her, and, to avoid hitting her, leapt off his e-scooter and let the vehicle hit the tree. Things happened very quickly and no one was exactly sure about the sequence of events, but this was the rough story she got.  

Later, she called the police department on campus and was able to speak with one of the officers to get an official account. The story was very similar to what she already knew. She did find out that nobody was seriously hurt and that the only injuries were to the e-scooter rider and were taken care of at the scene by the medical staff. When she asked about who was to blame or if any legal action was expected, she was told that there were no laws around the use of helmets or speeding for e-scooters yet and that she should reach out later for more information. Eva wrote up what she had so far, sent it over to the editorial staff, and considered her work done.  

But as she was walking back to her halls of residence that evening, her attention was drawn to the large number of e-scooters parked near the library. As she crossed the central campus, she noticed even more e-scooters lying about the intersections, and there was a litter of them around the residence hall. She wondered why she hadn’t noticed them before. Her attention was drawn today, she thought, because of the accident and also because she saw a good Samaritan remove an e-scooter from the sidewalk, as it was blocking the path of one of the self-driving food delivery robots. It’s a sign, Eva thought, this is what she needs to look for more in her next article, the use of e-scooters on campus.  

Eva recognised that, to write a balanced and informative article, as she had been taught to do, she would have to look at many different aspects of the use of e-scooters as well as look broadly at mobility on campus and the use of battery powered vehicles. She had also recently seen e-bikes on campus and, in addition to the food delivery robots, service robots in one of the buildings that she assumed was either delivering paperwork or mail. The accident had also made her realise that, when it came to mobility, accessibility was something that never crossed her mind but that she now understood was an important consideration. She hoped to learn more about it as her research progressed.  

As background research for the article, Eva started reading up on articles and studies published about e-scooters, e-bikes, and urban mobility and came across a range of concerns that had been raised beyond accessibility. First, there were reports that e-scooters are not as environmentally friendly as many service providers had made them out to be. This is related to the production of the battery as well as the short lifespan of the vehicles, and as of yet, there has been no procedure implemented to reuse them (Pyzyk, 2019). Second, there were reports of littering, where e-scooters are often left on sidewalks and other places where they restrict movement of other vehicles, pedestrians, and in particular, those in wheelchairs (Iannelli, 2021). Finally, it was also clear from the reports that accidents and injuries have increased due to e-scooters, especially since many riders do not wear safety gear and are often careless, even inebriated, as there were little to no regulations (2021). When she approached her editor with an outline for an article, she was advised to do some more reporting by talking with people who could shed more light on the issue.  

After some research, Eva shortlisted the following experts across fields related to e-scooters for an interview, and once she spoke with them, she realised that it would help her if she could get them to have a dialogue and respond to some of the questions that were raised by other experts. Therefore, she decided to conduct a focus group with them so that she achieved her goal of a balanced article and did not misrepresent any expert’s point of view.  

 

Experts/roles for discussion: 

1. Bryan Avery is co-founder and chief technology officer (CTO) of RideBy, an e-scooter company. RideBy is one of the options available on campus. Born in a small town, Bryan used to ride his bicycle everywhere while growing up, and for him, founding and leading an e-scooter company provided a chance to merge his interests in personal transportation and new forms of energy. He was a chemical engineer by training, and at a time when most of his friends ended up working for big oil companies, Bryan decided to work on alternative fuels and found himself developing expertise and experience with batteries. For most of the software- and mobile device-related development, RideBy outsourced the work and utilised ready-to-configure systems that were available. By only keeping the core device and battery functionality in-house, they could focus on delivering a much stronger product. Overall, he is quite happy with the success of RideBy so far and can’t help but extol the difference it can make for the environment.  

 

2. Abiola Abrams is a professor of transportation engineering and an expert on mobility systems. Her work combines systems engineering, computer science, and data analytics. Her recent research is on urban mobility and micro-mobility services, particularly e-bikes. In her research, Dr. Abrams has looked at a host of topics related to e-bikes, many of which are also applicable to e-scooters, including the optimisation of hubs for availability, common path patterns of users, subscription use models, and the e-waste and end of lifecycle for these vehicles. Increasingly, she has become concerned about the abuse of some of these services, especially in cities that attract a lot of tourists, and about the rough use of the vehicles, so much so that many do not even last for a month. In a new project, she is investigating the effect of e-vehicles on the environment and has found that there is mixed evidence for how much difference battery-operated vehicles will actually make for climate change compared to vehicles that use fossil fuels.  

 

3. Marco Rodrigues works as transportation director for the local county government where the university is based. As part of a recent bilateral international exchange, he got the opportunity to spend time in different cities in Germany to learn about local transportation. He realised very quickly that local transportation was very different in Germany; residents had a range of public, shared options that were missing in the United States. However, he also realised that e-mobility services were being considered across both countries. He investigated this further and found that Germany waited until it could pass some regulations before allowing e-mobility operators to offer services; helmets were mandatory on e-scooters and e-bikes, and riders had to purchase a nominal insurance policy. He also learned that there were strict rules around the sharing of data generated by the vehicles as well as the apps used by riders.  

 

4. Judy Whitehouse is director of infrastructure and sustainability on campus and responsible for planning the long-term development of the campus from a space perspective, but also increasingly from a sustainability dimension. As the number of students has increased, so has the need for more infrastructure, including classrooms and halls of residence. This has also resulted in greater distances to be traveled on campus. Judy regards e-mobility options as a necessary component of campus life and has been a strong supporter for them. Lately, she has been called into meetings with safety and emergency management people discussing the issue of increased accidents on campus and the littering of e-vehicles across the campus. Not only is it bad for living on campus, but it is also bad for optics. A recent photo featured in the campus newspaper was a stark reminder of just how bad it can look. She is further divided on the use of e-scooters due to misgivings about the sustainability of battery use, as new research suggests that manufacturing batteries and disposing them are extremely harmful for the environment.  

 

5. Aaron Schneider heads Campus Mobility, a student interest group focused on autonomous vehicles development and use. The group members come from different degree programmes and are interested in both the technical dimensions of mobile solutions and the policy issues surrounding their implementation. Aaron himself is a computer science student with interests in data science, and with some of his fellow members from the policy school, he has been analysing a range of mobility-related datasets that are publicly available online. Of these, the data on accidents is quite glaring, as the number of accidents in which e-scooters are involved has gone up significantly. Aaron and his friends were intrigued by their findings and approached some of the companies to see if they would share data, but they were disappointed when they could not get access. Although the companies said it was due to privacy reasons, Aaron was not too convinced by that argument. He was also denied access to any internal reports about usage patterns of accidents. Ideally, he would have liked to know what algorithms were used for optimising delivery and access, but he knew he was not going to get that information.  

  

6. Sarah Johnson is the head of accessibility services on campus and is responsible for both technology- and infrastructure-related support for students, faculty, and staff. The growth of the physical campus and the range of technological offerings has significantly increased the workload for her office, and they are really strained in terms of people and expertise. The emphasis from the university leadership is largely on web and IT accessibility, as teaching and other services are shifting quickly online, but Sarah realises that there is still an acute need to provide physical and mobility support to many members of the community. Although all the new buildings are up to code in terms of accessibility, there is still work to be done both for the older buildings and especially for mobility. Campus beautification does not always go along with access. She is also worried about access to devices, as taking part in any campus activity requires not just a computer, but also access to mobile devices that are out of reach economically for many and not easy to use.  

 

Role-play script: 

To help get the dialogues started and based on her prior conversation with the group, Eva has prepared some initial questions:  

  1. What role are you playing and, from your perspective, what do you see as the biggest pros of using e-vehicles, especially e-scooters on campus?
  2. From your perspective, what do you see as the biggest downside of using e-vehicles, especially e-scooters on campus?
  3. Can you confidently say that e-scooters are an environmentally friendly option?
  4. What current accessibility accommodations would be impacted by the use of e-vehicles, and what new, potential accessibility accommodations might arise from increased use of e-vehicles?
  5. Would we be better off waiting for more regulations to come before deploying these vehicles on campus and, if so, what should those regulations look like?
  6. Should we use automatic regulation of speed on the vehicle based on where it is and/or inform authorities if it is violated?
  7. Can we control where it can go or penalise if not put back?
  8. What guidelines do you recommend for e-scooter usage on campus?  

 

Authorship and project information and acknowledgements: The scenarios and roles were conceptualised and written by Aditya Johri. Feedback was provided by Ashish Hingle, Huzefa Rangwala, and Alex Monea, who also collaborated on initial implementation and empirical research. This work is partly supported by U.S. National Science Foundation Awards# 1937950, 2335636, 1954556; USDA/NIFA Award# 2021-67021-35329. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The research study associated with the project was approved by the Institutional Review Board at George Mason University. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Mr. Neil Rogers (Independent Scholar), Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University) 

Topic: Designing a flood warning system to communicate risk. 

Tool type: Teaching. 

Engineering disciplines: Electronic; Energy; Mechanical. 

Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief. 

Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities). 

Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational level: Intermediate / Advanced. 

 

Learning and teaching notes: 

This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.

The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.

Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways: 

 

Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4) 

In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification. 

 

Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5) 

This project allows teachers the option to stop at multiple points for questions and/or activities as desired.  

 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

Overview:  

A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation. 

 

Time frame & structure:
This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.

It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem. 

To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article:
‘Mean or Green: Which values can promote stable pro-environmental behaviour?’ 

 

Context and Stakeholders: 

Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered. 

 

Pathway 1 

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
  5. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.    
  6. Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change? 

 

Design Process​:

To satisfy the learning outcomes identified above the following activities are suggested. 

 

Assessment activity 1 – Physical artefact: 

Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
 

a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level. 

b) It will integrate to appropriate Operational Amplifier circuitry. 

c) The circuitry will control an output device or devices. 

d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build). 

 

Assessment activity 2 – Technical specification: 

The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements. 

The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references). 

 

Pathway 2

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.

You are required to consider environmental and sustainable factors when presenting a solution. 

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.      

 

Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.

Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town. 

 

Design Process: 

Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m. 

 

Assessment activity – Technical report:       

A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report: 

The report shall be no more than 3000 words (plus illustrations and references)  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Dr Lampros Litos (Cranfield University). 

Topic: Sustainability in manufacturing. 

Tool type: Guidance. 

Engineering disciplines:  Aeronautical; Manufacturing, Mechanical. 

Keywords: Energy efficiency; Factories; Best practice; Eco-efficiency; Practice maturity model; AHEP; Student support; Sustainability. 

Sustainability competency: Critical thinking; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production). 

Reimagined Degree Map Intervention: More real-world complexity.

 

Learning and teaching notes: 

The following are a set of use cases for a maturity model designed to improve energy and resource efficiency in manufacturing facilities. This guide can help engineering educators integrate some of the main concepts behind this model (efficient use of energy and resources in factories in the context of continuous improvement and sustainability) into student learning by showcasing case study examples.   

Teachers could use one or all of the following use cases to put students in the shoes of a practicing engineer whose responsibility is to evaluate and improve factory fitness from a sustainability perspective.  

 

Supporting resources:  

 

Factory assessment in multiple assembly facilities for an aircraft manufacturer:

The assessment is part of the following use case on this industrial energy efficiency network (IEEN): 

The company operates in the aerospace sector and runs 11 manufacturing sites that employ approximately 50000 people across 4 European countries. Most of the sites are responsible for specific parts of the aircraft i.e. fuselage, wings. These parts once manufactured are sent to two final assembly sites. Addressing energy efficiency in manufacturing has been a major concern for the company for several years.  

 

It was not until 2006 that a corporate policy was developed that would formalize efforts towards energy efficiency and set a 20% reduction in energy by the year 2020 across all manufacturing sites. An environmental steering committee at board level was set up which also oversaw waste reduction and resource efficiency. The year 2006 became the baseline year for energy savings and performance measures. Energy saving projects were initiated then, across multiple manufacturing sites. These were carried out as project-based activities, locally guided by the heads of each division and function per site.  

 

A corporate protocol for developing the business case for each project is an initial part of the process. It is designed to assign particular resources and accountabilities to the people in charge of the improvements. Up to 2012, improvement initiatives had a local focus per site and an awareness-raising character. It was agreed that in order to replicate local improvements across the plants a process of cross-plant coordination was necessary. A study on the barriers to energy efficiency in this company revealed three important barriers which needed to be addressed: 

  • Lack of accountability: The site energy manager is responsible for reducing the site’s energy consumption but only has authority to act within a facility’s domain–that is, by improving facilities and services, such as buildings and switchgear. They are not empowered to act within a manufacturing operations parameter. Therefore, no one is responsible for reducing energy demand.  
  • No clear ownership: Many improvements are identified but then delayed due to a lack of funding to carry out the works. This is because neither facilities nor manufacturing operations agree whether the improvement is inside their parameter: typically, facilities claim that it is a manufacturing process improvement, and operations claim that any benefit would be realized by facilities. Both are correct, hence neither will commit resources to achieve the improvement and own the improvement. 
  • No sense of urgency: A corporate target exists for energy reduction–but the planned date for achieving this is 2020.  

The solution that the environmental steering committee decided to support, was the creation of an industrial energy efficiency network (IEEN). The company had previously done something similar when seeking to harmonize its manufacturing processes through  process technology groups (Lunt et al., 2015). This approach consists of each plant nominating a representative who is taking the lead and coordinating activities. It is expected that the industrial network would contribute to a significant 7% share out of the 20% energy reduction target for the year 2020 since its establishment as an operation in 2012.  

 

The network’s operations are further facilitated with corporate resources such as online tools that help practitioners report and track the progress of current projects, review past ones, and learn about best-available techniques. This practice evolved into an intranet website that is further available to the wider community of practitioners and aims to generate further interest and enhance the flow of information back to the network. Additionally, a handbook to guide new and existing members in engaging effectively with the network and its objective has been developed for wider distribution. These tools are supported by training campaigns across the sites.   

 

Most of the network members also act as boundary spanners (Gittell and Weiss, 2004) in the sense that they have established connections to process technology groups or they are members of these groups as well. This helps the network establish strong links with other informal groups within the organization and act as conductor for a better flow of ideas between these groups and the network. Potentially, network members have a chance to influence core technology groups towards energy efficiency at product level.  

 

On average, a 5-10% work-time allocation is approved for all network members to engage with the network functions. In case a member is not coping in terms of time management there is the option of sub-contracting the improvement project to an external subcontractor who is hired for that particular purpose and the subcontractor’s time allocation to the project can be up to 100%.  

 

 “….by having the network we meet and we select together a list of projects that we want to put forward to access that central pot of money. So we know roughly how much will be allocated to industrial energy efficiency and so we select projects across all of the sites that we think will get funded and we put them all together as a group…so rather than having lots of individual sites making individual requests for funding and being rejected, by going together as a group and having some kind of strategy as well…” 

 

Each dot on each of the model rows represents the relative efficiencies that a factory achieves in saving energy and resources through best practice (5 of 11 factories represented here, each delivering an aircraft part towards final assembly). The assessment allowed this network of energy efficiency engineers and managers to better understand the strengths and weaknesses in different factories and where the learning opportunities exist (and against which dimension of the model). 

 

2. The perception problem in manufacturing processes and management practice:

The following assessment is performed in a leading aerospace company where two senior engineering managers (green and orange lines) find it difficult to agree on the maturity of different practices currently used at the factory level as part of their environmental sustainability strategy.  

This assessment was part of the following use case: 

The self-assessment was completed by the head of environment and one of his associates in the same function. These two practitioners work closely together and are based in the UK headquarters. Even though the maturity profiles do not vary significantly (1 level plus or minus) it is clear that there is very little overall agreement on the maturity levels in each dimension.  

 

3. Using the maturity model as a consensus building tool in a factory:

Seven practitioners from different parts of the business (engineering, operations, marketing, health and safety etc.) were brought together to understand how they think the factory performs. The convergence between perceptions was very small and this would indicate high levels of resistance to change and continuous improvement. For example, if senior managers think they are doing really well, they will not invest time and effort in better practices and technologies. 

A timeline (today +5years) was used to understand where they think they are today and where they want to be tomorrow.  

This can be one of the ways of thinking about improvements that need to occur, starting with areas of interest that are underperforming and developing the right projects to address the gaps. 

 

References: 

Lunt, M.F. et al. (2015) ‘Reconciling reported and unreported HFC emissions with  Atmospheric Observations’, Proceedings of the National Academy of Sciences, 112(19), pp. 5927–5931.  

Gittell, Jody & Weiss, Leigh. (2004). Coordination Networks Within and Across Organizations: A Multi-level Framework. Journal of Management Studies. 41. 127-153. 

 

Appendix:

1. High resolution picture of the maturity model for printing (also available here: Litos, L. (2016). Design support for eco-efficiency improvements in manufacturing p. 218.)

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Onyekachi Nwafor (CEO, KatexPower). 

Topic: Electrification of remote villages. 

Tool type: Teaching. 

Relevant disciplines: Energy; Electrical; Mechanical; Environmental. 

Keywords: Sustainability; Social responsibility; Equality, Rural development; Environmental conservation; AHEP; Renewable energy; Electrification; Higher education; Interdisciplinary; Pedagogy. 
 
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity.

Educational level: Intermediate. 

 

Learning and teaching notes: 

This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts). 

The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.    

 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

 

In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions. 

Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain. 

Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002. 

 

Part one: Household energy for Siwa Oasis  

Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.   

 

Data on Household Energy for Siwa Oasis:

 

Activities: 

  1. Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
  2. Simulate daily energy usage patterns using smart meter data.
  3. Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
  4. Calculate appliance power consumption and estimate electricity costs.
  5. Discussion:  

a. How does this situation relate to SDG 7, and why is it essential for sustainable development? 

b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages? 

 

Part two: Power supply options 

Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel). 

 

  1. Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations. 
  2. Fossil fuel: Briefly discuss diesel generators and their environmental impact. 

 

The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis. 

 

Optional STOP for questions and activities:

  1. Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
  2. Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
  3. Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.  

 

Part three: Community mini-grid via harnessing the desert sun 

Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly. 

Electrical components of a typical PV system can be classified into DC and AC. 

 

DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.  

The key DC components are:  

 

AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:  

 

Activities: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Author: Dr. Jemma L. Rowlandson (University of Bristol). 

Topic: Achieving carbon-neutral aviation by 2050.  

Tool type: Teaching. 

Relevant disciplines: Chemical; Aerospace; Mechanical; Environmental; Energy.  

Keywords: Design and innovation; Conflicts of interest; Ethics; Regulatory compliance; Stakeholder engagement; Environmental impact; AHEP; Sustainability; Higher education; Pedagogy; Assessment. 

Sustainability competency: Systems thinking; Anticipatory; Critical thinking; Integrated problem-solving; Strategic; Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action). 

Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational aim: Apply interdisciplinary engineering knowledge to a real-world sustainability challenge in aviation, foster ethical reasoning and decision-making with regards to environmental impact, and develop abilities to collaborate and communicate with a diverse range of stakeholders. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

This case study provides students an opportunity to explore the role of hydrogen fuel in the aviation industry. Considerable investments have been made in researching and developing hydrogen as a potential clean and sustainable energy source, particularly for hydrogen-powered aircraft. Despite the potential for hydrogen to be a green and clean fuel there are lingering questions over the long-term sustainability of hydrogen and whether technological advancements can progress rapidly enough to significantly reduce global carbon dioxide emissions. The debate around this issue is rich with diverse perspectives and a variety of interests to consider. Through this case study, students will apply their engineering expertise to navigate this complex problem and examine the competing interests involved.  

This case is presented in parts, each focusing on a different sustainability issue, and with most parts incorporating technical content. Parts may be used in isolation, or may be used to build up the complexity of the case throughout a series of lessons.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources:  

 

Learning and teaching resources: 

Hydrogen fundamentals resources: 

We recommend encouraging the use of sources from a variety of stakeholders. Encourage students to find their own, but some examples are included below: 

 

Pre-Session Work: 

Students should be provided with an overview of the properties of hydrogen gas and the principles underlying the hydrogen economy: production, storage and transmission, and application. There are several free and available sources for this purpose (refer to the Hydrogen Fundamentals Resources above). 

 

Introduction 

At Airbus, we believe hydrogen is one of the most promising decarbonisation technologies for aviation. This is why we consider hydrogen to be an important technology pathway to achieve our ambition of bringing a low-carbon commercial aircraft to market by 2035.” – Airbus, 2024 

As indicated in the industry quote above, hydrogen is a growing area of research interest for aviation companies to decarbonise their fleet. In this case study, you are put in the role of working as an engineering consultant and your customer is a multinational aerospace corporation. They are keen to meet their government issued targets of reducing carbon emissions to reach net zero by 2050 and your consultancy team has been tasked with assessing the feasibility of powering a zero-emission aircraft using hydrogen. The key areas your customer is interested in are: 

 

Part one: The aviation landscape 

Air travel connects the world, enabling affordable and reliable mass transportation between continents. Despite massive advances in technology and infrastructure to produce more efficient aircraft and reduce passenger fuel consumption, carbon emissions have doubled since 2019 and are equivalent to 2.5 % of global CO2 emissions.  

 

 

Your customer is interested in the feasibility of hydrogen for aviation fuel. However, there is a debate within the management team over the sustainability of hydrogen. As the lead engineering consultant, you must guide your customer in making an ethical and sustainable decision.  

Hydrogen is a potential energy carrier which has a high energy content, making it a promising fuel for aviation. Green hydrogen is produced from water and is therefore potentially very clean. However, globally most hydrogen is currently made from fossil fuels with an associated carbon footprint. Naturally occurring as a gas, the low volumetric density makes it difficult to transport and add complications with storage and transportation. 

 

 

Part two: Hydrogen production 

Hydrogen is naturally abundant but is often found combined with other elements in various forms such as hydrocarbons like methane (CH4) and water (H2O). Methods have been developed to extract hydrogen from these compounds. It is important to remember that hydrogen is an energy carrier and not an energy source; it must be generated from other primary energy sources (such as wind and solar) converting and storing energy in the form of hydrogen.  

 

 

The ideal scenario is to produce green hydrogen via electrolysis where water (H2O) is split using electricity into hydrogen (H2) and oxygen (O2). This makes green hydrogen potentially completely green and clean if the process uses electricity from renewable sources. The overall chemical reaction is shown below: 

However, the use of water—a critical resource—as a feedstock for green hydrogen, especially in aviation, raises significant ethical concerns. Your customer’s management team is divided on the potential impact of this practice on global water scarcity, which has been exacerbated by climate change. You have been tasked with assessing the feasibility of using green hydrogen in aviation for your client. Your customer has chosen their London to New York route (3,500 nmi), one of their most popular, as a test-case. 

 

 

Despite its potential for green production, globally the majority of hydrogen is currently produced from fossil fuels – termed grey hydrogen. One of your team members has proposed using grey hydrogen as an interim solution to bridge the transition to green hydrogen, in order for the company to start developing the required hydrogen-related infrastructure at airports. They argue that carbon capture and storage technology could be used to reduce carbon emissions from grey hydrogen while still achieving the goal of decarbonisation. Hydrogen from fossil fuels with an additional carbon capture step is known as blue hydrogen. 

However, this suggestion has sparked a heated debate within the management team. While acknowledging the potential to address the immediate concerns of generating enough hydrogen to establish the necessary infrastructure and procedures, many team members argued that it would be a contradictory approach. They highlighted the inherent contradiction of utilising fossil fuels, the primary driver of climate change, to achieve decarbonisation. They emphasised the importance of remaining consistent with the ultimate goal of transitioning away from fossil fuels altogether and reducing overall carbon emissions. Your expertise is now sought to weigh these options and advise the board on the best course of action. 

 

 

Part three: Hydrogen storage 

Despite an impressive gravimetric energy density (the energy stored per unit mass of fuel) hydrogen has the lowest gas density and the second-lowest boiling point of all known chemical fuels. These unique properties pose challenges for storage and transportation, particularly in the constrained spaces of an aircraft.  

 

 

As the lead engineering consultant, you have been tasked with providing expert advice on viable hydrogen storage options for aviation. Your customer has again chosen their London to New York route (3,500 nmi) as a test-case because it is one of their most popular, transatlantic routes. They want to know if hydrogen storage can be effectively managed for this route as it could set a precedent for wider adoption for their other long-haul flights. The plane journey from London to New York is estimated to require around 15,000 kg of hydrogen (or use the quantity estimated previously estimated in Part 2 – see Appendix for example).  

 

 

Part four: Emissions and environmental impact 

In Part four, we delve deeper into the environmental implications of using hydrogen as a fuel in aviation with a focus on emissions and their impacts across the lifecycle of a hydrogen plane. Aircraft can be powered using either direct combustion of hydrogen in gas turbines or by reacting hydrogen in a fuel cell to produce electricity that drives a propeller. As the lead engineering consultant, your customer has asked you to choose between hydrogen combustion in gas turbines or the reaction of hydrogen in fuel cells. The management team is divided on the environmental impacts of both methods, with some emphasising the technological readiness and efficiency of combustion and others advocating for the cleaner process of fuel cell reaction.  

 

 

Both combustion of hydrogen in an engine and reaction of hydrogen in a fuel cell will produce water as a by-product. The management team are concerned over the effect of using hydrogen on the formation of contrails. Contrails are clouds of water vapour produced by aircraft that have a potential contribution to global warming but the extent of their impact is uncertain.  

 

 

So far we have considered each aspect of the hydrogen debate in isolation. However, it is important to consider the overall environmental impact of these stages as a whole. Choices made at each stage of the hydrogen cycle – generation, storage, usage – will collectively impact the overall environmental impact and sustainability of using hydrogen as an aviation fuel and demonstrates how interconnected our decisions can be.  

 

 

Part five: Hydrogen aviation stakeholders 

Hydrogen aviation is an area with multiple stakeholders with conflicting priorities. Understanding the perspectives of these key players is important when considering the feasibility of hydrogen in the aviation sector.   

 

 

Your consultancy firm is hosting a debate for the aviation industry in order to help them make a decision around hydrogen-based technologies. You have invited representatives from consumer groups, the UK government, Environmental NGOs, airlines, and aircraft manufacturers.  

 

 

Stakeholder Key priorities and considerations
Airline & Aerospace Manufacturer 
  • Cost efficiency (fuel, labour, fleet maintenance) – recovering from pandemic. 
  • Passenger experience (commercial & freight). 
  • Develop & maintain global supply chains. 
  • Safety, compliance and operational reliability. 
  • Financial responsibility to employees and investors. 
  • Need government assurances before making big capital investments. 
UK Government 
  • Achieve net zero targets by 2050 
  • Promote economic growth and job creation (still recovering from pandemic). 
  • Fund research and innovation to put their country’s technology ahead. 
  • Fund renewable infrastructure to encourage industry investment. 
Environmental NGOs 
  • Long-term employment for aviation sector. 
  • Demand a sustainable future for aviation to ensure this – right now, not in 50 years. 
  • Standards and targets for industry and government and accountability if not met. 
  • Some NGOs support drastic cuts to flying. 
  • Want to raise public awareness over sustainability of flying. 
Consumer 
  • Environmentally aware (understand the need to reduce carbon emissions). 
  • Also benefit greatly from flying (tourism, commercial shipping, etc.). 
  • Safety and reliability of aircraft & processes. 
  • Cost effectiveness – want affordable service

Appendix: Example calculations 

There are multiple methods for approaching these calculations. The steps shown below are just one example for illustrative purposes.  

 

Part two: Hydrogen production 

Challenge: Estimate the volume of water required for a hydrogen-powered aircraft.   

Assumptions around the hydrogen production process, aircraft, and fuel requirement can be given to students or researched as a separate task. In this example we assume: 

 

Example estimation: 

1. Estimate the energy requirement for a mid-size jet 

No current hydrogen-fuelled aircraft exists, so we can use a kerosene-fuelled analogue. Existing aircraft that meet the requirements include the Boeing 767 or 747. The energy requirement is then: 

 

 

 

 

 

 

2. Estimate the hydrogen requirement 

Assuming a hydrogen plane has the same fuel requirement:

 

3. Estimate the volume of water required 

Assuming all hydrogen is produced from the electrolysis of water: 

Electrolysis reaction:

For this reaction, we know one mole of water produces one mole of hydrogen. We need to calculate the moles for 20,000 kg of hydrogen: 

 

 

 

With a 1:1 molar ratio, we can then calculate the mass of water: 

This assumes an electrolyser efficiency of 100%. Typical efficiency values are under 80%, which would yield: 

 

Challenge: Is it feasible to power the UK aviation fleet with water? 

 

The total energy requirement for UK aviation can be given to students or set as a research task.  

Estimation can follow a similar procedure to the above. 

Multiple methods for validating and assessing the feasibility of this quantity of water. For example, the UK daily water consumption is 14 billion litres. The water requirement estimated above is < 1 % of this total daily water consumption, a finding supported by FlyZero.  

 

Part three: Hydrogen storage 

Challenge: Is it feasible to store 20,000 kg of hydrogen in an aircraft? 

There are multiple methods of determining the feasibility of storage volume. As example is given below. 

 

1. Determining the storage volume 

The storage volume is dependent on the storage method used. Density values associated with different storage techniques can be research or given to students (included in Table 2). The storage volume required can be calculated from the mass of hydrogen and density of storage method, example in Table 2.  

Table 2: Energy densities of various hydrogen storage methods 

 

2. Determining available aircraft volume 

A straightforward method is to compare the available volume on an aircraft with the hydrogen storage volume required. Aircraft volumes can be given or researched by students. Examples: 

This assumes hydrogen tanks are integrated into an existing aircraft design. Liquid hydrogen can feasibly fit into an existing design, though actual volume will be larger due to space/constraint requirements and additional infrastructure (pipes, fittings, etc) for the tanks. Tank size can be compared to conventional kerosene tanks and a discussion encouraged over where in the plane hydrogen tanks would need to be (conventional liquid fuel storage is in the wings of aircraft, this is not possible for liquid storage tanks due to their shape and infrastructure storage is inside the fuselage). Another straightforward method for storage feasibility is modelling the hydrogen volume as a simple cylinder and comparing to the dimensions of a suitable aircraft.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Authors: Dr Gilbert Tang; Dr Rebecca Raper (Cranfield University). 

Topic: Considering the SDGs at all stages of new robot creation. 

Tool type: Guidance. 

Relevant disciplines: Computing; Robotics; Electrical; Computer science; Information technology; Software engineering; Artificial Intelligence; Mechatronics; Manufacturing engineering; Materials engineering; Mechanical engineering; Data. 

Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes. 

Sustainability competency: Systems thinking; Anticipatory; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production). 

Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.

Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering. 

 

Premise:  

There is an urgent global need to address the social and economic challenges relating to our world and the environment (Raper et al., 2022). The United Nations Sustainable Development Goals (SDGs) provide a framework for individuals, policy-makers and industries to work to address some of these challenges (Gutierrez-Bucheli et al., 2022). These 17 goals encompass areas such as clean energy, responsible consumption, climate action, and social equity. Engineers play a pivotal role in achieving these goals by developing innovative solutions that promote sustainability and they can use these goals to work to address broader sustainability objectives. 

Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment. 

 

1. During research and problem definition:

Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005. 

 

2. At design and conceptualisation:

Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset. 

 

3. During creation and manufacturing:

The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation. 

 

4. Deployment:

Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life. 

 

5. Disposal:

Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal. 

 

Conclusion: 

Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly.  

 

References: 

Dias, M. B., Mills-Tettey, G. A., & Nanayakkara, T. (2005, April). Robotics, education, and sustainable development. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 4248-4253). IEEE. 

Eidenskog, M., Leifler, O., Sefyrin, J., Johnson, E., & Asplund, M. (2023). Changing the world one engineer at a time–unmaking the traditional engineering education when introducing sustainability subjects. International Journal of Sustainability in Higher Education, 24(9), 70-84.  

Gutierrez-Bucheli, L., Kidman, G., & Reid, A. (2022). Sustainability in engineering education: A review of learning outcomes. Journal of Cleaner Production, 330, 129734. 

Hristov, I., & Chirico, A. (2019). The role of sustainability key performance indicators (KPIs) in implementing sustainable strategies. Sustainability, 11(20), 5742. 

Karastoyanov, D., & Karastanev, S. (2018). Reuse of Industrial Robots. IFAC-PapersOnLine, 51(30), 44-47. 

Leifler, O., & Dahlin, J. E. (2020). Curriculum integration of sustainability in engineering education–a national study of programme director perspectives. International Journal of Sustainability in Higher Education, 21(5), 877-894. 

Raper, R., Boeddinghaus, J., Coeckelbergh, M., Gross, W., Campigotto, P., & Lincoln, C. N. (2022). Sustainability budgets: A practical management and governance method for achieving goal 13 of the sustainable development goals for AI development. Sustainability, 14(7), 4019. 

SDG Indicators — SDG Indicators (2018) United Nations (Accessed: 19 February 2024) 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Let us know what you think of our website