Toolkit: Complex Systems Toolkit.

Author: Dr. James E. Pickering, PhD, SFHEA, MIET, MInstMC (Harper Adams University); Dr. George Amarantidis (MathWorks).

Topic: Developing competence in model-based systems engineering.

Title: Practical control engineering education through the ACE-Model.

Resource type: Teaching activity.

Relevant disciplines: Systems engineering; electrical engineering; control engineering.

Keywords: Available soon.

Licensing: This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Downloads: A PDF of this resource will be available soon.

Learning and teaching resources:

Related INCOSE Competencies: Toolkit resources are designed to be applicable to any engineering discipline, but educators might find it useful to understand their alignment to competencies outlined by the International Council on Systems Engineering (INCOSE). The INCOSE Competency Framework provides a set of 37 competencies for Systems Engineering within a tailorable framework that provides guidance for practitioners and stakeholders to identify knowledge, skills, abilities and behaviours crucial to Systems Engineering effectiveness.   A free spreadsheet version of the framework can be downloaded.

This resource relates to the Systems Thinking, Systems Modelling and Analysis, Integration, and Technical Leadership INCOSE competencies. 

AHEP4 mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):  Analytical Tools and Techniques (critical to the ability to model and solve problems), and Integrated / Systems Approach (essential to the solution of broadly-defined problems). 

Educational level: Beginner; intermediate. 

 

Learning and teaching notes:

Modern engineering is increasingly digital, interconnected, and system oriented. To prepare students for this evolving landscape, the Automatic Control Engineering (ACE) Model offers  a systems-driven, application-focused framework for practical control engineering education. Developed through a MathWorks-funded project launched in the summer of 2025, the ACE-Model unifies three complementary components that together cultivate systems thinking and model-based systems engineering competence: 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

What does the ACE-Model consist of?:

 

Figure 1: The ACE-Model: Integrating the Toolkit (ACE-Box), with the Processes (ACE-CORE), to Lead to the Real-Life Application (ACE-Apply) to build a progressive mastery in Automatic Control Engineering (ACE).

The ACE-Model is closely aligned with Bloom’s Taxonomy, see (Anderson and Krathwohl, 2001) and Figure 2(a) providing a structured pathway for students to progress through the cognitive hierarchy, while developing capabilities across multiple levels of system abstraction. Figure 2(b) offers a schematic view of the three stages of the ACE-Model, as introduced in Figure 1. An initial overview of the ACE-Model is presented here, with further details provided in the following sections.  

 The ACE-Box is a portable, self-contained hardware tool that brings ACE to life beyond the traditional costly, full-scale laboratories. All that is required is a laptop and the ACE-Box. Designed to support the ACE-CORE methodology, ACE-Box can be set up on a desk, in a classroom, or even at home. MATLAB and Simulink serve as the primary platforms for model-based design, enabling system modelling, control system development, and the deployment of control algorithms to physical hardware (e.g. Arduino Uno) through code generation tools. 

 ACE-CORE guides learners through successive levels of Bloom’s framework: 

At each stage of CORE, learners move from recognising system components to synthesising complex interactions, mirroring the systems engineering lifecycle from requirement capture through verification and validation. This alignment supports AHEP4’s emphasis on analytical and problem-solving competence and INCOSE’s System Definition and Integration competencies. 

Finally, learners progress to Create, the highest stage of Bloom’s Taxonomy, by applying their knowledge to design complete control systems for real-world applications such as drones, vehicles, and automation systems. In this way, the ACE-Model scaffolds learning in parallel with Bloom’s progression, from foundational comprehension to advanced problem-solving, design and innovation. 

Together, these three pillars form a cohesive learning ecosystem: the toolkit, the process, and the application. 

Figure 2: Bloom’s Taxonomy (Anderson and Krathwohl, 2001) (a) and the ACE-Model Three Stages (b).

 

Collaborative community:

The ACE-Model ‘sits’ within the ACE-Lab, a collaborative community of academics and industry professionals committed to developing, validating, and disseminating open-access systems education resources. The ACE-Lab approach embodies complex adaptive systems principles, where the community evolves through continuous feedback, iteration, and co-design. Membership to the ACE-Lab is open to anyone who shares our vision of advancing control engineering teaching tools and practices. Through this approach, the ACE-Model equips graduates with the knowledge and hands-on skills required to excel in modern ACE careers. Find out more about the ACE-Lab through the following website: www.ace-lab.co.uk 

As an evolving community, ACE-Lab continually expands its open-access content through the active contributions of its members. New materials are regularly developed and shared, ensuring the resources remain current and relevant. Through this dynamic, collaborative approach, embodied in the ACE-Model, students not only gain technical knowledge but also develop the capacity to understand, navigate, and work effectively with complex, interconnected engineering systems. 

 

ACE-Box: The toolkit:  

The ACE-Box is based on the early development work of Control-Lab-in-a-Box (Pickering, 2023; 2025). CLB integrates sensors, actuators, and microcontroller to allow students to experience dynamic behaviour, and feedback control. 

 For now, two ACE-Box kits have been developed: 

1. Base and sense 

2. Actuate  

 The ACE-Box (base and sense) is illustrated in Figure 3, with the 15 key components labelled, along with an exploded view of the main parts in Figure 4. The ACE-Boxes integrate the essential microcontrollers, electronics, sensors, and actuators needed to design, implement, and test elements of digital control algorithm development, e.g. control algorithms in real time. It bridges the gap between theory and practice, allowing learners to see how abstract concepts behave in physical systems. The ACE-Box is also available as an open-access resource, with laboratory exercises included, with details provided later in this article. The ACE-Box (labelled (1) in Figure 3) and the tray (labelled (2) in Figure 3) are manufactured using 3D printing, with the necessary files available on the project website referenced above. A list of the required components and their sources is also provided on the project website, corresponding to labels (3) to (15) in Figure 3. Due to the open-source design of ACE-Lab, the library of exercises will continue to expand, supported by contributions from both academia and industry. The ACE-Box (Actuate) is illustrated in Figure 5, with the key actuator components detailed in (a), along with some typical lab set-ups (b, c and d). Figure 6 illustrates both the ACE-Box (Base + Sense) and also ACE-Box (Actuate).    

Figure 3: The ACE-Box (Base and Sense).

 

Figure 4: Assemble of the 3D Printed ACE-Box (Base and Sense).

 

Figure 5: The ACE-Box (Actuate).

 

Figure 6: ACE-Box (Actuate) Alongside the ACE-Box (Base + Sense).

 

ACE-CORE: The methodology:

ACE-CORE is a four-step framework designed to scaffold learning from components to system-of-systems understanding: 

The methodology explicitly develops systems thinking, and integration competencies, core to both AHEP4 and INCOSE frameworks.  

ACE-CORE is intentionally designed to offer a scaffolded learning experience, allowing students to build confidence step by step as they deepen their understanding. Due to its flexible structure, students can also follow a completely practical route, i.e. avoiding the modelling and simulation. The emphasis is not on rote memorisation of theory, but on progression through understanding the fundamentals of control engineering, e.g. the components that form a feedback control system. These routes enable learners to apply concepts in practical control engineering contexts and develop genuine competence. 

 

ACE-Apply: Real-world application:

ACE-Apply is the project stage, where the skills and knowledge gained from ACE-Box and ACE-CORE are consolidated by tackling authentic challenges aligned with the expectations of industry and professional engineers, see Figure 2. At this stage, learners prove their mastery by addressing engineering application problems that reflect the standards of industry practice. The focus is on: 

This stage reinforces AHEP4 Themes 3 and 5, particularly:  

It also strengthens INCOSE competencies in System Realisation, Integration, and Technical Project Management, encouraging students to act as systems integrators capable of managing interfaces and dependencies across mechanical, electrical, and software domains.   

By bridging theory, simulation, and hardware using industry-standard digital tools, ACE-Apply nurtures the ability to navigate complex adaptive systems, anticipate emergent behaviour, and work collaboratively within multidisciplinary engineering ecosystems.  

 

ACE-Box activities:

Upon visiting the ACE-Lab website (www.ace-lab.co.uk), under the tab ‘ACE-Box’, the following tabs exist (with the links provided):  

The “What is the ACE-Box?” page introduces educators and students to the ACE-Box platform, outlining its purpose, key features, and practical considerations such as sourcing components and 3D-printing enclosure parts.  

The “Prior Exercises” page provides essential onboarding material designed to help users become familiar with MATLAB and Simulink. This includes links to the relevant OnRamp courses, guidance on installing the required software packages, and short tutorial videos that introduce the MATLAB and Simulink graphical user interfaces (GUIs).  

The “Base + Sense” section contains a set of introductory tutorial exercises that use the ACE-Box (Base + Sense configuration). These activities help users get started with Simulink code generation for the Arduino Uno, while working with a range of basic sensors and electronic components.  

Finally, the “Base + Sense + Actuate” section builds on the previous material by introducing actuation hardware. Using both the Base + Sense and Actuate modules, students and educators learn how to interface with and control devices such as DC motors, servomotors, and stepper motors. This section is designed to familiarise users with actuator integration and reinforce practical control engineering workflows.  

 

Example use of ACE-Box (Base + Sense):

To demonstrate the use of the ACE-Box (Base + Sense), an introductory activity is provided, i.e. the on-off blinking of an LED. Prior to this activity, through ACE-CORE, students should receive a short introduction to microcontrollers covering key concepts such as digital input/output pins, analogue pins, and pulse-width modulation (PWM). Once students are familiar with these fundamentals, they progress to the initial exercise detailed here, which is aligned with defined learning outcomes. 

Since MATLAB and Simulink are the primary software tools used with the ACE-Box, students are first guided through installing the Simulink Support Package for Arduino Hardware. After the hardware and software setup is complete, they assemble a simple circuit, see Figure 7(a), and configure a Simulink model for the first exercise, see Figure 6(b). This initial activity requires students to control the state of a digital output pin on the Arduino, switching it on and off. The Simulink model, provided in Figure 7(b), enables students to quickly build the exercise using a visual programming approach. To run the activity, they follow a sequence of steps that includes code generation, which compiles the Simulink model into embedded C code and deploys it onto the Arduino Uno microcontroller. Once completed, the LED connected to the circuit blinks on and off according to the settings of the Simulink pulse generator. A visual of the complete set-up for this initial exercise can be found in Figure 8. At this stage, students are encouraged to experiment with the pulse generator parameters in real-time, observing how changes to the signal properties immediately affect the LED’s behaviour. Scopes can also be used (see Figure 7(b)) to visualise the pulse generator’s square-wave output, including its amplitude, period, and pulse width. This hands-on interaction reinforces the link between the initial set-up and hardware implementation while deepening their understanding of microcontrollers. 

Figure 7: LED Simple Circuit (a) and Simulink for Code Generation for the on-off Blinking of an LED.

Figure 8: LED Simple Circuit Set-Up using Simulink for Code Generation for on-off Blinking of an LED.

The initial exercise is designed to familiarise students with the ACE-Box and the use of Simulink’s code generation tools. This type of activity is typical for introducing students to a new software and hardware environment. The next exercise involves using pulse width modulation (PWM) to vary the brightness of the LED. This exercise involves using additional blocks in Simulink, see Figure 8, where multiple scopes are used to visualise the signals in real-time. Once students understand the fundamental building blocks of Simulink, they can quickly progress to developing feedback control systems that meet a variety of application requirements. In the authors’ view, student familiarity with Simulink makes it a more accessible platform for designing advanced control algorithms, particularly when working with sub-systems. 

Figure 9: LED Simple Circuit Set-Up using Simulink for Code Generation Varying Brightness of an LED using Pulse Width Modulation (PWM).

Building on this foundation, a wide range of laboratory exercises can be developed using the electronic components involved in ACE-Box (Base + Sense), as illustrated in Figure 3, with the option to expand further by incorporating additional components. Examples of extended exercises include: 

In addition to sensing activities, the ACE-Box (Actuate) provides four actuators: a servomotor, a DC motor with encoder, a stepper motor, and a DC motor fan. This unit can be used independently or in combination with the Base and Sense ACE-Box to enable more advanced control experiments, such as DC motor speed control or motor control based on light intensity measurements from an LDR. 

The flexibility of the ACE-Box system ensures that the number of possible exercises is effectively unlimited, as new experiments can be designed by combining existing sensors and actuators or by integrating additional measurement devices. This also allows unique coursework assignments to be created. 

 

Summary:

The ACE-Model provides a systemic and holistic framework for practical control engineering education that: 

 

Acknowledgements:  

Dr James E. Pickering gratefully acknowledges the support from MathWorks, whose funding made this project possible. He also extends his sincere thanks to Hari Sudeskkumar for his exceptional engineering design contributions and 3D-printing work. The authors would like to thank the Project Advisory Group (PAG) for their valuable guidance throughout the development of this work.  

 

References:

 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.  

Case study example: Water wars: managing competing water rights

Activity: Assessment. This example demonstrates how the questions provided in Assessing ethics: Rubric can be used to assess the competencies stipulated at each level.

Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).

Related content:

 

Water wars: managing competing water rights 

This example demonstrates how the questions provided in the accompanying rubric can be used to assess the competencies stipulated at each level. Although we have focused on ‘Water Wars’ here, the suggested assessment questions have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma. 

Year 1 

Personal values: What is your initial position on the issue? Do you see anything wrong with how DSS are using water? Why, or why not?

Professional responsibilities: What ethical principles and codes of conduct are relevant to this situation?

Ethical principles and codes of conduct can be used to guide our actions during an ethical dilemma. How does the guidance provided in this case align/differ with your personal views? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What are the moral values involved in this case and why does it constitute an ethical dilemma? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

What role should an engineer play in influencing the outcome? What are the implications of not being involved? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Year 2 

Formulate a moral problem statement which clearly states the problem, its moral nature and who needs to act. (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

Stakeholder mapping: Who are all the stakeholders in the scenario? What are their positions, perspective and moral values?

Stakeholder  Perspectives/interests  Moral values 
Data Storage Solutions (DSS)  Increasing production in a profitable way; meeting legal requirements; good reputation to maintain/grow customer base.  Accountability; sustainability (primarily economic). 
Farmers’ union  Represent farmers who suffer from economic implications associated with costly irrigation.  Accountability; environmental sustainability; justice. 
Farm  The farm (presumably) benefits from DSS using the land.  Ownership and property; environmental sustainability; justice. 
Local Green Party  Represent views of those concerned about biodiversity. May be interested in opening of green battery plant.  Human welfare; environmental sustainability; justice. 
Local Council  Represent views of all stakeholders and would need to consider economic benefits of DSS (tax and employment), the need of the university and hospital, as well as the needs of local farmers and environmentalists. May be interested in opening of green battery plant.  Human welfare and public health; trust; accountability; environmental sustainability; justice. 
Member of the public  This may depend on their beliefs as an individual, their employment status and their use of services such as the hospital and university. Typically interested in low taxes/responsible spending of public money. May be interested in opening of green battery plant.  Human welfare; trust; accountability; environmental sustainability; justice. 
Stakeholders using DSS data storage  Reliable storage. They may also be interested in being part of an ethical supply chain.  Trust; privacy; accountability; autonomy. 
Non-human stakeholders  Environmental sustainability. 

 

What are some of the possible courses of action in the situation. What responsibilities do you have to the various stakeholders involved? What are some of the advantages and disadvantages associated with each? (Reworded from case study.)

What are the relevant facts in this scenario and what other information would you like to help inform your ethical decision making? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)

 

 

Year 2/Year 3  

(At Year 2, students could provide options; at Year 3 they would evaluate and form a judgement.) 

Make use of ethical frameworks and/or professional codes to evaluate the options for DSS both short term and long term. How do the uncertainty and assumptions involved in this case impact decision making?

Option  Consequences  Intention  Action 
Keep using water  May lead to expansion and profit of DSS and thus tax revenue/employment and supply. 

Reputational damage of DSS may increase. Individual employee piece of mind may be at risk. 

Farmers still don’t have water and biodiversity still suffers which may have further impact long term. 

Intention behind action not consistent with that expected by an engineer, other than with respect to legality  Action follows legal norms but not social norms such as good will and concern for others. 
Keep using the water but limit further work  May limit expansion and profit of DSS and thus tax revenue/employment and supply. 

Farmers still don’t have water and biodiversity still suffers and may have further impact long term. This could still result in reputation damage. 

Intention behind action partially consistent with that expected by an engineer.  Action follows legal norms but only partially follow social norms such as good will and concern for others. 
Make use of other sources of water  Data storage continues. 

Potential for reputation to increase. 

Potential increase in cost of water resulting in less profit potentially less tax revenue/employment. 

Farmers have water and biodiversity may improve.

Alternative water sources may be associated with the same issues or worse. 

Intention behind action seems consistent with that expected by an engineer. However, this is dependent upon 

whether they chose to source sustainable water with less impact on biodiversity etc. 

This may be dependent on the degree to which DSS proactively source sustainable water. 
Reduce work levels or shut down  Impact on profit and thus tax revenue/employment and supply chain. Farmers have water and biodiversity may improve. 

May cause operational issues for those whose data is stored. 

Seems consistent with those expected of engineer. Raises questions more generally about viability and feasibility of data storage.  Action doesn’t follow social norms of responsibility to employees and shareholders. 
Investigate other cooling methods which don’t require as much water/don’t take on extra work until another method identified. 
May benefit whole sector. 

May cause interim loss of service. 

 

This follows expectations of the engineering profession in terms of evidence-based decision making and consideration for impact of engineering in society.  It follows social norms in terms of responsible decision making. 

 

Downloads:

Assessing ethics: Guidance

Assessing ethics: Rubric

Assessing ethics: Case study assessment example: Water Wars

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr Gill Lacey, SFEA, MIEEE (Teesside University). 

Topic: Calculating effects of implementing energy-saving standards. 

Tool type: Teaching. 

Relevant disciplines: Energy; Civil engineering; Construction; Mechanical engineering. 

Keywords: Built environment; Housing; Energy efficiency; Decarbonisation; AHEP; Sustainability; Higher education; Pedagogy. 

Sustainability competency: Systems thinking; Critical thinking; Integrated problem-solving.

AHEP mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and the following specific themes from Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 11 (Sustainable Cities and Communities); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action). 

Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.

Educational level: Beginner / intermediate. Learners are required to have basic (level 2) science knowledge, and ability to populate a mathematical formula and use units correctly. 

 

Learning and teaching notes: 

This activity allows students to consider the dilemmas around providing housing that is cheap to heat as well as cheap to buy or rent. It starts with researching these issues using contemporary news and policy, continues with an in-depth study of insulation, together with calculations of U values, heat energy and indicative costs.

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources:  

To prepare for these activities, teachers may want to explain, or assign students to pre-read articles relating to heating a house with respect to: 

 

Introduction to the activity (teacher): 

Provide the stimulus to motivate the students by considering the dilemma: How do we provide affordable housing whilst minimising heating requirement? There are not enough homes in the UK for everyone who needs one. Some of the houses we do have are expensive to run, poorly maintained and cost a fortune in rent. How do we get the housing builders to provide enough affordable, cheap to run housing for the population? 

One possible solution is adopting Passivhaus standards. The Passivhaus is a building that conforms to a standard around heating requirements that ensures the insulation (U value) of the building material, including doors, windows and floors, prevents heat leaving the building so that a minimum heating requirement is needed. If all houses conformed to Passivhaus standards, the running costs for the householder would be reduced. 

 

Teaching schedule: 

Provide stimulus by highlighting the housing crisis in the UK:  

Students can then research and find the answers to the following questions using the following links, or other websites: 

 

Housing crisis in the UK: 

 

Students can work in groups to work on the extent of the problem from the bullet points provided. This activity can be used to develop design skills (Define the problem) 

 

1. Get the engineering knowledge about preventing heat leaving a house:

If you can prevent heat leaving, you won’t need to add any more, it will stay at the same temperature. Related engineering concepts are:   

 

2. Task:

a. Start with a standard footprint of a three-bed semi, from local estate agents. Make some assumptions about inside and outside temperatures, height of ceilings and any other values that may be needed.

b. Use the U value table to calculate the heat loss for this house (in Watts). The excel table has been pre-populated or you can do this as a group

  1. With uninsulated materials (single glazing, empty cavity wall, no loft insulation. 
  2. With standard insulation (double glazing, loft insulation, cavity wall insulation. 
  3. If Passivhaus standards were used to build the house. 

 c. Costs

  1. Find the typical cost for heating per kWh
  2. Compare the costs for replacing the heat lost.

 d. Final synoptic activity

  1. Passivhaus costs a lot more than standard new build. How do housebuilders afford it?
  2. Provide examples of the cost of building a Passivhaus standard building materials and reduced heating bills.
  3. Suggest some ‘carrots’ and ‘sticks’ that could be used to make sure housing in the UK is affordable to rent/buy and run.

 

3. Assessment:

The spreadsheet can be assessed, and the students could write a report giving facts and figures comparing different levels of insulation and the effects on running costs. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Ramiro Jordan (University of New Mexico). 

Topic: Communicating river system sustainability.  

Tool type: Teaching. 

Relevant Disciplines: Civil; Mechanical. 

Keywords: Water and sanitation; Infrastructure; Community sustainability; Health; Government policy; Social responsibility; AHEP; Higher education; Sustainability; Project brief; Water quality control.
 
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Integrated problem-solving; Strategic.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 hereand navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 8 (Decent work and economic growth). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.

Educational level: Intermediate. 

 

Learning and teaching notes:  

This is an example project that could be adapted for use in a variety of contexts. It asks students to devise a “sustainability dashboard” that can not only track indicators of river system sustainability through technical means, but also communicate the resulting data to the public for the purpose of policy decisions. Teachers should ideally select a local river system to focus on for this project, and assign background reading accordingly. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources: 

 

Introduction: 

Two vital and unique resources for the planet are water and air. Any alterations in their composition can have detrimental effects on humans and living organisms. Water uses across New Mexico are unsustainable. Reduced precipitation and streamflows cause increased groundwater use and recharge.  Serious omissions in state water policy provide no protection against complete depletion of groundwater reserves.   

The water governance status quo in New Mexico will result in many areas of New Mexico running out of water, some sooner, some later, and some already have. Because Water is Life, water insecurity will cause economic insecurity and eventual collapse.   

Water resources, both surface and groundwater, and total water use, determine the amount of water use that can be sustained, and then reduce total water use if New Mexico is to have water security.  The public must therefore recognise that action is required. Availability of compiled, accessible data will lead to and promote our critical need to work toward equitable adaptation and attain sustainable resiliency of the Middle Rio Grande’s common water supply and air quality. 

A data dashboard is needed to provide on-line access to historical, modern, and current perspectives on water, air quality, health, and economic information.  A dashboard is needed to help inform the public about why everyone and all concerned citizens, institutions and levels of government must do their part! 

 

Project brief:  

The Middle Rio Grande region of New Mexico has particular sustainability and resilience requirements and enforceable legal obligations (Rio Grande Compact) to reduce water depletions of the Rio Grande and tributary groundwater to sustainable levels.  However, there is a lack of accessible depictions of the Middle Rio Grande’s water supply and demand mismatch. Nothing publicly accessible illustrates the surface water and groundwater resources, water uses, and current water depletions that cannot be sustained even if water supplies were not declining.  Therefore, there is a corresponding lack of public visibility of New Mexico’s water crisis, both in the Middle Valley and across New Mexico. Local water institutions and governments are siloed and have self-serving missions and do not recognise the limits of the Middle Valley’s water resources.   

A water data dashboard is needed to provide online open access to historical, modern, and current perspectives on water inflows, outflows, and the change in stored surface and groundwater.  This dashboard should inform the public about why everyone and all water institutions and levels of government must do their part! 

 

Given:  

 

Objectives:   

 

Acknowledgements: The 2023 Peace Engineering summer cohort of Argentine Fulbright Scholars who analysed the Middle Rio Grande Case Study concluded that water in the Middle Rio Grande is a community problem that requires a community driven solution.   

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University). 

Topic: Building sustainability awareness. 

Tool type: Teaching. 

Relevant disciplines: Any. 

Keywords: Everyday ethics; Communication; Teaching or embedding sustainability; Knowledge exchange; SDGs; Risk analysis; Interdisciplinary; Social responsibility; AHEP; Sustainability; Higher education. 
 
Sustainability competency: Systems thinking; Critical thinking; Self-awareness, Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: Many SDGs could relate to this activity, depending on what students focus on. Teachers could choose to introduce the SDGs and dimensions of sustainability prior to the students doing the activity or the students could complete part one without this introduction, and follow on to further parts after an introduction to these topics. 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development.

Educational level: Beginner / Intermediate. 

 

Learning and teaching notes:  

This learning activity is designed to build students’ awareness of different dimensions of sustainability through reflection on their everyday activities. This activity is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. Educators could incorporate shorter or longer versions of the activity as fits their needs and contexts. This activity could be presented without a focus on a specific area of engineering, or, students could be asked to do this around a particular discipline. Another powerful option would be to do the activity once at the beginning of term and then again at the end of term, asking students to reflect on how their perceptions have changed after learning more about sustainability. 

This activity could be delivered as an in-class small group discussion, as an individual writing assignment, or a combination of both. Students could even make a short video or poster that captures their insights.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources 

 

Part one: 

Choose 3 activities that you do every day. These could be things like: brushing your teeth, commuting, cooking a meal, messaging your friends and family, etc. For each activity, consider the following as they connect to this activity: 

To help you consider these elements, list the “stuff” that is involved in doing each activity—for example, in the case of brushing your teeth, this would include the toothbrush, the toothpaste, the container(s) the toothpaste comes in, the sink, the tap, and the water.  

 

Part two: 

Teachers may want to preface this part of the activity through an introduction to the SDGs, or, they may want to allow students to investigate the SDGs as they are related to these everyday activities. Students could engage in the following: 

 

Acknowledgements: This activity is based on an Ethical Autobiography activity developed by Professor Sandy Woodson and other instructors of the “Nature and Human Values” module at the Colorado School of Mines. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Mr. Neil Rogers (Independent Scholar), Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University) 

Topic: Designing a flood warning system to communicate risk. 

Tool type: Teaching. 

Engineering disciplines: Electronic; Energy; Mechanical. 

Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief. 

Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities). 

Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational level: Intermediate / Advanced. 

 

Learning and teaching notes: 

This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.

The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.

Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways: 

 

Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4) 

In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification. 

 

Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5) 

This project allows teachers the option to stop at multiple points for questions and/or activities as desired.  

 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

Overview:  

A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation. 

 

Time frame & structure:
This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.

It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem. 

To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article:
‘Mean or Green: Which values can promote stable pro-environmental behaviour?’ 

 

Context and Stakeholders: 

Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered. 

 

Pathway 1 

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
  5. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.    
  6. Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change? 

 

Design Process​:

To satisfy the learning outcomes identified above the following activities are suggested. 

 

Assessment activity 1 – Physical artefact: 

Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
 

a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level. 

b) It will integrate to appropriate Operational Amplifier circuitry. 

c) The circuitry will control an output device or devices. 

d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build). 

 

Assessment activity 2 – Technical specification: 

The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements. 

The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references). 

 

Pathway 2

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.

You are required to consider environmental and sustainable factors when presenting a solution. 

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.      

 

Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.

Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town. 

 

Design Process: 

Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m. 

 

Assessment activity – Technical report:       

A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report: 

The report shall be no more than 3000 words (plus illustrations and references)  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Onyekachi Nwafor (CEO, KatexPower). 

Topic: Electrification of remote villages. 

Tool type: Teaching. 

Relevant disciplines: Energy; Electrical; Mechanical; Environmental. 

Keywords: Sustainability; Social responsibility; Equality, Rural development; Environmental conservation; AHEP; Renewable energy; Electrification; Higher education; Interdisciplinary; Pedagogy. 
 
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity.

Educational level: Intermediate. 

 

Learning and teaching notes: 

This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts). 

The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.    

 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

 

In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions. 

Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain. 

Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002. 

 

Part one: Household energy for Siwa Oasis  

Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.   

 

Data on Household Energy for Siwa Oasis:

 

Activities: 

  1. Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
  2. Simulate daily energy usage patterns using smart meter data.
  3. Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
  4. Calculate appliance power consumption and estimate electricity costs.
  5. Discussion:  

a. How does this situation relate to SDG 7, and why is it essential for sustainable development? 

b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages? 

 

Part two: Power supply options 

Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel). 

 

  1. Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations. 
  2. Fossil fuel: Briefly discuss diesel generators and their environmental impact. 

 

The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis. 

 

Optional STOP for questions and activities:

  1. Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
  2. Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
  3. Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.  

 

Part three: Community mini-grid via harnessing the desert sun 

Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly. 

Electrical components of a typical PV system can be classified into DC and AC. 

 

DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.  

The key DC components are:  

 

AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:  

 

Activities: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Authors: Diana Adela Martin (University College London), Suleman Audu and Jeremy Mantingh (Engineers Without Borders The Netherlands). 

Topic: Circular business models. 

Tool type: Teaching. 

Relevant disciplines: Chemical; Biochemical; Manufacturing. 

Keywords: Circular business models; Teaching or embedding sustainability; Plastic waste; Plastic pollution; Recycling or recycled materials; Responsible consumption; Teamwork; Interdisciplinary; AHEP; Higher education. 
 
Sustainability competency: Integrated problem-solving; Collaboration; Systems thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action); SDG 14 (Life below water). 
 
Reimagined Degree Map Intervention: More real-world complexity, Active pedagogies and mindset development, Authentic assessment, Cross-disciplinarity.

Educational level: Intermediate. 

 

Learning and teaching notes:   

This case study is focused on the role of engineers to address the problem of plastic waste in the context of sustainable operations and circular business solutions. It involves a team of engineers developing a start-up aiming to tackle plastic waste by converting it into infrastructure components (such as plastic bricks). As plastic waste is a global problem, the case can be customised by instructors when specifying the region in which it is set. The case incorporates several components, including stakeholder mapping, empirical surveys, risk assessment and policy-making. This case study is particularly suitable for interdisciplinary teamwork, with students from different disciplines bringing their specialised knowledge.  

The case study asks students to research the data on how much plastic is produced and policies for the disposal of plastic, identify the regions most affected by plastic waste, develop a business plan for a circular business focused on transforming plastic waste into bricks and understand the risks of plastic production and waste as well as the risks of a business working with plastic waste. In this process, students gain an awareness of the societal context of plastic waste and the varying risks that different demographic categories are exposed to, as well as the role of engineers in contributing to the development of technologies for circular businesses. Students also get to apply their disciplinary knowledge to propose technical solutions to the problem of plastic waste. 

The case is presented in parts. Part one addresses the broader context of plastic waste and could be used in isolation, but parts two and three further develop and add complexity to the engineering-specific elements of the topic.  

 

Learners have the opportunity to:  

Teachers have the opportunity to include teaching content purporting to: 

 

Recommended pre-reading: 

Part one:

Part two:

 

Part one: 

Plastic pollution is a major challenge. It is predicted that if current trends continue, by 2050 there will be 26 billion metric tons of plastic waste, and almost half of this is expected to be dumped in landfills and the environment (Guglielmi, 2017). As plastic waste grows at an increased speed, it kills millions of animals each year, contaminates fresh water sources and affects human health. Across the world, geographical regions are affected differently by plastic waste. In fact, developing countries are more affected by plastic waste than developed nations. Existing reports trace a link between poverty and plastic waste, making it a development problem. Africa, Asia and South America see immense quantities of plastic generated elsewhere being dumped on their territory.  At the moment, there are several policies in place targeting the production and disposal of plastic. Several of the policies active in developed regions such as the EU do not allow the disposal of plastic waste inside their own territorial boundaries, but allow it on outside territories.  

 

Optional STOP for activities and discussion 

 

Part two: 

Impressed by the magnitude of the problem of plastic waste faced today, together with a group of friends you met while studying engineering at the Technological University of the Future, you want to set up a green circular business. Circular business models aim to use and reuse materials for as long as possible, all while minimising waste. Your concern is to develop a sustainable technological solution to the problem of plastic waste. The vision for a circular economy for plastic rests on six key points (Ellen McArthur Foundation, n.d.): 

  1. Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority 
  2. Reuse models are applied where relevant, reducing the need for single-use packaging 
  3. All plastic packaging is 100% reusable, recyclable, or compostable 
  4. All plastic packaging is reused, recycled, or composted in practice 
  5. The use of plastic is fully decoupled from the consumption of finite resources 
  6. All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected 

 

Optional STOP for group activities and discussion 

 

Part three: 

The start-up SuperRecycling aims to develop infrastructure solutions by converting plastic waste into bricks. Your team of engineers is tasked to develop a risk assessment for the operations of the factory in which this process will take place. The start-up is set in a developing country of your choice that is greatly affected by plastic waste. 

 

Optional STOP for group activities and discussion 

 

Acknowledgement: The authors want to acknowledge the work of Engineers Without Borders Netherlands and its partners to tackle the problem of plastic waste. The case is based on the Challenge Based Learning exploratory course Decision Under Risk and Uncertainty designed by Diana Adela Martin at TU Eindhoven, where students got to work on a real-life project about the conversion of plastic waste into bricks to build a washroom facility in a school in Ghana, based on the activity of Engineers Without Borders Netherlands. The project was spearheaded by Suleman Audu and Jeremy Mantingh. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Author: Dr. Jemma L. Rowlandson (University of Bristol). 

Topic: Achieving carbon-neutral aviation by 2050.  

Tool type: Teaching. 

Relevant disciplines: Chemical; Aerospace; Mechanical; Environmental; Energy.  

Keywords: Design and innovation; Conflicts of interest; Ethics; Regulatory compliance; Stakeholder engagement; Environmental impact; AHEP; Sustainability; Higher education; Pedagogy; Assessment. 

Sustainability competency: Systems thinking; Anticipatory; Critical thinking; Integrated problem-solving; Strategic; Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action). 

Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational aim: Apply interdisciplinary engineering knowledge to a real-world sustainability challenge in aviation, foster ethical reasoning and decision-making with regards to environmental impact, and develop abilities to collaborate and communicate with a diverse range of stakeholders. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

This case study provides students an opportunity to explore the role of hydrogen fuel in the aviation industry. Considerable investments have been made in researching and developing hydrogen as a potential clean and sustainable energy source, particularly for hydrogen-powered aircraft. Despite the potential for hydrogen to be a green and clean fuel there are lingering questions over the long-term sustainability of hydrogen and whether technological advancements can progress rapidly enough to significantly reduce global carbon dioxide emissions. The debate around this issue is rich with diverse perspectives and a variety of interests to consider. Through this case study, students will apply their engineering expertise to navigate this complex problem and examine the competing interests involved.  

This case is presented in parts, each focusing on a different sustainability issue, and with most parts incorporating technical content. Parts may be used in isolation, or may be used to build up the complexity of the case throughout a series of lessons.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources:  

 

Learning and teaching resources: 

Hydrogen fundamentals resources: 

We recommend encouraging the use of sources from a variety of stakeholders. Encourage students to find their own, but some examples are included below: 

 

Pre-Session Work: 

Students should be provided with an overview of the properties of hydrogen gas and the principles underlying the hydrogen economy: production, storage and transmission, and application. There are several free and available sources for this purpose (refer to the Hydrogen Fundamentals Resources above). 

 

Introduction 

At Airbus, we believe hydrogen is one of the most promising decarbonisation technologies for aviation. This is why we consider hydrogen to be an important technology pathway to achieve our ambition of bringing a low-carbon commercial aircraft to market by 2035.” – Airbus, 2024 

As indicated in the industry quote above, hydrogen is a growing area of research interest for aviation companies to decarbonise their fleet. In this case study, you are put in the role of working as an engineering consultant and your customer is a multinational aerospace corporation. They are keen to meet their government issued targets of reducing carbon emissions to reach net zero by 2050 and your consultancy team has been tasked with assessing the feasibility of powering a zero-emission aircraft using hydrogen. The key areas your customer is interested in are: 

 

Part one: The aviation landscape 

Air travel connects the world, enabling affordable and reliable mass transportation between continents. Despite massive advances in technology and infrastructure to produce more efficient aircraft and reduce passenger fuel consumption, carbon emissions have doubled since 2019 and are equivalent to 2.5 % of global CO2 emissions.  

 

 

Your customer is interested in the feasibility of hydrogen for aviation fuel. However, there is a debate within the management team over the sustainability of hydrogen. As the lead engineering consultant, you must guide your customer in making an ethical and sustainable decision.  

Hydrogen is a potential energy carrier which has a high energy content, making it a promising fuel for aviation. Green hydrogen is produced from water and is therefore potentially very clean. However, globally most hydrogen is currently made from fossil fuels with an associated carbon footprint. Naturally occurring as a gas, the low volumetric density makes it difficult to transport and add complications with storage and transportation. 

 

 

Part two: Hydrogen production 

Hydrogen is naturally abundant but is often found combined with other elements in various forms such as hydrocarbons like methane (CH4) and water (H2O). Methods have been developed to extract hydrogen from these compounds. It is important to remember that hydrogen is an energy carrier and not an energy source; it must be generated from other primary energy sources (such as wind and solar) converting and storing energy in the form of hydrogen.  

 

 

The ideal scenario is to produce green hydrogen via electrolysis where water (H2O) is split using electricity into hydrogen (H2) and oxygen (O2). This makes green hydrogen potentially completely green and clean if the process uses electricity from renewable sources. The overall chemical reaction is shown below: 

However, the use of water—a critical resource—as a feedstock for green hydrogen, especially in aviation, raises significant ethical concerns. Your customer’s management team is divided on the potential impact of this practice on global water scarcity, which has been exacerbated by climate change. You have been tasked with assessing the feasibility of using green hydrogen in aviation for your client. Your customer has chosen their London to New York route (3,500 nmi), one of their most popular, as a test-case. 

 

 

Despite its potential for green production, globally the majority of hydrogen is currently produced from fossil fuels – termed grey hydrogen. One of your team members has proposed using grey hydrogen as an interim solution to bridge the transition to green hydrogen, in order for the company to start developing the required hydrogen-related infrastructure at airports. They argue that carbon capture and storage technology could be used to reduce carbon emissions from grey hydrogen while still achieving the goal of decarbonisation. Hydrogen from fossil fuels with an additional carbon capture step is known as blue hydrogen. 

However, this suggestion has sparked a heated debate within the management team. While acknowledging the potential to address the immediate concerns of generating enough hydrogen to establish the necessary infrastructure and procedures, many team members argued that it would be a contradictory approach. They highlighted the inherent contradiction of utilising fossil fuels, the primary driver of climate change, to achieve decarbonisation. They emphasised the importance of remaining consistent with the ultimate goal of transitioning away from fossil fuels altogether and reducing overall carbon emissions. Your expertise is now sought to weigh these options and advise the board on the best course of action. 

 

 

Part three: Hydrogen storage 

Despite an impressive gravimetric energy density (the energy stored per unit mass of fuel) hydrogen has the lowest gas density and the second-lowest boiling point of all known chemical fuels. These unique properties pose challenges for storage and transportation, particularly in the constrained spaces of an aircraft.  

 

 

As the lead engineering consultant, you have been tasked with providing expert advice on viable hydrogen storage options for aviation. Your customer has again chosen their London to New York route (3,500 nmi) as a test-case because it is one of their most popular, transatlantic routes. They want to know if hydrogen storage can be effectively managed for this route as it could set a precedent for wider adoption for their other long-haul flights. The plane journey from London to New York is estimated to require around 15,000 kg of hydrogen (or use the quantity estimated previously estimated in Part 2 – see Appendix for example).  

 

 

Part four: Emissions and environmental impact 

In Part four, we delve deeper into the environmental implications of using hydrogen as a fuel in aviation with a focus on emissions and their impacts across the lifecycle of a hydrogen plane. Aircraft can be powered using either direct combustion of hydrogen in gas turbines or by reacting hydrogen in a fuel cell to produce electricity that drives a propeller. As the lead engineering consultant, your customer has asked you to choose between hydrogen combustion in gas turbines or the reaction of hydrogen in fuel cells. The management team is divided on the environmental impacts of both methods, with some emphasising the technological readiness and efficiency of combustion and others advocating for the cleaner process of fuel cell reaction.  

 

 

Both combustion of hydrogen in an engine and reaction of hydrogen in a fuel cell will produce water as a by-product. The management team are concerned over the effect of using hydrogen on the formation of contrails. Contrails are clouds of water vapour produced by aircraft that have a potential contribution to global warming but the extent of their impact is uncertain.  

 

 

So far we have considered each aspect of the hydrogen debate in isolation. However, it is important to consider the overall environmental impact of these stages as a whole. Choices made at each stage of the hydrogen cycle – generation, storage, usage – will collectively impact the overall environmental impact and sustainability of using hydrogen as an aviation fuel and demonstrates how interconnected our decisions can be.  

 

 

Part five: Hydrogen aviation stakeholders 

Hydrogen aviation is an area with multiple stakeholders with conflicting priorities. Understanding the perspectives of these key players is important when considering the feasibility of hydrogen in the aviation sector.   

 

 

Your consultancy firm is hosting a debate for the aviation industry in order to help them make a decision around hydrogen-based technologies. You have invited representatives from consumer groups, the UK government, Environmental NGOs, airlines, and aircraft manufacturers.  

 

 

Stakeholder Key priorities and considerations
Airline & Aerospace Manufacturer 
  • Cost efficiency (fuel, labour, fleet maintenance) – recovering from pandemic. 
  • Passenger experience (commercial & freight). 
  • Develop & maintain global supply chains. 
  • Safety, compliance and operational reliability. 
  • Financial responsibility to employees and investors. 
  • Need government assurances before making big capital investments. 
UK Government 
  • Achieve net zero targets by 2050 
  • Promote economic growth and job creation (still recovering from pandemic). 
  • Fund research and innovation to put their country’s technology ahead. 
  • Fund renewable infrastructure to encourage industry investment. 
Environmental NGOs 
  • Long-term employment for aviation sector. 
  • Demand a sustainable future for aviation to ensure this – right now, not in 50 years. 
  • Standards and targets for industry and government and accountability if not met. 
  • Some NGOs support drastic cuts to flying. 
  • Want to raise public awareness over sustainability of flying. 
Consumer 
  • Environmentally aware (understand the need to reduce carbon emissions). 
  • Also benefit greatly from flying (tourism, commercial shipping, etc.). 
  • Safety and reliability of aircraft & processes. 
  • Cost effectiveness – want affordable service

Appendix: Example calculations 

There are multiple methods for approaching these calculations. The steps shown below are just one example for illustrative purposes.  

 

Part two: Hydrogen production 

Challenge: Estimate the volume of water required for a hydrogen-powered aircraft.   

Assumptions around the hydrogen production process, aircraft, and fuel requirement can be given to students or researched as a separate task. In this example we assume: 

 

Example estimation: 

1. Estimate the energy requirement for a mid-size jet 

No current hydrogen-fuelled aircraft exists, so we can use a kerosene-fuelled analogue. Existing aircraft that meet the requirements include the Boeing 767 or 747. The energy requirement is then: 

 

 

 

 

 

 

2. Estimate the hydrogen requirement 

Assuming a hydrogen plane has the same fuel requirement:

 

3. Estimate the volume of water required 

Assuming all hydrogen is produced from the electrolysis of water: 

Electrolysis reaction:

For this reaction, we know one mole of water produces one mole of hydrogen. We need to calculate the moles for 20,000 kg of hydrogen: 

 

 

 

With a 1:1 molar ratio, we can then calculate the mass of water: 

This assumes an electrolyser efficiency of 100%. Typical efficiency values are under 80%, which would yield: 

 

Challenge: Is it feasible to power the UK aviation fleet with water? 

 

The total energy requirement for UK aviation can be given to students or set as a research task.  

Estimation can follow a similar procedure to the above. 

Multiple methods for validating and assessing the feasibility of this quantity of water. For example, the UK daily water consumption is 14 billion litres. The water requirement estimated above is < 1 % of this total daily water consumption, a finding supported by FlyZero.  

 

Part three: Hydrogen storage 

Challenge: Is it feasible to store 20,000 kg of hydrogen in an aircraft? 

There are multiple methods of determining the feasibility of storage volume. As example is given below. 

 

1. Determining the storage volume 

The storage volume is dependent on the storage method used. Density values associated with different storage techniques can be research or given to students (included in Table 2). The storage volume required can be calculated from the mass of hydrogen and density of storage method, example in Table 2.  

Table 2: Energy densities of various hydrogen storage methods 

 

2. Determining available aircraft volume 

A straightforward method is to compare the available volume on an aircraft with the hydrogen storage volume required. Aircraft volumes can be given or researched by students. Examples: 

This assumes hydrogen tanks are integrated into an existing aircraft design. Liquid hydrogen can feasibly fit into an existing design, though actual volume will be larger due to space/constraint requirements and additional infrastructure (pipes, fittings, etc) for the tanks. Tank size can be compared to conventional kerosene tanks and a discussion encouraged over where in the plane hydrogen tanks would need to be (conventional liquid fuel storage is in the wings of aircraft, this is not possible for liquid storage tanks due to their shape and infrastructure storage is inside the fuselage). Another straightforward method for storage feasibility is modelling the hydrogen volume as a simple cylinder and comparing to the dimensions of a suitable aircraft.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Author: Dr Irene Josa (UCL) 

Topic: Embodied carbon in the built environment. 

Type: Teaching. 

Relevant disciplines: Civil engineering; Environmental engineering; Construction management. 

Keywords: Embodied carbon; Resilient construction practices; Climate change adaptation; Ethics; Teaching or embedding sustainability; AHEP; Higher education; Pedagogy; Environmental impact assessment; Environmental risk; Assessment. 
 
Sustainability competency: Integrated problem-solving; Systems thinking; Critical thinking; Collaboration; Anticipatory.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation and infrastructure); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.

Educational aim: To foster a deep understanding of the challenges and opportunities in balancing environmental sustainability and profitability/safety in construction projects. To develop critical thinking and decision-making skills in addressing social, economic, and environmental considerations. To encourage students to propose innovative and comprehensive solutions for sustainable urban development. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

Before engaging with the case study, learners should be familiar with the process of calculating embodied carbon and conducting a cost-benefit analysis. The case study is presented in three parts. In Part one, an ambitious urban revitalisation project is under development, and a project manager needs to find a balance between financial considerations and the urgent need for sustainable, low-embodied carbon construction. In Part two, the project being developed is located in a coastal area prone to climate change-related disasters. The team needs to ensure that the project is durable in the face of disasters and, at the same time, upholds sustainability principles. Lastly, in Part three, stakeholders involved in the two previous projects come together to identify potential synergies. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources 

 

Learning and teaching resources: 

Environmental impact assessment: 

Social impact assessment: 

Economic impact assessment: 

Systems thinking and holistic analysis approaches (PESTLE, SWOT): 

Real-world cases to explore:

 

Part one: 

In the heart of an urban revitalisation project, the company CityScape Builders is embarking on a transformational journey to convert a neglected area into a vibrant urban centre which will be named ReviveRise District. This urban centre will mostly be formed by tall buildings. 

Avery, the project manager at CityScape Builders, is under immense pressure to meet tight budget constraints and deadlines. Avery understands the project’s economic implications and the importance of delivering within the stipulated financial limits. However, the conflict arises when Rohan, a renowned environmental advocate and consultant, insists on prioritising sustainable construction practices to reduce the project’s embodied carbon. Rohan envisions a future where construction doesn’t come at the cost of the environment. 

On the other side of the situation is Yuki, the CFO of CityScape Builders, who is concerned about the project’s bottom line. Yuki is wary of any actions that could escalate costs and understands that using low-embodied carbon materials often comes with a higher price tag.  

In light of this situation, Avery proposes exploring different options of construction methods and materials that could be used in the design of their skyscrapers. Avery needs to do this quickly to avoid any delay, and therefore consider just the most important carbon-emitting aspects of the different options.  

 

Optional STOP for questions and activities 

 

Part two:

CityScape Builders is now embarking on a new challenge, ResilientCoast, a construction project located in a coastal area that is susceptible to climate change-related disasters. This region is economically disadvantaged and lacks the financial resources often found in more developed areas.  

Micha, the resilience project manager at CityScape Builders, is tasked with ensuring the project’s durability in the face of disasters and the impacts of climate change. Micha’s primary concern is to create a resilient structure that can withstand extreme weather events but is equally dedicated to sustainability goals. To navigate this complex situation, Micha seeks guidance from Dr. Ravi, a climate scientist with expertise in coastal resiliency. Dr. Ravi is committed to finding innovative and sustainable solutions that simultaneously address the climate change impacts and reduce embodied carbon in construction. 

In this scenario, Bao, the local community leader, also plays a crucial role. Bao advocates for jobs and economic development in the area, even though Bao is acutely aware of the inherent safety risks. Bao, too, understands that balancing these conflicting interests is a substantial challenge. 

In this situation, Micha wonders how to construct safely in a vulnerable location while maintaining sustainability goals.  

 

Optional STOP for questions and activities 

 

Part three: 

Robin and Samir are two independent sustainability consultants that are supporting the projects in ReviveRise District and ResilientCoast respectively. They are concerned that sustainability is just being assessed by embodied carbon and cost sustainability, and they believe that sustainability is a much broader concept than just those two indicators. Robin is the independent environmental consultant working with ReviveRise District officials and is responsible for assessing the broader environmental impacts of the construction project. Robin’s analysis spans beyond embodied carbon, considering local job creation, transportation effects, pollution, biodiversity, and other aspects of the project. 

Samir, on the other hand, is a municipal board member of ResilientCoast. Samir’s role involves advocating for the local community while striving to ensure that sustainability efforts do not compromise the safety and resilience of the area. Samir’s responsibilities are more comprehensive than just economic considerations; they encompass the entire well-being of the community in the face of climate change. 

Robin and Samir recognise the need for cross-city collaboration and information sharing, and they want to collaborate to ensure that the sustainability efforts of both projects do not create unintended burdens for their communities. They acknowledge that a comprehensive approach is necessary for analysing broader impacts, and to ensure both the success of the construction projects and the greater good of both communities. They believe in working collectively to find solutions that are not only sustainable but also beneficial to all stakeholders involved. 

 

Optional STOP for questions and activities 

 

The above questions and activities call for the involvement of cross-disciplinary teams, requiring expertise not only in engineering but also in planning, policy, and related fields. Ideally, in the classroom setting, students with diverse knowledge across these disciplines can be grouped together to enhance collaboration and address the tasks proposed. In cases where forming such groups is not feasible, the educator can assign specific roles such as engineer, planner, policymaker, etc., to individual students, ensuring a balanced representation of skills and perspectives. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Let us know what you think of our website