We’re excited to share with you that we are starting work on a Complex Systems Toolkit, aimed at supporting educators in their teaching of the subject. Toolkit development will start in early 2025. The Complex Systems Toolkit is supported by Quanser. Read on to learn more and find out how you can get involved.
WHY is the EPC developing a Complex Systems Toolkit?
Complex systems shape our lives and day-to-day realities more than most people realise. At the intersection of computing, robotics, and engineering, ever more technology is dependent on complex systems, from AI to biomedical devices to infrastructure.
Understanding both complexity and systems is critical to today’s engineering graduates, especially as the UK seeks to position itself as a leader in areas like advanced manufacturing and autonomous systems.
Engineers increasingly work in environments where they are required to connect different disciplines, perspectives, and skills, to understand and navigate sociotechnical systems, and to communicate complexity to diverse audiences.
Employers today seek graduates who understand not just interdisciplinary engineering work, can work with teams, and understand complexity from different fields and specialisations, but also who can work with non-engineers on products and projects and translate that complexity effectively.
Systems thinking competency is seen as critical to education for sustainable development, and when integrated holistically, complex systems in engineering teaching can align with national and international initiatives that promote social and environmental responsibility.
Accreditation frameworks increasingly refer to complex problems and systems thinking in outcomes for engineering programmes.
Learning approaches for integrating complex systems knowledge, skills, and mindsets in engineering supports educators in their own professional development, since many may have not learned about this topic that they are now expected to teach.
WHAT is a Complex Systems Toolkit?
The Complex Systems Toolkit will be a suite of teaching resources, which may include a scaffolded framework of learning objectives, lesson plans, guidance, case studies, project ideas, and assessment models. These are intended to help educators integrate complex systems concepts into any engineering module or course.
The Toolkit’s ready-to-use classroom resources will be suitable for those who are new to teaching complex systems, as well as those who are more experienced.
Teaching materials will focus on the development of relevant knowledge, skills, and mindsets around complex systems and contain a variety of suggestions for implementation rooted in educational best practice.
Toolkit resources will help educators to understand, plan for, and implement complex systems learning across engineering curricula and demonstrate alignment with AHEP criteria and / or graduate attributes.
Guidance articles will explain key topics in complex systems education, highlighting existing resources and solutions and promoting engagement with a network of academic and industry experts.
HOW will the Toolkit be developed?
The Toolkit materials will be created and developed by diverse contributors from academia and industry, representing a variety of fields and coming from multiple continents.
The resources will be presented so that they can be used in many different settings such as online and hybrid teaching, lecture sessions, and problem-based learning scenarios.
The Toolkit will be a community-owned project, and anyone can suggest or submit a new resource or get involved.
The Toolkit will be developed by the Engineering Professors’ Council and is supported by Quanser.
WHO is involved in Toolkit development?
The development of the Toolkit will be managed by a Working Group of subject experts from academia and industry, put together by the EPC and Quanser.
Author: Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Topic: Building sustainability awareness.
Tool type: Teaching.
Relevant disciplines: Any.
Keywords: Everyday ethics; Communication; Teaching or embedding sustainability; Knowledge exchange; SDGs; Risk analysis; Interdisciplinary; Social responsibility; AHEP; Sustainability; Higher education.
Sustainability competency: Systems thinking; Critical thinking; Self-awareness, Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: Many SDGs could relate to this activity, depending on what students focus on. Teachers could choose to introduce the SDGs and dimensions of sustainability prior to the students doing the activity or the students could complete part one without this introduction, and follow on to further parts after an introduction to these topics.
Reimagined Degree Map Intervention: Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner / Intermediate.
Learning and teaching notes:
This learning activity is designed to build students’ awareness of different dimensions of sustainability through reflection on their everyday activities.This activity is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. Educators could incorporate shorter or longer versions of the activity as fits their needs and contexts. This activity could be presented without a focus on a specific area of engineering, or, students could be asked to do this around a particular discipline. Another powerful option would be to do the activity once at the beginning of term and then again at the end of term, asking students to reflect on how their perceptions have changed after learning more about sustainability.
This activity could be delivered as an in-class small group discussion, as an individual writing assignment, or a combination of both. Students could even make a short video or poster that captures their insights.
Learners have the opportunity to:
Develop awareness around personal connections to sustainability issues;
Engage in reflection;
Undertake informal research;
Practice communication in multiple modes.
Teachers have the opportunity to:
Introduce topics of sustainable development the UNSDGs, and dimensions of sustainability;
Evaluate critical thinking and/or written and/or verbal communication skills;
Introduce or contextualise issues around materials, manufacturing, supply chain, energy/water consumption, and end-of-life.
Choose 3 activities that you do every day. These could be things like: brushing your teeth, commuting, cooking a meal, messaging your friends and family, etc. For each activity, consider the following as they connect to this activity:
Materials and energy required to do the activity;
Manufacturing and transportation required to enable you to do it;
Water consumed and waste generated for all of the above.
To help you consider these elements, list the “stuff” that is involved in doing each activity—for example, in the case of brushing your teeth, this would include the toothbrush, the toothpaste, the container(s) the toothpaste comes in, the sink, the tap, and the water.
What are the “ingredients” or materials that make up this stuff?
Where is this stuff made? If you don’t know, can you find out? If you can’t find out, why?
How did this stuff get to you? Can you uncover the “chain of custody” from where it was made to how it arrived in your possession? If not, what links in the chain are missing and what might that mean?
Where does it go when you are done with it, and whose responsibility is it? How circular is the waste disposal system related to this stuff?
Who besides you is involved in this process of supply, use, and disposal? This could include companies, government entities, and/or community and financial organisations.
Which engineering disciplines inform the creation, distribution, use, and disposal of this stuff?
Part two:
Teachers may want to preface this part of the activity through an introduction to the SDGs, or, they may want to allow students to investigate the SDGs as they are related to these everyday activities. Students could engage in the following:
Research and report on which SDG(s) are connected to this daily activity.
Compare and contrast how this daily activity is conducted in different countries—how do differences in policies and infrastructure affect how it is done, and how sustainable it is?
Suggest improvements to systems that would enable a more sustainable approach to this activity, from the perspective of design, manufacture, use, and disposal.
Debate the challenges, risks, and benefits to enacting these improvements.
Create a solution to an aspect of the activity that is not as sustainable as it could be.
Develop a campaign to influence a stakeholder to change a process in such a way that would make the activity more sustainable.
Acknowledgements: This activity is based on an Ethical Autobiography activity developed by Professor Sandy Woodson and other instructors of the “Nature and Human Values” module at the Colorado School of Mines.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts).
The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Recognise the significance of the SDGs in engineering solutions;
Enhance their skills in applying sustainable engineering practices in real-world scenarios.
Delve into the complexities of implementing off-grid solutions.
Navigate through the ethical considerations of deploying technologies in remote, often vulnerable, communities.
Engage in critical thinking to balance technological, societal, and environmental aspects.
Teachers have the opportunity to:
Highlight the importance of SDGs in engineering.
Facilitate discussions on ethical implications in technology deployment.
Evaluate learners’ ability to devise sustainable and ethical engineering solutions.
DGS; Planning and installing photovoltaic systems: A guide for installers, architects and engineers; ISBN: 978-1849713436; Planning and installing series.
In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions.
Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain.
Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002.
Part one: Household energy for Siwa Oasis
Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.
Data on Household Energy for Siwa Oasis:
Activities:
Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
Simulate daily energy usage patterns using smart meter data.
Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
Calculate appliance power consumption and estimate electricity costs.
Discussion:
a. How does this situation relate to SDG 7, and why is it essential for sustainable development?
b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages?
Part two: Power supply options
Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel).
Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations.
Fossil fuel: Briefly discuss diesel generators and their environmental impact.
The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis.
Optional STOP for questions and activities:
Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.
Part three: Community mini-grid via harnessing the desert sun
Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly.
Electrical components of a typical PV system can be classified into DC and AC.
DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.
The key DC components are:
PV cables and connectors: PV modules are usually delivered with a junction box and pre-assembled cables with single-contact electrical connectors. They enable easy interconnection of individual modules in strings. Solar cables are made of copper or aluminum (more cost-efficient).
Combiner boxes: Here, incoming strings are connected in parallel, and the resulting current is channeled through an output terminal to the inverter. A combiner box usually contains all required protection devices, disconnectors, and measuring equipment for string monitoring.
AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:
Transformers, to increase the inverter output voltage to the grid voltage level
AC cables, buried
Circuit breakers, switchgears, and protection devices, for large PV plants (MV/HV connection)
Electricity meters
Activities:
Research and discuss the safety precautions and regulations for working with DC systems.
Analyse the DC components of a typical PV system, including cables, connectors, and combiner boxes.
Calculate the voltage and current levels at different points in the DC circuit based on the system design.
Investigate the concept of power factor and its significance in grid stability and energy bills.
Analyse the power factor of common household appliances and discuss its impact on the mini-grid.
Propose strategies to improve the overall power factor of the mini-grid, such as using capacitors or choosing energy-efficient appliances.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Circular business models; Teaching or embedding sustainability; Plastic waste; Plastic pollution; Recycling or recycled materials; Responsible consumption; Teamwork; Interdisciplinary; AHEP; Higher education.
Sustainability competency: Integrated problem-solving; Collaboration; Systems thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action); SDG 14 (Life below water).
Reimagined Degree Map Intervention: More real-world complexity, Active pedagogies and mindset development, Authentic assessment, Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study is focused on the role of engineers to address the problem of plastic waste in the context of sustainable operations and circular business solutions. It involves a team of engineers developing a start-up aiming to tackle plastic waste by converting it into infrastructure components (such as plastic bricks). As plastic waste is a global problem, the case can be customised by instructors when specifying the region in which it is set. The case incorporates several components, including stakeholder mapping, empirical surveys, risk assessment and policy-making. This case study is particularly suitable for interdisciplinary teamwork, with students from different disciplines bringing their specialised knowledge.
The case study asks students to research the data on how much plastic is produced and policies for the disposal of plastic, identify the regions most affected by plastic waste, develop a business plan for a circular business focused on transforming plastic waste into bricks and understand the risks of plastic production and waste as well as the risks of a business working with plastic waste. In this process, students gain an awareness of the societal context of plastic waste and the varying risks that different demographic categories are exposed to, as well as the role of engineers in contributing to the development of technologies for circular businesses. Students also get to apply their disciplinary knowledge to propose technical solutions to the problem of plastic waste.
The case is presented in parts. Part one addresses the broader context of plastic waste and could be used in isolation, but parts two and three further develop and add complexity to the engineering-specific elements of the topic.
Learners have the opportunity to:
apply their ethical judgement to a case study focused on a circular technology;
understand the national and supranational policy context related to the production and disposal of plastic;
analyse engineering and societal risks related to the development of a novel technology;
develop a business model for a circular technology dealing with plastic waste;
identify the key stakeholder groups in the development of a circular business model;
reflect on how risks may differ for different demographic groups and identify the stakeholder groups most vulnerable to the negative effects of plastic waste;
develop an empirical survey to identify the risks that stakeholders affected by or working with plastic waste are exposed to;
develop a risk assessment to identify the risks involved in the manufacturing of plastic waste bricks;
provide recommendations for lowering the risks in the manufacturing of plastic bricks.
Teachers have the opportunity to include teaching content purporting to:
Physico-chemical properties of plastic waste;
Manufacturing processes of plastic products and plastic bricks;
Sustainable policies targeting plastic usage and reduction;
Climate justice;
Circular entrepreneurship;
Risk assessment tools such as HAZOP and their application in the chemical industry.
Plastic pollution is a major challenge. It is predicted that if current trends continue, by 2050 there will be 26 billion metric tons of plastic waste, and almost half of this is expected to be dumped in landfills and the environment (Guglielmi, 2017). As plastic waste grows at an increased speed, it kills millions of animals each year, contaminates fresh water sources and affects human health. Across the world, geographical regions are affected differently by plastic waste. In fact, developing countries are more affected by plastic waste than developed nations. Existing reports trace a link between poverty and plastic waste, making it a development problem. Africa, Asia and South America see immense quantities of plastic generated elsewhere being dumped on their territory. At the moment, there are several policies in place targeting the production and disposal of plastic. Several of the policies active in developed regions such as the EU do not allow the disposal of plastic waste inside their own territorial boundaries, but allow it on outside territories.
Optional STOP for activities and discussion
Conduct research to identify 5 national or international regulations or policies about the use and disposal of plastic.
Compare these policies by stating which is the issuing policy body, what is the aim and scope of the policy.
Reflect on the effectiveness of each policy and debate in class what are the most effective policies you identified.
Write a reflection piece based on a policy of your choice targeting the use or disposal of plastic. In this reflection, identify the benefits of the policy as well as potential limitations. You may consider how you would improve the policy.
Conduct research to identify how much plastic is produced and how much plastic waste is generated in your region. Identify which sectors are the biggest producers of waste. Conduct research on how much of this plastic waste is being exported and where is it exported.
Identify the countries and companies with the biggest plastic footprint. Discuss in the classroom what you consider to contribute to these rankings.
Research global waste trading and identify the countries that are the biggest exporters and importers of plastic waste. Discuss the findings in classroom and what you consider to contribute to these rankings. Discuss whether there are or should be any restrictions governing global waste trade.
Write a report analysing the plastic footprint of a country or company of your choice. Include recommendations for minimising the plastic footprint.
Impressed by the magnitude of the problem of plastic waste faced today, together with a group of friends you met while studying engineering at the Technological University of the Future, you want to set up a green circular business. Circular business models aim to use and reuse materials for as long as possible, all while minimising waste. Your concern is to develop a sustainable technological solution to the problem of plastic waste. The vision for a circular economy for plastic rests on six key points (Ellen McArthur Foundation, n.d.):
Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority
Reuse models are applied where relevant, reducing the need for single-use packaging
All plastic packaging is 100% reusable, recyclable, or compostable
All plastic packaging is reused, recycled, or composted in practice
The use of plastic is fully decoupled from the consumption of finite resources
All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected
Optional STOP for group activities and discussion
Read about the example of the Great Plastic Bake Off and their project focused on converting plastic waste into plastic bricks. Research the chemical properties of plastic bricks and the process for the manufacturing process. Present your findings on a poster or discuss it in class.
Develop a concept map with ideas for potential sustainable technologies for reducing or recycling plastic waste. You may use as inspiration the Circular Strategies Scanner (available here).
Select one idea that you want to propose as the focus of your sustainable start-up. Give a name to your startup!
Describe the technology you want to produce: what is its aim? What problem can it solve or what gap can it address? What are the envisioned benefits of your technology? What are its key features?
Map the key stakeholders of the technology, by identifying the decision-makers for this technology, the beneficiaries of the technology, as well as those who are exposed to the risks of the technology
Analyse the market for your technology: are there businesses with a similar aim or similar technology? What differentiates your business or technology from them?
Identify key policies relevant to your technology: are there any policies or regulations in place that you should consider? In your geographical area, are there any policy incentives for sustainable technologies or businesses similar to the one you are developing?
For your start-up, assign different roles to the members of your group (such as technology officer, researcher, financial officer, communication manager, partnership director a.s.o) and describe the key tasks of each member. Identify how much personnel you would need
Identify the cost components and calculate the yearly costs for running your business (including personnel).
Perform a SWOT analysis of the Strengths, Weaknesses, Opportunities and Threats for your business. You may use this matrix to brainstorm each component.
Part three:
The start-up SuperRecycling aims to develop infrastructure solutions by converting plastic waste into bricks. Your team of engineers is tasked to develop a risk assessment for the operations of the factory in which this process will take place. The start-up is set in a developing country of your choice that is greatly affected by plastic waste.
Optional STOP for group activities and discussion
Agree on the geographical location of the startup SuperRecycling and identify the amount of plastic waste that your region has to cope with, as well as any other relevant socio-economic characteristics of the region.
Identify the demographic categories that are most exposed to the risks of plastic waste in the region.
Research and analyse the situation of the informal plastic waste picking sector in the region: who is picking up the waste? How much do they earn for working with waste? Is this a regular form of income and who pays this income? What does it mean to be an “informal” worker? Are there any key insights about the characteristics of the plastic waste workers that you find interesting?
Based on research and your own reflections, write a report on the role and risks that the plastic waste pickers are exposed to in their work.
Create an empirical survey with the aim of identifying the risks the plastic waste pickers are exposed to, as well as the strategies they take to mitigate risks or deal with accidents.
Create an empirical survey with the aim of identifying the risks that the factory workers at SuperRecycling are exposed to, as well as the strategies they take to mitigate risks or deal with accidents.
Research the manufacturing process for developing plastic bricks and analyse the technical characteristics of plastic bricks, based on existing tests.
With the classroom split into 2 groups, argue in favour or against their use of plastic bricks in construction. One group develops 5 arguments for the use of plastic bricks in construction, while the other group develops 5 arguments against the use of plastic bricks in construction. At the end, the groups disperse and students vote individually via an anonymous online poll whether they are personally in favour or against the use of plastic bricks in construction.
Create a HAZOP risk assessment for the manufacturing processes of the factory where plastic waste is converted into plastic bricks.
Develop an educational leaflet for preventing the key injuries and hazards in the process of converting plastic waste into bricks, both for the informal waste pickers and the factory workers.
Acknowledgement: The authors want to acknowledge the work of Engineers Without Borders Netherlands and its partners to tackle the problem of plastic waste. The case is based on the Challenge Based Learning exploratory course Decision Under Risk and Uncertainty designed by Diana Adela Martin at TU Eindhoven, where students got to work on a real-life project about the conversion of plastic waste into bricks to build a washroom facility in a school in Ghana, based on the activity of Engineers Without Borders Netherlands. The project was spearheaded by Suleman Audu and Jeremy Mantingh.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Ema Muk-Pavic, FRINA SHEA (University College London)
Topic: Links between sustainability and EDI
Tool type: Guidance.
Relevant disciplines: Any.
Keywords: Sustainability; AHEP; Programmes; Higher education; EDI; Economic Growth; Inclusive learning; Interdisciplinary; Global responsibility; Community engagement; Ethics; Future generations; Pedagogy; Healthcare; Health.
Sustainability competency: Self-awareness; Normative; Collaboration; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: All 17.
Reimagined Degree Map Intervention: Active pedagogies and mindset development; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for: This article should be read by educators at all levels in Higher Education who wish to understand how engineering practice can promote sustainable and ethical outcomes in equality, diversity, and inclusion.
Supporting resources:
Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB)
The role of engineering is to enhance the safety, health and welfare of all, while protecting the planet and reversing existing environmental damage by deploying engineering solutions that can meet urgent global and local needs across all sectors (Engineering Council, 2021). The socioeconomic and environmental problems are strongly linked and finding responsible solutions is of imminent urgency that requires a holistic interdisciplinary perspective.
Sustainability and Equality, Diversity and Inclusion (EDI):
Equality, diversity, and Inclusion are interlinked concepts that emphasise equal opportunities, the inclusion of underrepresented groups, and the benefits that derive from diverse perspectives within the engineering field. Because sustainability is a global phenomenon, achieving the objective of “providing for all” should be a priority for all engineering professionals to ensure solutions are developed that benefit all (Jordan et al., 2021). To address sustainability challenges, engineers need to keep in mind that some communities are disproportionately impacted by climate change and environmental harm. It is essential to empower these communities to create systematic change and advocate for themselves.
A strategic pedagogical approach to sustainability and EDI:
A variety of pedagogical strategies can be applied to incorporate diversity and inclusion perspectives into sustainability engineering. Rather than adopting an “add-on” approach to the existing programmes it is recommended to fully embed inclusive and sustainable perspectives in the existing curriculum. These perspectives should be incorporated following a learning path of the students, from the beginning of the programme in the engineering fundamentals, starting with raising awareness and understanding of these perspectives and gradually improving student knowledge supported by evidence and further to implementing and innovating in engineering practice and solutions. By the end of the programme, diversity and inclusion and sustainability perspectives should be fully incorporated into the attitude of the graduates so that they will consider this when approaching any engineering task. This approach would go hand-in-hand with incorporating an ethics perspective.
Some practical examples of implementation in the programme and gradually deepening student learning are:
1. Awareness and understanding:
a. Define sustainability and its relation to EDI.
b. Engage with practical examples in modules that can be considered and discussed from EDI, ethical, and sustainability perspectives (e.g. present a product related to the subject of a class; in addition to discussing the product’s engineering characteristics, extend the discussion to sustainability and diverse stakeholders perspective – who are the end users, what is the affordability, where does the raw material comes from, how could it be recycled etc.)
2. Applying and analysing:
Seek out case studies which can expose the students to a range of EDI issues and contexts, e.g.:
a. Examples of “sustainable” engineering solutions aimed toward “wealthy” users but not available or suitable for the “poor”. Question if EDI was considered in stakeholder groups (who are the target end users, what are their specific needs, are the solutions applicable and affordable for diverse socioeconomic groups (e.g. high-tech expensive sophisticated medical devices, luxury cars).
b. Examples of product design suffering from discriminatory unconscious bias (e.g. medical devices unsuitable for women (Phillips SP, 2022); “affordable housing projects” being unaffordable for the local community, etc.).
c. Positive examples of sustainable engineering solutions with strong EDI perspectives taken that are also financially viable (e.g. sustainable water and sanitation projects, seaweed farming for food security and climate change mitigation (Sultana F, 2023), sustainable gem production (Center for Responsible Business (CRB), 2023) etc.)
3. Implementing, evaluating, and creating:
a. Use existing scenario-based modules to focus on finding solutions for the sustainability problems that will improve socioeconomic equality, access to water, improvement of healthcare, and reduction of poverty. This will guide students to implement sustainability principles in engineering while addressing social issues and inequalities.
b. In project-based modules, ask students to link their work with a specific UNSDG and evidence an approach to EDI issues.
4. Provide visibility of additional opportunities:
Extracurricular activities (maker spaces, EWB UK’s Engineering for People Design Challenge, partnership with local communities, etc.) can represent an additional mechanism to bolster the link between sustainable engineering practice and EDI issues. Some of these initiatives can even be implemented within modules via topics, projects, and case studies.
A systematic strategic approach will ensure that students gain experience in considering the views of all stakeholders, and not only economic and technical drivers (Faludi, et al., 2023). They need to take account of local know-how and community engagement since not all solutions will work in all circumstances (Montt-Blanchard, Najmi, & Spinillo, 2023). Engineering decisions need to be made bearing in mind the ethical, cultural, and political questions of concern in the local setting. Professional engineers need to develop a global mindset, taking into account diverse perspectives and experiences which will increase their potential to come up with creative, effective, and responsible solutions for these global challenges. (Jordan & Agi, 2021).
Leading by example:
It is of paramount importance that students experience that the HE institution itself embraces an inclusive and sustainable mindset. This should be within the institutional strategy and policies, everyday operations and within the classroom. Providing an experiential learning environment with an inclusive and sustainable mindset can have a paramount impact on the student experience and attitudes developed (Royal Academy of Engineering, 2018).
Conclusion:
Engineering education must prepare future professionals for responsible and ethical actions and solutions. Only the meaningful participation of all members of a global society will bring us to a fully sustainable future. Thus, the role of engineering educators is to embed an EDI perspective alongside sustainability in the attitudes of future professionals.
References:
Burleson, G., Lajoie, J., & et al. (2023). Advancing Sustainable Development: Emerging Factors and Futures for the Engineering Field.
Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB).
Engineering Council. (2021). Guidance on Sustainability. London: Engineering Council UK.
Faludi, J., Acaroglu, L., Gardien, P., Rapela, A., Sumter, D., & Cooper, C. (2023). Sustainability in the Future of Design Education. The Journal of Design, Economics and Innovation, 157-178.
Jordan, R., & Agi, K. (2021). Peace engineering in practice: A case study at the University of New Mexico. Technological Forecasting and Social Change, 173.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses three of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills) and Science and Mathematics (the ability to apply the knowledge, not merely understand it).To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: See below for problems specific to SDG 5 (Gender Equality); SDG 6 (Clean Water and Sanitation); SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 10 (Reduced Inequalities); SDG 12 (Responsible Consumption and Production); SDG 14 (Life Below Water); and SDG 15 (Life on Land).
Reimagined Degree Map Intervention: Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by academics and educators at all levels in higher education who wish to integrate sustainability into the engineering curriculum within the typical mathematics-specific modules that are present. It will also help prepare students with the key graduate attributes and skills required by professional accreditation bodies and employers.
Global challenges that call for environmental, sustainable and innovative solutions have consistently pushed us to be open to the changes and challenges within engineering education (Graham, 2012; Graham, 2018; Crawley et al., 2014; Lawlor, 2013; The Royal Academy of Engineering, 2007). Despite the prevalence of the UN Sustainable Development Goals(SDGs) since 2015, several reports and studies (Mulder et al., 2012; Buckler and Creech, 2014; Lazzarini et al., 2018; Morrissey, 2013; Neubauer et al., 2017; Wals, 2014; Miñano Rubio et al. 2019) have noted that the incorporation of sustainability within universities finds the greatest barrier in the field of teaching, with curricula often failing to address key environmental and ethical issues. This situation reflects the need for educators to develop a toolkit of resource materials that can serve as a reference guide for the effective and systematic integration of sustainability into university engineering curricula (Thürer et al., 2018).
Basic principles for embedding sustainability and ethics:
The principles for integrating sustainability into mathematical problems and exercises within the engineering curricula share strong parallels to the embedding of ethical components, as documented within several guidance articles from the EPC’s Engineering Ethics Toolkit. Some of these include:
Interweaving into existing course materials:
Much like ethics, integrating sustainability into science and engineering courses* is “largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem “more relevant” (Davis, 2006, Miñano Rubio et al. 2019). The technique of “micro-insertion” described by Davis in the context of ethics can also be succinctly adapted for sustainability issues, in that these “are not add-ons; they work like an alloy, adding strength to the course without adding volume” i.e., they need not be perceived as components to be introduced in lieu of existing technical material.
*For specific examples, see the following guidance articles:
The inclusion of sustainability aspects into mathematical problems does require a great deal of care, thought and gradual experience as it might be done in a seamless and organic manner, without appearing to be artificial or contrived. The focus should be upon how students are engaging with these themes and not merely upon introducing sustainability as an add-on component to be taught (Butt et al., 2022). Often this is avoided by ensuring that such concepts emerge naturally from the technical nature of the mathematics/physics of the problem itself i.e., through an enlargement of the context of a problem by aligning it to a realistic scenario (see examples below).
Subjective and reflective aspects:
Another point worth noting is that the answers to the sustainability elements of a question will often involve open-ended discussions and will most certainly involve subjective aspects, prompting deeper reflection from both students and instructors (Paulauskaite-Taraseviciene et al., 2022). This is unlike the objective ‘right or wrong’ answers provided to the technical parts of the problem, therefore even the guided ‘solution sketches’ provided in some of the example questions below, should not be treated as exact and fixed in nature, in fact these may be altered, tweaked or modified on subsequent usage.
A final principle to mention pertains to the identification and mapping of key sustainability concepts within problems to each of the different 17 SDGs as applicable (see examples below). By establishing direct links between the overarching themes emerging from the technical problems and the SDGs formulated by the United Nations as part of its 2030 Agenda for Sustainable Development, students will be able to acquire a much more holistic view of sustainability within the context of their technical learning in engineering disciplines (Zelinka and Amadei, 2017; Ramirez-Mendoza et al., 2020)
Examples of mathematical problems with embedded sustainability:
The following three example problems from Chiodo and Muller, 2023 with minor adaptations (as permitted under the Creative Commons License CC BY-SA 4.0), illustrate ways in which sustainability aspects can be integrated within traditional technical exercise questions found in engineering mathematics courses:
Partial solution comments have been included here for brevity, please refer to Chiodo and Muller, 2023 for full solution details.
Problem 1: Pipeline construction
Topic: Optimisation.
SDG mapping: SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure), SDG 14 (Life Below Water), SDG 15 (Life on Land).
An oil company wants to build a pipeline connecting an oil platform to a refinery (on land). The coastline is straight. The oil platform is at a distance of 13km from the coast. The refinery is on the coastline, a distance 10km from the point on the coast closest to the platform. Building the pipeline will lead to a cost of £90,000 per km at sea and £60,000 per km on land.
Calculate the optimal length for building the pipeline. What are the factors that need to be considered when providing a response to this question?
Solution comments: The cost-minimising path is given by Snell’s law and is an exercise in trigonometry and calculus. But who said we were optimising over cost? This is an assumption often engrained into engineers while they are students, but it need not always be the right way to optimise. How many decisions made by government agencies (often based on advice offered by mathematical consultants) use economics as the sole criterion for optimisation?
Economic actions almost always have externalities, such as possible damage to the environment (the pipe may go through a coral reef or protected habitat) or to existing infrastructure (it may go through a school or a site of archaeological significance). How could we mathematically model the environmental and human impact of laying this pipe? There are numerous factors to consider and students, much like policymakers would, should take a holistic view of these effects and at least be aware of, and question the implications of basing decisions solely on economic factors.
Problem 2: Environmental disasters
Topic: Differential equations.
SDG mapping: SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production).
A chemical accident took place near a small village in Peru. The region’s local water reservoir has a volume V. The inflow and outflow of the reservoir is given by the flow rate r. Let x(t) be the amount of mercury in the reservoir at time t. Assume that the reservoir was clean at the beginning i.e., x(0) = 0. Let C(t) be the concentration of mercury flowing into the reservoir.
a. Set up and solve a differential equation describing the concentration of the reservoir.
b. How can you use your solution to model repeated pollution (e.g., criminals dumping mercury near the reservoir every weekend)?
c. What are some relevant questions you can ask about the concentration of mercury in the reservoir?
d. Suppose that the polluter is caught and after some cleaning, the incoming water is clean. How can you use your model to analyse when the water in the reservoir will be safe again? How sure are you of your answer and how much does it matter?
Solution comments:This question is designed to show students that very simple mathematics can be used to model local environmental disasters, which can often be an example of how it may be used unsustainably. It teaches students to find good questions instead of merely answering someone else’s questions.
For part c), possible questions for students to consider can include:
Will the pollution of the reservoir ever reach a dangerous level?
What is deemed a “safe” level of mercury in the reservoir?
How closely does the concentration of the reservoir follow the inflow of pollutant chemicals?
Will the reservoir reach an equilibrium concentration of mercury?
For part d) for the sub question “How sure are you?”, students will need to explore what the ‘known’ unknowns are e.g., errors in the measurement apparatus, non-uniform mixing, samples taken in a very clean/dirty part of the stream or reservoir. They may also need to consider any ‘unknown’ unknowns e.g., other sources of pollutants, samples being tampered with accidentally or deliberately, etc.
For part d) for the sub question “How much does it matter?”, students should identify that we are dealing with poison in drinking water, so it matters immensely! They should understand that this is an estimate, which helps forecast when the water might be safe to drink (the only way to actually know is to thoroughly test it). This question helps students to realise that the mathematics is simply one part of a much bigger solution and should not be relied upon as a definitive answer to a question as serious as the safety of drinking water.
In a particular admissions cycle, a mathematics department observes a higher success rate for male applicants than for female applicants. To investigate whether this is the same across he two sub-departments of Pure Mathematics and Applied Mathematics, the following year the department asks each applicant to give their preference for pure or applied mathematics (they are not allowed to be ambivalent) and records the resulting statistics as shown in Figure 4 below:
Total
Applications
Successful
Female
300
30
Male
1000
210
Prefer applied
Applications
Successful
Female
270
18
Male
350
15
Prefer pure
Applications
Successful
Female
30
12
Male
650
195
Figure 4: Admission statistics for male and female applications to study mathematics
a. Compare the success rates for male and female applicants that prefer applied mathematics, prefer pure mathematics and their success rates overall.
b. What do you notice? Why is this possible? This is known as Simpson’s Paradox.
c. If possible, find the admission statistics by gender and mathematics preference (pure/applied) from your university’s mathematics department and see if the same phenomenon occurs.
Solution comments:The purpose of this question is to demonstrate Simpson’s paradox in which a trend appears in several different groups of data but disappears or reverses when these groups are combined. It also attempts to highlight the immense gender disparity in many mathematics departments around the world.
For part b) it is evident from the calculations in part a) that females with a given preference (pure/applied mathematics) have a higher success rate than males with the same preference, but lower overall. This is Simpson’s Paradox. The heuristic reason for why this is possible is that the largest male cohort (those that prefer pure) has a much higher acceptance rate than the largest female cohort (those that prefer applied). So, the overall acceptance of men is dominated by those who prefer pure, while the overall acceptance of women is dominated by those who prefer applied. This is a great lesson in why it is usually a terrible idea to take “averages of averages”.
The main purpose of part c) is not so much for students to redo the calculation (it is not a given that Simpson’s Paradox will always arise here), but rather to illustrate the immense gender disparity in many mathematics departments around the world.
Conclusion:
The aim of this article is to provide academics and educators in higher education with an insight into how sustainability concepts may be integrated into technical, mathematical problems prevalent throughout engineering curricula. This should hopefully motivate lecturers to design their own versions of similar exercises to embed within their own courses and help build on ongoing calls to enhance the restructuring of our university programmes to better prepare future engineers to tackle global sustainability challenges by drawing not only on their technical and scientific knowledge, but also on their creativity, ethical, professional and leadership skills.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Peter Mylon MEng PhD CEng FIMechE PFHEA NTF and SJ Cooper-Knock PhD (The University of Sheffield).
Topic: Maker Communities and ESD.
Tool type: Knowledge.
Relevant disciplines: Any.
Keywords: Interdisciplinary; Education for sustainable development; Makerspaces, Recycling or recycled materials; Employability and skills; Inclusive learning; Local community; Climate change; Student engagement; Responsible consumption; Energy efficiency; Design; Water and sanitation; AHEP; Sustainability; Higher education; Pedagogy.
Sustainability competency: Collaboration; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who are curious about how maker spaces and communities can contribute to sustainability efforts in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
Makerspaces can play a valuable role in Education for Sustainable Development (ESD). In this article, we highlight three specific contributions they can make to ESD in Engineering: Makerspaces enable engineering in real-world contexts; they build cross-disciplinary connections and inclusive learning; and they promote responsible consumption.
A brief introduction to makerspaces:
In recent years, a ‘makerspace’ movement has emerged in Higher Education institutions. While most prevalent in the US, there are now a number of university-based makerspaces in the UK, including the iForge at the University of Sheffield, the Institute of Making at UCL, and the Makerspace at King’s College London. So what is a makerspace, and what do they have to do with Education for Sustainable Development (ESD)?
Makerspaces are part of a larger “maker movement” that includes maker fairs, clubs and magazines. Within universities, they are “facilities and cultures that afford unstructured student-centric environments for design, invention, and prototyping.” (Forest et al., 2016). Successful and inclusive makerspaces are student led. Student ownership of makerspace initiatives deepens student motivation, promotes learning, and encourages peer-to-peer collaboration. Successful makerspaces produce thriving learning communities, through which projects can emerge organically, outside of curriculum structures and discipline boundaries.
In terms of Education for Sustainable Development (ESD), this means that students can bring their passion to make a difference, and can meet other students with similar interests but complementary skill sets. With support from the University, they can then be given opportunities to put their passion and skills into practice. Below, we focus on three concrete contributions that makerspaces can make to ESD: Opportunities for applied learning; expanded potential for cross-disciplinary learning, and the chance to deepen engaged learning on sustainable consumption.
1. Maker communities enable engineering in real world contexts:
1.1 ESD rationale
ESD enables students to think critically about possible solutions to global challenges. It encourages students to consider the social, economic, and political context in which change takes place. ESD also spurs students to engage, where possible, with those beyond the university.
It may be tempting to think of engineering as simply a technical exercise: one in which scientific and mathematical knowledge is taken and applied to the world around us. In practice, like all other professions, engineers do not simply apply knowledge, they create it. In order to do their work, engineers build, hold, and share ideas about how the world works: how users will behave; how materials will function; how they can be repaired or disposed of; what risks are acceptable, and why. These ideas about what is reasonable, rational, and probable are, in turn, shaped by the broader social, political, and economic context in which they work. This context shapes everything from what data is available, to what projects are prioritised, and how risk assessments are made. Rather than trying to ignore or remove these subjective and context-based elements of engineering, we need to understand them. In other words, rather than ask whether an engineering process is impacted by social, political, and economic factors we need to ask how this impact happens and the consequences that it holds. ESD encourages students to think about these issues.
1.2 The contribution of makerspaces
The availability of both equipment and expertise, and the potential for practical solutions, means that makerspaces often attract projects from outside the university. These provide opportunities to practise engineering in real-world contexts, where there is the possibility for participatory design. All such projects will require some consideration of social, political, or economic factors, which are at the heart of the Sustainable Development Goals.
One example of this is SheffHEPP, a hydroelectric power project at the University of Sheffield. In response to requests for help from local communities, students are designing and building small-scale hydroelectric power installations in a number of locations. This multidisciplinary project requires an understanding of water engineering, electrical power generation, battery storage and mechanical power transmission, as well as taking into consideration the legal, financial, and environmental constraints of such an undertaking. But it also requires Making – students have made scale models and tested them in the lab, and are now looking to implement their designs in situ. Such combinations of practical engineering and real-world problems that require consideration of the wider context provide powerful educational experiences that expose students to the realities of sustainable development.
There are a number of national and international organisations for students that promote SDGs through competitions and design challenges. These include:
Engineers Without Borders – an international organisation with branches at many UK universities, which runs, amongst other things, the ‘Engineering for People Design Challenge’
Shell EcoMarathon – a vehicle design competition focused on energy optimisation
Cybathlon– a platform that challenges teams globally to develop assistive technologies suitable for everyday use, with and for people with disabilities
Student engagement with such activities is growing exponentially, and makerspaces can benefit students who are prototyping ideas for the competitions. At Sheffield, there are over 20 co-curricular student-led projects in engineering, involving around 700 students, many of which engage with the SDGs. In addition to SheffHEPP and teams entering all of the above competitions, these include teams designing solutions for rainwater harvesting, vaccine storage, cyclone-proof shelters for refugees, plastics recycling, and retrofitting buildings to reduce energy consumption. As well as the employability benefits of such activities, students are looking for ways to use engineering to create a better future, with awareness of issues around climate change and sustainability increasing year on year. And none of these activities would be possible without access to maker facilities to build prototypes.
Linked to the makerspace movement is the concept of hackathons – short sprints where teams of students compete to design and prototype the best solution to a challenge. At Sheffield, these have included:
Hackcessible – an assistive technology hackathon where students work with disabled members of the community to design bespoke solutions to problems that fall outside of the scope of healthcare provision;
The Biodigester Hackathon – finding the best way to convert waste from the University’s Diamond building into energy;
The Rice Seeder Design Challenge – working with a social enterprise in Cambodia to improve the design of traditional rice seeders in order to increase productivity.
In summary, Makerspaces enable students to access multiple initiatives through which they can engage in learning that is potentially participatory and applied. These forms of learning are critical to ESD and have the potential to address multiple Sustainable Development Goals.
2. Maker communities build cross-disciplinary connections and encourage inclusive learning:
2.1 ESD rationale
Global complex challenges cannot be resolved by engineers alone. ESD encourages students to value different forms of knowledge, from within and beyond academia. Within academia, makerspaces can provide opportunities for students to collaborate with peers from other disciplines. Cross-disciplinary knowledge can play a crucial role in understanding the complex challenges that face our world today. Makerspaces also offer an opportunity for students to engage with other forms of knowledge – such as the knowledge that is formed through lived experience – and appreciate the role that this plays in effective practices of design and creation. Finally, makerspaces can help students to communicate their knowledge in ways that are understandable to non-specialist audiences. This inclusive approach to knowledge creation and knowledge sharing enables students to think innovatively about sustainable solutions for the future.
2.2 The contribution of makerspaces
Cross-disciplinary spaces
Student-led makerspaces encourage students to lead in the creation of cross-disciplinary connections. For example, at the University of Sheffield, the makerspace has primarily been used by engineering students. Currently, however, the students are working hard to create events that will actively draw in students from across the university. This provides students with a co-created space for cross-disciplinary exchange as students train each other on different machines, learning alongside each other in the space. At other times, staff from different disciplines can come together to create shared opportunities for learning.
The cross-disciplinary nature of makerspaces and the universality of the desire to create encourages a diverse community to develop, with inclusivity as a core tenet. They can often provide opportunities for marginalised communities. Makerspaces such as the ‘Made in Za’atari’ space in Za’atari refugee camp have been used to give women in the camp a space in which they can utilise, share, and develop their skills both to improve wellbeing and create livelihoods. Meanwhile, projects such as Ambessa Play have provided opportunities for young people in refugee camps across the world to learn about kinetic energy and electronic components by creating a wind-up flashlight.
Spaces of inclusive learning
Maker projects also allow students to engage with their local communities, whether creating renewable energy installations, restoring community assets or educating the next generation of makers. Such projects raise the profile of sustainable development in the wider public and give students the opportunity to contribute to sustainable development in their neighbourhoods.
ESD does not just influence what we teach and how we teach; it also shapes who we are. A central tenet of ESD is that it helps to shape students, staff, and educational communities. When this happens, they are – in turn – better able to play their part in shaping the world around them.
3.2 The contribution of makerspaces
Even before the concept was popularised by the BBC’s ‘The Repair Shop’, repair cafes had begun to spring up across the country. Such facilities promote an ethos of repair and recycling by sharing of expertise amongst a community, a concept which aligns very closely with the maker movement. Items repaired might include furniture, electrical appliances, and ornaments. Related organisations like iFixit have also helped to promote responsible consumption and production through advocacy against built-in obsolescence and for the ‘Right to Repair’.
The same principles apply to Making in textiles – sustainable fashion is a topic that excites many students both within and outside engineering, and makerspaces offer the opportunity for upcycling, garment repair and clothes shares. Students can learn simple techniques that will allow them to make better use of their existing wardrobes or of used clothing and in the process begin to change the consumption culture around them. At the University of Sheffield, our making community is currently planning an upcycled runway day, in which students will bring clothing that is in need of refresh or repair from their own wardrobes or from local charity shops. Our team of peer-instructors and sewing specialists will be on hand to help students to customise, fit, and mend their clothes. In doing so, we hope to build an awareness of sustainable fashion amongst our students, enabling an upcycling fashion culture at the university.
Conclusion:
Education for Sustainable Development plays a vital role in enabling students to expand the knowledge and skills that they hold so that they can play their part in creating a sustainable future. Makerspaces offer a valuable route through which engineering students can engage with Education for Sustainable Development, including opportunities for applied learning, cross disciplinary connections, and responsible consumption.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving; Strategic; Self-awareness; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 8 (Decent work and economic growth); SDG 10 (Reduced Inequalities); SDG 13 (Climate action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who wish to consider how to navigate tradeoffs between economic and environmental sustainability as they apply to engineering. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
In the face of the ever-growing need for economic progress and the escalating environmental crises, the engineering profession finds itself at a crossroads. Striking a delicate balance between economic growth and environmental sustainability is no longer an option but an imperative. This article delves into the pivotal role of engineering educators in shaping the mindset of future engineers, offering an expanded educational framework that fosters a generation capable of harmonising economic prosperity with environmental responsibility.
The uneasy truce:
Developing nations, with burgeoning populations and aspirations for improved living standards, grapple with the paradox of rapid economic expansion at the expense of environmental degradation. This necessitates a shift in focus for engineering educators, who bear the responsibility of cultivating engineers with a foresighted perspective. Rather than demonising economic growth, the goal is to instill a nuanced understanding of its interdependence with environmental well-being. For example, in developing countries like Brazil, rapid economic expansion driven by industries such as agriculture and logging has resulted in extensive deforestation of the Amazon region. This deforestation not only leads to the loss of valuable biodiversity and ecosystem services but also contributes to climate change through the release of carbon dioxide. Similarly, in industrialised nations, the pursuit of economic growth has often led to the pollution of air, water, and soil, causing adverse health effects for both humans and wildlife.
Equipping our future stewards:
To navigate this delicate landscape, educators must move beyond traditional technical expertise, fostering a holistic approach that integrates ethical awareness, interdisciplinary collaboration, localised solutions, and a commitment to lifelong learning.
1. Ethical awareness: One potential counterargument to the expanded educational framework may be that the focus of engineering education should remain solely on technical expertise, with the assumption that ethical considerations and interdisciplinary collaboration can be addressed later in a professional context. However, research has shown that integrating ethical awareness and interdisciplinary collaboration early in engineering education not only enhances problem-solving skills but also cultivates a sense of responsibility and long-term thinking among future engineers.
2. Holistic thinking: Research has shown that interdisciplinary collaboration between engineering and social science disciplines can lead to more effective and sustainable solutions. For instance, a study conducted by the World Bank’s Water and Sanitation Program (WSP) found that by involving sociologists and anthropologists in the design and implementation of water infrastructure projects in rural communities, engineers were able to address cultural preferences and local knowledge, resulting in higher acceptance and long-term maintenance of the infrastructure. Similarly, a case study of a renewable energy project in Germany demonstrated how taking into account the geographic nuances of the region, such as wind patterns and solar radiation, led to more efficient and cost-effective energy solutions. Presently, Germany boasts the world’s fourth-largest installed solar capacity and ranks amongst the top wind energy producers.
3. Localised solutions: Students must be required to consider the social, cultural, and geographic nuances of each project. This means moving away from one-size-fits-all approaches and towards an emphasis on the importance of context-specific solutions. This ensures that interventions are not only technologically sound but also culturally appropriate and responsive to local needs, fostering sustainability at both the project and community levels.
4.Lifelong learning: Empower students with the skills to stay abreast of emerging technologies, ethical frameworks, and policy landscapes. Recognise that the landscape of sustainability is dynamic and ever evolving. Foster a culture of continuous learning and adaptability to ensure that graduates remain true stewards of a sustainable future, equipped to navigate evolving challenges throughout their careers.
A compass for progress:
By integrating these principles into engineering curricula, educators can provide students with a moral and intellectual compass—an ethical framework guiding decisions toward a future where economic progress and environmental responsibility coexist harmoniously. Achieving this paradigm shift will require collaboration, innovation, and a willingness to challenge the status quo. However, the rewards are immeasurable: a generation of engineers empowered to build a world where prosperity thrives alongside a healthy planet—a testament to the true potential of the engineering profession.
Engineering teachers can raise a generation of engineers who can balance economic growth with environmental responsibility by embracing a broader educational framework that includes ethical awareness, cross-disciplinary collaboration, localised solutions, and a commitment to lifelong learning. Through the adoption of these principles, engineering curricula can provide students with a moral and intellectual compass, guiding them toward a future where economic progress and environmental sustainability coexist harmoniously.
References:
International Renewable Energy Agency (IRENA) (2023). ‘Pathways to Carbon Neutrality: Global Trends and Solutions’, Chapter 3.
Sharma, P. (2022) ‘The Ethical Imperative in Sustainable Engineering Design’, Chapter 5.
United Nations (2021) ‘Goal 13: Climate Action. In Sustainable Development Goals: Achieving a Balance between Growth and Sustainability’. (pp. 120-135).
World Bank (2022) ‘Renewable Energy in Developing Nations: Prospects and Challenges’, pp.10-15.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Systems thinking; Collaboration; Integrated problem-solving; Self-awareness; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 7 (Affordable and clean energy); SDG 12 (Responsible consumption and production); SDG 14 (Life below water).
Reimagined Degree Map Intervention: Cross-disciplinarity; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who wish to embed environmental and ecological sustainability into the engineering curriculum or design modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
Engineering has always responded to the societal challenges of humanity, contributing to its progress and economic development. However, the synergetic effects of fossil-based economic growth together with large-scale engineering projects have also caused great pressures on natural resources and ecosystems leading to over-exploitation and degradation. In consequence, in the last decades, a multidimensional perspective on sustainability perspective has arisen, and has been acknowledged by social movements, governments and institutions.
Meanwhile, this assumes deep epistemological changes, requiring holistic and transdisciplinary approaches that must be considered by engineering professionals, establishing communication based on new ways of thinking. There is the need to interweave disciplines, to establish complementary relationships, to create associations in order to root new knowledge, enabling communication between the sciences. In doing so, transdisciplinary science has emerged, i.e. the science that can develop from these communications. It corresponds to a higher stage succeeding the stage of interdisciplinary relationships, which would not only cover interactions or reciprocities between specialised research projects, but would place these relationships within a total system without any firm boundaries between disciplines (Piaget, 1972).
Currently, the complexity associated with climate change and the uncertainty of the link between global loss of biodiversity and current loss of public health, are demanding innovative knowledge, needing those holistic and transdisciplinary approaches. Engineering professionals must therefore give additional attention to ecological sustainability.
The challenges of sustainability:
The term “sustainability” portrays the quality of maintenance of something which can continue for an indefinite time, such as biological species and ecosystems. Sustainability is based on a dynamic balance between natural and human ecosystems, in order to maintain the diversity, complexity and functions of the ecological systems that support life, while contributing to prosperous and harmonious human development (Costanza, 1997). This strong perspective of sustainability needs to have a prominent place in land use management which must consider the carrying capacity of natural ecosystems.
Ecological sustainability in particular aims to maintain the earth’s natural potential and the biosphere, its stock of natural resources, atmosphere and hydrosphere, ecosystems and species. Ecosystems should be kept healthy by preserving their “ecological integrity”, i.e. the capacity to maintain the structure and function of its natural communities, which includes biogeochemical cycles.
Engineering professionals must therefore understand the global limits for water, land, and energy use (contributing to less atmospheric carbon emissions), and preserve other natural resources, such as nutrients or biodiversity. In the technical decision-making process, they need to understand the ecological impacts of big scale projects, such as transportation infrastructures, dams, deforestation, and others. Alongside other professionals, they need to contribute to the restoration, conservation and preservation of ecosystem services, e. g. support services, production services, regulating services and cultural services. These services result in benefits that people and organisations receive from ecosystems and constitute determinants of well-being (Millennium Ecosystem Assessment, 2005).
Until now, technical solutions often focused on highly visible man-made structures, many of which stopped or disrupted natural processes. Presently, the importance of regulating natural ecosystem services such as water purification, water supply, erosion and flood control, carbon storage and climate regulation is beginning to be perceived. These are considered as soft engineering tools and must be highlighted by engineering educators and assumed in the practice.
This ecological mindset would enable solutions that recognise management and restoration of natural ecosystems in order to curb climate change, protect biodiversity, sustain livelihoods and manage rainstorms. Nature-based solutions are a natural climate solution in cities, contributing to the mitigation and adaptation of climate change through green roofs, rain gardens, constructed wetlands that can minimise damaging runoff by absorbing stormwater, reducing flood risks and safeguarding freshwater ecosystems. They are essential in climate refuges for city residents during heatwaves and other extreme climate events. These solutions need specific and new knowledge made by ecologists working with engineers and others, which demands action beyond disciplinary silo, i.e., a transdisciplinary approach.
Within this context, engineering professionals must consider specific operating principles of sustainability:
Preserve and improve the natural resource base (e.g. biodiversity) and the stability of landscapes.
Minimise the use of non-renewable natural resources.
Exploit renewable resources in a manner such that: harvesting rates do not exceed regeneration rates, and pollution does not exceed the renewable assimilative capacity of the local environment (Daly, 1990) in the present and future.
Protect the atmosphere on a regional and global scale.
Develop building and transport decarbonisation.
Regenerate soil and water resources.
Apply the land-water-food-energy nexus.
Maintain and improve historical and cultural resources and landscapes.
Engage community and citizen participation in co-action and management processes.
Promote ecological awareness, education and training.
These principles must be considered in engineering education, and require deep changes in teaching, because there is a great difficulty in studying and managing the socio-ecological system according to the Cartesian paradigm which breaks up and separates the parts of a whole. New ecological thinking emphasises holistic approaches, non-linearity, and values focused on preservation, conservation and collaboration (Capra, 1996). The transdisciplinary approach needs dialogic and recursive thinking, which articulates from the whole to the parts and from the parts to the whole, and can only be unchained with the connection of the different fields of knowledge, including knowledge from local communities in specific territories.
In higher education, engineering students should establish face-to-face contacts with ecology students in order to better understand ecological sustainability and generate empathy on the subject. Engineering students must develop skills of collaboration and inter-cultural communication tools (Caeiro-Rodríguez et al., 2021) that will facilitate face to face workshops with other professionals and enrich learning experiences.
In the 21st century, beyond the use of technical knowledge to solve problems, engineering professionals need communicational abilities to consider ecological sustainability, requiring networking, cooperating in teams, and working with local communities. Engineering educators must include trans-sectoral and transdisciplinary research and holistic approaches which make clear progress in tackling ecological sustainability.
Conclusion:
The interconnected socio-ecological system must be managed for sustainability by multiple stakeholders. Engineering professionals need to develop a set of skills and competencies related with the ability to work with other ones (e.g. from the natural sciences) and citizens. Currently, beyond the use of technical knowledge to solve problems, engineers need to consider the sustainable development goals, requiring networking, cooperating in teams, and working with communities through transdisciplinary approaches.
Education for Sustainable Development is required to empower engineering professionals to adopt strong sustainable actions that simultaneously ensure ecological integrity, economic viability and a just society for the current and future generations. Education is a fundamental tool for achieving the Sustainable Development Goals, as recognised in the 2030 Education Agenda, coordinated by UNESCO (2020).
Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC.
Piaget, J. (1972) ‘The Epistemology of Interdisciplinary Relationships.’ in Apostel, L. et al. (eds.): Interdisciplinarity: Problems of Teaching and Research in Universities. (Centre for Educational Research and Innovation (CERI)). Paris, France: Organisation for Economic Co-operation and Development.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Topic: Pedagogical approaches to integrating sustainability.
Tool type: Knowledge.
Relevant disciplines: Any.
Keywords: Education for Sustainable Development; Teaching or embedding sustainability; Course design; AHEP; Learning outcomes; Active learning; Assessment methods; Pedagogy; Climate change; Bloom’s Taxonomy; Project-based learning; Environment; Interdisciplinary; Higher education; Curriculum.
Sustainability competency: Integrated problem-solving competency.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who are seeking an overall perspective on teaching approaches for integrating sustainability in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
As stated in the 1987 United Nations Brundtland Report, ‘sustainability’ refers to “meeting the needs of the present without compromising the ability of future generations to meet their own needs” (GH, 1987 p.242). It is underpinned by a tripartite definition encompassing environmental, social and economic sustainability. The necessity for embracing sustainability is underscored by several pressing challenges we face as a global society, ranging from climate change to economic crises.
Against the backdrop of these global challenges, the role of the engineering profession assumes significant importance. While the scientific principles that underpin the various engineering disciplines remain largely the same, the responsibility of the engineering profession is to leverage these principles to address current and future challenges. Consequently, education for sustainable development (ESD) becomes a vital aspect of an engineer’s training, since the profession will guide the design and implementation of innovative solutions to challenges crosscutting environmental impact, judicious use of resources and social wellbeing.
Integrated course design:
Integrating ESD in engineering education requires programme and module designers to take a deliberate approach. Drawing on initial attempts to integrate sustainability in management and business education (Rusinko, 2010), four pedagogical approaches of ESD can be identified:
piggybacking,
mainstreaming,
specialising,
connecting.
The last two approaches are for creating new curriculum structures with a narrow discipline-specific focus and a broad transdisciplinary focus, respectively. The other two, piggybacking and mainstreaming, are approaches to embed sustainability within existing curriculum structures. Although piggybacking is the easier-to-implement approach, achieved by additional sessions or resources on sustainability being tagged onto existing course modules, mainstreaming enables a broader cross-curricular perspective that intricately intertwines sustainability with engineering principles.
The mainstreaming approach is also an elegant fit with the accreditation requirements for sustainability; the latest edition of the Accreditation of Higher Education Programmes (AHEP) emphasises competence in evaluating ‘environmental and societal impact of solutions’ to ‘broadly-defined’ and ‘complex’ problems. In order to foster this ability, where sustainability is a guiding principle for developing engineering solutions, a holistic (re)consideration of all elements of constructive alignment (Biggs, 1996) – intended learning outcomes (ILOs), teaching and learning activities, and student assessment – is needed. To this end, the Integrated Course Design (ICD) pedagogical framework can be leveraged for a simultaneous and integrated consideration of course components for embedding sustainability.
Sustainability learning outcomes:
Bloom’s taxonomy (also see here), which conventionally guides formulation of ILOs, can be extended to incorporate sustainability-based learning outcomes. The action verb in the AHEP guidance for the learning outcome on sustainability is ‘evaluate’, signifying a high cognitive learning level. ILOs framed at this level call for application of foundational knowledge through practical, critical and creative thinking. Although the cognitive domain of learning is the main component of engineering education, sustainability competence is greater than just a cognitive ability. For more information, see the Reimagined Degree Map.
ESD is a lifelong learning process and as stated by UNESCO, it ‘enhances the cognitive, socio-emotional and behavioural dimensions of learning’. This integration of cognitive learning outcomes with affective aspects, referred to as ‘significant learning’ in the ICD terminology, is of utmost importance to develop engineers who can engage in sustainable and inclusive innovation. Furthermore, mapping programme and module ILOs to the UN Sustainable Development Goals (SDGs) is another way to integrate sustainability in engineering with connections between technical engineering competence and global sustainability challenges becoming more explicit to students and educators. Similarly, the ILOs can be mapped against UNESCO’s sustainability competencies to identify scope for improvement in current programmes. See the Engineering for One Planet Framework for more information and guidance on mapping ILOs to sustainability outcomes and competencies.
Teaching and learning activities:
Activities that engage students in ‘active learning’ are best placed to foster sustainability skills. Additional lecture material on sustainability and its relevance to engineering (piggybacking approach) will have limited impact. This needs to be supplemented with experiential learning and opportunities for reflection. To this end, design and research projects are very effective tools, provided the problem definition is formulated with a sustainability focus (Glassey and Haile, 2012). Examples include carbon capture plants (chemical engineering),green buildings (civil engineering) and renewable energy systems (mechanical and electrical engineering).
Project-based learning enables multiple opportunities for feedback and self-reflection, which can be exploited to reinforce sustainability competencies. However, with project work often appearing more prominently only in the latter half of degree programmes, it is important to consider other avenues. Within individual modules, technical content can be contextualised to the background of global sustainability challenges. Relevant case studies can be used in a flipped class environment for a more student-led teaching approach, where topical issues such as microplastic pollution and critical minerals for energy transition can be taken up for discussion (Ravi, 2023). Likewise, problem sheets or simulation exercises can be designed to couple technical skills with sustainability.
Student assessment:
With sustainability being embedded in ILOs and educational activities, the assessment of sustainability competence would also need to take a similar holistic approach. In other words, assessment tasks should interlace engineering concepts with sustainability principles. These assessments are more likely to be of the open-ended type, which is also the case with design projects mentioned earlier. Such engineering design problems often come with conflicting constraints (technical, business, societal, economic and environmental) that need careful deliberation and are not suited for conventional closed-book time-limited examinations.
More appropriate tools to assess sustainability, include scaled self-assessment, reflective writing and focus groups or interviews (Redman et al., 2021). In a broader pedagogical sense, these are referred to as authentic assessment strategies. Given the nexus between sustainability and ethics, inspiration can also be drawn from how ethics is being assessed in engineering education. Finally, pedagogical models such as the systems thinking hierarchical model (Orgill et al., 2019), can be used to inform the design of assessment rubrics when evaluating sustainability skills.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.