Theme: Universities’ and business’ shared role in regional development 

Authors: Amer Gaffar (Manchester Metropolitan University); Dr Ian Madley (Manchester Metropolitan University); Prof Bamidele Adebisi (Manchester Metropolitan University).

Keywords: Decarbonisation; Local Energy; Skills; Economic Growth.

Abstract: Greater Manchester (GM) has committed to carbon neutrality by 2038. There is a 97m tonnes carbon emission gap between solutions currently available and a net zero budget. To bridge this innovation gap under the leadership of the Greater Manchester Combined Authority the agency brings together: Bruntwood, Hitachi, MMU, UoM, GM Growth Company, SSE and UoS to support R&D and innovation initiatives focused on customer pull to enable rapid deployment of new and emerging technologies, services and business models to meet the challenge of GM becoming a carbon neutral city-region by 2038, drive skills development and deliver economic growth.

 

The need for an Energy Innovation Agency

The Mayor for Greater Manchester Combined Authority (GMCA) has committed the city region to carbon neutrality by 2038.  An analysis of the implications of the Paris Climate Change Agreement for Greater Manchester (GM) (Figure 1) has identified that there is a 97m tonnes carbon emission gap between solutions currently available and the actions needed to reach net zero.  We refer to this as the Innovation Gap.

 
Figure 1 GM Net Zero Carbon Budget and implementation pathways. Source GM 5-year Environment Plan [1]

 

[2] Unconstrained implementation of Scatter methods
Achievable implementation of Scatter methods

 

To bridge the GM innovation gap under the leadership of GMCA the agency brings together: Bruntwood, Hitachi, Manchester Metropolitan University, University of Manchester, SSE and  University of Salford to support R&D and innovation initiatives focused on customer pull to enable rapid deployment of new and emerging technologies, services and business models (energy innovations) to meet the challenge of GM becoming a carbon neutral city-region by 2038, driving skills development and delivering economic growth.

Forming the Energy Innovation Agency

GMCA initially approached the city’s three universities to seek advice on how their academic expertise could be harnessed to help bridge the innovation gap.  This quickly led to discussions between each of the universities that identified a wide pool of complementary, and largely non-competitive, areas of research expertise that could address the gap (Figure 2).      

Figure 2 Research expertise by university partner – darker colour indicates a greater depth of expertise in the area.

 

It was also clear that the timescales needed to deliver city wide change would not fit within a traditional academic approach to research and knowledge transfer that required a public-private partnership.

At the core of this partnership approach are three key components.

Using existing networks, a core team comprising GMCA, Bruntwood, Hitachi, MMU, UoM, SSE and UoS came together to develop the business plan for the agency and to jointly provide the funding for the first three-years of the operation of the agency.

Vision, Aims and Objectives

To accelerate the energy transition towards a carbon-neutral economy by bridging the energy innovation gap, increasing the deployment of innovative energy solutions in GM and beyond, to speed-up the reduction of carbon emissions.

Aims:

  1. Innovation Exploitation: supporting and scaling the most promising decarbonised energy innovations to maximise the early adoption of effective carbon-neutral energy systems.
  2. Decarbonisation: reducing Greater Manchester’s carbon emissions from energy to meet our ambitious target to be a carbon-neutral city region by 2038
  3. Rapid Commercialisation: rapid transition of carbon-neutral energy innovations to full-scale integration.
  4. Investment: creating and promoting investment opportunities for carbon-neutral energy innovations and projects in the city region.

Objectives:

Scope

With a population of 2.8 million covering 1,277 km2 the ten metropolitan boroughs of GMCA comprises the second most populous urban area in the UK, outside of London. The scope and potential for the Energy Innovation Agency is huge.

 

Figure 3 GMCA Energy Transition Region showing local authority boundaries.

 

Establishing the GM-city region area as an Energy Transition Region will provide the opportunity to develop the scale of deployment necessary to go beyond small-scale demonstration projects and develop the supply chains that can be replicated as a blue-print  elsewhere in urban environments across the UK and internationally.

Progress to date

Following the investment by the founding partners a management team has been established within GMCA’s subsidiary “The Growth Company”.  An independent board chaired by Peter Emery CEO ENWL has also been established.

The formal launch event will take place on 28th April 2022, at which a first challenge to the innovation community to bring forward solutions to decarbonise non-domestic buildings  will be set.

Key contacts and further information

Energy Innovation Agency

Case Study

Amer Gaffar, Director Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University a.gaffar@mmu.ac.uk

References

[1] https://www.greatermanchester-ca.gov.uk/media/1986/5-year-plan-branded_3.pdf

[2] Kuriakose, J., Anderson, K., Broderick, J., & Mclachlan, C. (2018). Quantifying the implications of the Paris Agreement for Greater Manchester. https://www.research.manchester.ac.uk/portal/files/83000155/Tyndall_Quantifying_Paris_for_Manchester_Report_FINAL_PUBLISHED_rev1.pdf

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Universities’ and businesses’ shared role in regional development, Knowledge exchange, Graduate employability and recruitment

Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)

Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure

Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.

 

The opportunity

Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.

Seed funded taster projects

In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.

Knowledge Transfer Partnership (KTP) Projects

KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.

The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.

The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.

First of a kind (FOAK) projects

The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.

The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.

The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.

The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.

The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.

Additional benefits to University of Huddersfield

In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.

 

Figure 1. Head-span showing span-wires and span-wire clamp.

 

Figure 2. Old (left) and new (right) span-wire clamps.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Author: Dr Robert Mayer (Cranfield University)

Keywords: Guest lectures, Guest speakers

Abstract: The case study looks at how we use guest lecturers from industry (and academia) at Cranfield University. In the case study we examine why and how module leaders use guest lecturers in their modules. Furthermore, we also cover the student perspective. How do students perceive this form of industry collaboration and what are their expectations from guest lectures? The case study will benefit the EPC community by giving insight and advice on how to include guest lecturers in the curriculum. While many universities use guest lecturers from industry, very little research has been conducted into module leaders’ and students’ experience with guest lectures. The case study provides good practice examples based on students’ and module leaders’ feedback.

Case study

This case study is presented as PowerPoint slides accessible as a pdf here: Guest Lectures: Stakeholder Insights to Enhance the Student Experience and Foster Industry-Academia Partnerships – Dr Robert Mayer Slides

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Ian Hobson (Senior Lecturer and Academic Mentor for Engineering Leadership Management at Swansea University and former Manufacturing Director at Tata Steel) and Dr Vasilios Samaras (Senior Lecturer and Programme Director for Engineering Leadership Management at Swansea University)

Keywords: Academia, Industry

Abstract: Throughout the MSc Engineering Leadership Management program, the students at Swansea University develop theoretical knowledge and capability around leadership in organisations. Working alongside our industry partner Tata Steel, they deploy this knowledge to help understand and provide potential solutions to specific organisational issues that are current and of strategic importance to the business. The output of this work is presented to the Tata Steel board of directors along with a detailed report.

 

Aims of the program

In today’s world, our responsibility as academics is to ensure that we provide an enabling learning environment for our students and deliver a first-class education to them. This has been our mantra for many years. But what about our responsibility to the employing organisations? It’s all well and good providing well educated graduates but if they are not aligned to the requirements of those organisations then we are missing the point. This may be an extreme scenario, but there is a real danger that as academics we can lose touch with the needs of those organisations and as time moves on the gap between what they want and what we deliver widens.

In today’s world this relationship with the employment market and understanding the requirement of it is essential. We need to be agile in our approach to meet those requirements and deliver quality employees to the market.

How did we set this collaborative approach?

In reality the only way to do this is by adopting a collaborative approach to our program designs. Our aim with the MSc Engineering Leadership Management (ELM) at Swansea University is to ensure that we collaborate fully with the employment market by integrating industry professionals into our program design and delivery processes. In this way we learn to understand the challenges that organisations face and how they need strength in the organisation to meet those challenges. This of course not an easy task to accomplish.

In our experience professionals within organisations are often overrun with workload and trying to manage the challenges that they face. A university knocking the door with an offer of collaboration is not always top of their priority list, so how do we make this happen? You need to have a balance of academics and experienced industry leaders working within the program who understand the pressures that business faces. They also often have networks within the external market who are willing to support such programs as the ELM. The power of collaboration is often overlooked. It’s often a piece of research, dealing with a specific technical issue, it is rarely a continuum of organisational alignment. If the collaboration is designed for the long-term benefit of improving employability, then organisations will see this as a way to help solve the increasing challenge of finding “good” employees in a market that is tightening. So overall this becomes a win-win situation.

How was the need for the program identified?

Our program was developed following feedback to the university from the market that graduates were joining organisations with good academic qualifications but lacked an understanding of how organisations work. More importantly how to integrate into the organisation and develop their competencies. This did come with time and support, but the graduates fell behind the expected development curve and needed significant support to meet their aspirations.

Swansea University developed the ELM to provide education on organisations and how they work and develop the skills that are required to operate in them as an employee. These tend to be the softer skills, but also developing the student’s competence in using them. Examples include working as teams and providing honest feedback via 1-1s and 360s and team reviews.

In our experience the ability to challenge in a constructive way is a competency that the students don’t possess. All our work is anchored in theory which provides reference for the content. The assignments that we set involve our industry partners and provide potential solutions to real issues that organisations face.  The outcome of their projects is presented to senior management within the host organisation. This is often the high point of the year for the students. This way the students get exposure to the organisations which extends their comfort zones preparing them for the future challenges.

What are the program outcomes?

September 2022 will be our fifth year. The program is accredited by the Institution of Engineering and Technology (IET). Our numbers have increased year on year, and we are running cohorts of up to 20 students. It’s a mix of UK and international students. The program requires collaboration between the university faculties which has brought significant benefits and provided many learning opportunities. The collaboration between the engineering and business schools has made us realise that working together we provide a rounded program that is broad in content, but also deep in areas that are identified as specific learning objectives.

The feedback from the University is that students on the ELM program perform well and they have a more mature approach to learning and have confidence in themselves and are proactive in lectures. From our industry partners they feed back that the ELM students are ahead of the curve and are promoted into positions ahead of their peers.

What have we learned from the program?

As lecturers, over the years it has become very clear that the content that we deliver must change year on year. We cannot deliver the same content as it quickly becomes out of date. The theory changes very little, but the application changes significantly, in line with the general market challenges. It is almost impossible to predict and if we sit back and look at the past 4 years this pattern is clear. We also need to refresh our knowledge and we have as much to learn from our students as they do from us. We treat them as equals and have a very good learning relationships and have open and honest debates. We always build feedback into our programs and discus how we can improve the content and delivery of the program. Without exception feedback from a year’s cohort will modify the program for the following year.

Looking ahead

We are being approached by organisations interested in the University delivering a similar program to their future leaders on a part time basis which is something we are considering. We do however recognise that this program is successful because of the experience and knowledge of the lecturers and the ability to work with small cohorts which enables a tailored approach to the program content.

We believe that collaboration with the market keeps the ELM aligned with its requirements. Equally as importantly is the collaboration with our students. They are the leaders of the future and if the market loses sight of the expectations of these future leaders, then they will fail.

The ELM not only aligns its programs with the market, it keeps the market aligned with future leaders.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Sajjad Hussain (University of Glasgow), Dr Hasan T Abbas (University of Glasgow), Dr Qammer H Abbasi (University of Glasgow), Prof Muhammad Imran (University of Glasgow), Mark Cullens (EON Reality), Marcin Kasica (EON Reality), Dr Renah Wolzinger (EON Reality)

Keywords: Mixed Reality, Virtual Reality, Augmented Reality, Metaverse

Abstract: The University of Glasgow has established a mixed reality center, EON-XR Centre, in partnership with EON Reality Inc. EON Reality is a global leader in Augmented and Virtual Reality-based knowledge and skills transfer for industry and education. In this partnership, over 2000 students, internees, and staff members are provided the opportunity to access the XR technology to enhance the understanding of countless topics in the world around us, contributing both to the development of exciting educational content as well as the larger global knowledge metaverse.

Case study

This case study is presented as a PowerPoint presentation, see the following link: Metaverse in Education – a partnership between University of Glasgow and EON Reality. Alternatively you can access the slides as a PDF here.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange, Research, Graduate employability and recruitment

Authors: Steve Jones (Siemens), Associate Prof David Hughes (Teesside University), Prof Ion Sucala (University of Exeter), Dr Aris Alexoulis (Manchester Metropolitan University) and Dr Martino Luis (University of Exeter)

Keywords: Digitalisation, Partnership, Collaboration, Network

Abstract: Siemens have worked together with university academics from 10 institutions to develop and implement holistic digitalisation training and resources titled the “Connected Curriculum”. The collaboration has proved hugely successful for teaching, research and knowledge transfer. This model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners.

 

Collaboration between academic institutions and industry is a core tenet of all Engineering degrees; however its practical realisation is often complex. Academic institutions employ a range of strategies to improve and embed their relationships with industry. These approaches are often institution specific and do not translate well across disciplines. This leaves industries with multiple academic partnerships, all operating differently and a constant task of managing expectations on both sides. The difference about Siemens Connected Curriculum is that it is an industry-led engagement which directly seeks to address and resource these challenges.

In 2019 Siemens developed the “Connected Curriculum”, a suite of resources (see fig1) to support and enable academic delivery around the topic of ‘Industry 4’. A novel multi-partner network was formed between Siemens, Festo Didactic and universities to develop and deliver the curriculum using real industrial hardware and software. Siemens is uniquely positioned to support on Industry 4 because it is one of the few companies that has a product portfolio that spans the relevant industrial hardware and software. As a result, Siemens is more able to bring together the cyber-physical solutions that sit at the heart of Industry 4.

 

 

 

Figure 1 – Core resources of Siemens Connected Curriculum

Connected Curriculum Aims

The scheme set out with a number of designed aims for the benefit of both Siemens and the partner universities.

Connected Curriculum Implementation

In 2019, four universities agreed with Siemens to create a pilot programme with a common vision for where Siemens could add value, how the university partners could collaborate, and how the network could scale. The initial pilot programme included Manchester Metropolitan University (MMU), The University of Sheffield (UoS), Middlesex University (Mdx), and Liverpool John Moores University (LJMU). Since the success of its pilot programme, as of Jan 2022 Connected Curriculum now has ten UK university partners with the addition of Teesside University, Coventry University, Exeter University, Salford University, Sheffield Hallam University and The University West of England. The consortium continues to grow and is now expanding internationally. The university academics and the Connected Curriculum team at Siemens have worked together to develop holistic digitalisation training and resources.

Siemens developed a specific team to resource Connected Curriculum, which now includes a full-time Connected Curriculum lead and two Engineering support staff. In addition to the direct team, the initiative also relies on input from a range of experts across the multiple Siemens business units.

The collaboration between multiple institutions and Siemens has proved hugely successful for teaching, research and knowledge transfer. We feel this model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners. Evidential outcomes of these benefits are demonstrated through the following examples.

Multi-disciplinary delivery

In 2020 Teesside University’s School of Computing, Engineering and Digital Technologies completed a module review including the embedding of digitalisation, resourced through Connected Curriculum, across its Engineering degrees. A discipline specific, scaffolded approach was developed, enabling students to build on previous learning. This includes starting at a component level and building towards fully integrated cyber-physical systems and plants. Connected Curriculum resources are used to inform and resource new modules including Robotics Design and Control and Process Automation. Due to the inherent need for multi-disciplinary working on digitalisation projects many of these have been structured as shared modules. As Siemens work across such a broad range of industries we are able to embed case studies and tasks which are relevant and foster collaborative working. The need for these digital skills and collaborative approaches has been highlighted by a number of studies including the joint 2021 IMechE/IET survey report: The future manufacturing engineer – ready to embrace major change?

Impact on Industry

In May 2021, Exeter’s Engineering Management group and a manufacturer of electric motors, generators, power electronics, and control systems (located in Devon, UK) collaborated to create digital twins for the assembly line of the Internal Permanent Magnet Motor.  With the support from Siemens, we implemented Siemens Tecnomatix Plant Simulation to develop the models. The aim was to optimise assembly line performance of producing the Internal Permanent Magnet Motor such as cycle time, resource utilisation, idle time, throughput and efficiency. What-if scenarios (e.g. machine failure, various material handling modes, absenteeism, bottlenecks, demand uncertainty and re-layout workstations) were performed to build resilient, productive and sustainable assembly lines. Two MSc students were closely involved in this collaborative project to carry out the modelling and the experiments.  Our learners have experienced hands-on engineering practice and action-oriented learning to implement Siemens plant simulation in industry.

Industrially resourced project-based learning

In 2020 Siemens was involved in the Ventilator Challenge UK (VCUK) consortium that was formed in response to the COVID-19 pandemic. VCUK was tasked with ramping up production of ventilators from 10/week to 1500/week to produce a total of 13500 in just 12 weeks. Inspired by this very successful project, academics at MMU approached the Connected Curriculum team asking if the project could be replicated with a multidisciplinary group of 2nd year Engineering students. MMU Academics and Engineers from Siemens codeveloped a project pack using an open-source ventilator design from Medtronic. The students were tasked with designing a manufacturing process that would produce 10000 ventilators in 12 weeks. The students had 6 weeks to learn how to use the industry standard tools required for plant simulation (Siemens Tecnomatix) and to carry out the project successfully. The project attracted media attention and was featured in articles 1 and 2.

Keys to Success

So, what made the Connected Curriculum so successful? Digitalisation is clearly a current trend and so timing has played an important role. One of the most significant reasons is that Siemens not only led the scheme but resourced it. This has been key to supporting the rapidly growing need for relevant academic expertise. The on-going support from Siemens is also key for issue resolution and to support implementation for universities in adopting new curriculum. Engaging academic partners early in the process was key to ensuring the content was relevant and appropriately pitched.

Siemens breadth and depth of technological expertise across numerous technologies has been a key factor in the success of this initiative. Combined with its global engineering community, this has facilitated a rich integrated curriculum approach which covers a range of aligned technologies. Drawing on internal experts across its global community has allowed the initiative to benefit from a wealth of existing knowledge and resources. Having reached critical mass the initiative is now financially self-sustaining. Without reaching this milestone continued engagement would have been impossible.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Author: Dr Mike Murray (Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow)

Keywords: Mentors, Mentees, Civil Engineering

Abstract: On enrolment at university, undergraduate civil engineering students begin their journey towards a professional career. Graduate mentoring of student mentees supports students in their transition towards ‘becoming’ a professional engineer. This case study examines the results from a graduate mentoring initiative (2010-2022) involving third-year (N= 974) civil and environmental engineering student mentees, 235 graduate mentors and 73 employers.

 

A virtuous collaboration between academia and industry

This case study examines the establishment of an industry-student mentoring scheme whereby Alumni civil engineering graduates volunteer to mentor student mentees. The mentoring is formalised in a third-year module (Construction Project Management).

Authentic learning

The mentoring initiative aims to expose the mentees to authentic civil engineering practice, to shape their professional identity and belongingness to their chosen discipline, and, to enhance their employability skills. Mentors are tasked ‘to help motivate students towards learning what is useful and what might make them a better engineer rather than just focusing on grades’ [1].Two theoretical concepts provided a lens to guide the implementation. ‘Possible selves are representations of the self in the future, including those that are ideal and hoped for as well as those that one does not wish for’ [2 p.233]. Anticipatory socialisation involves individuals anticipating their future occupation prior to entry and constitutes all learning that takes place prior to an individual’s first day at work [3].

People, place & culture

The collaboration between the department and employers began in 2010 when the author approached the department’s existing industry contacts, to become the inaugural mentors. Today, LinkedIn and other social media provide a platform for broadcasting mentoring news. Over time the mentoring has built its own brand momentum and Alumni and employers now make unsolicited offers to assist (i.e. see [4] for university and industry-driven engagement strategies). The brand is enhanced through its association with key sector employers but given the propensity for small and micro SMEs in the engineering sector, these employers should not be overlooked.

Whilst the mentoring is embedded within the mechanics of a formal structure (i.e. Module, Learning Outcomes, and Assessment etc.) the development, sustaining and leadership of the initiate is fuelled through informal professional relationships. Social relations are important to maintain ongoing engagement between universities and industry stakeholders [4 p.14]. The collaborative culture is characterised by value alignment and trust between the stakeholders [5].

 

Mentoring with a contractor.

Stakeholders

The mentoring initiative can be considered an ‘employer group’ model whereby ‘engagement included collaboration between a single HEI (University of Strathclyde) and two or more employers on the same initiative’ [5 p.23]. The initial buy-in from the mentors normally requires sanctioning by a line manager, often, a supervising civil engineer.

The value alignment between all stakeholders is personified through knowledge transfer (mentor-mentee); professional development (mentor-employer); creating social value (employer-university) and, the university department through fulfilling the programme accreditation requirements:

JBM strongly recommends that higher education institutions (HEIs) maintain strong, viable and visible links with the civil engineering profession [6 p.21].

By association, the professional institutions benefit through the mentors’ contribution to their own CPD, en-route to IEng / CEng, and, through the mentees gaining an awareness of profession attributes through their own IPD during their university studies:

All members shall develop their professional knowledge, skills and competence on a continuing basis and shall give all reasonable assistance to further the education, training and continuing professional development (CPD) of others [7].

A fuller description of the mentoring process can be found [8]. Suffice to say the mentees (in groups of four) visit their mentors in the field, at a consultant’s office, and/or to a live construction site on four occasions over two academic semesters. Typically, the mentors will also provide mentees with access to their peers who would shed light on their own graduate trajectories. The department’s industrial advisory board [9] published guidance to assist the mentors. During the Covid pandemic, the majority of meetings were undertaken on ZOOM /TEAMS platforms. To date, the initiative has involved:

Assessment evolution

Over the piece, the mentoring assessment has constituted a circa 40% weighting for the 10 credit module. Initially, the students were tasked with only describing what had been learned and to link this to professional institution attributes [10]. This morphed into an Assessment for Learning [11] and sought to develop the student’s reflective practitioner [12] and metacognition skills [13]. Students develop four SMART learning objectives, linked to their programme curriculum, and, to explore these topics with guidance from their mentors. Today, the assessment criteria partially reflects the tenets of self-determined learning:

The essence of heutagogy is that in some learning situations, the focus should be on what and how the learner wants to learn, not on what is being taught [14 p.7].

During the 2020-22 academic sessions the Covid pandemic presented an opportunity to employ eLearning technology, to enhance the student’s reflection skills. The author is currently piloting Vlogging [15] whereby the students are tasked with completing short video blogs concerning their mentoring experience, and, to use the audio transcript to facilitate second-order reflection in a summative report:

..any technique that requires a learner to look through previous reflective work and to write a deeper reflective overview [16 p.148].

 

Mentoring with a Consultant

Key outcomes

The key outcomes concern enhanced opportunities for placement and graduate employment, and, an improvement in the students’ employability skills [8]. Recent anecdotal feedback (i.e. unsolicited student emails; NSS Free text; Module Evaluation; Employer Feedback) demonstrates that students, and employers, consider the initiative to constitute an emerging talent pipeline. The mentoring provides a surrogate mechanism to short circuit employer’s traditional recruitment process.

The CE4R [17] workshops are the best thing ever. That along with the mentoring class in third year is the main reason I have my graduate job, whilst my grades and ability helped, these aspects of my course opened the door for me. (NSS Free Text, 2021)

The graduate mentoring programme is excellent and is highly beneficial to both the students, our graduates in the business and AECOM as a whole.  (Lynn Masterson AECOM, Regional Director North, Scotland & Ireland. Ground, Energy & Transactions Solutions, UK&I)

The [mentoring] scheme works for us on a number of levels in providing benefits to us as a company, the professional development of our current graduate engineers, and the development of current Strathclyde undergraduates who may go on to work for us or others in industry. (Simon McCormick, Balfour Beatty, Contracts Director, Scotland)

Lessons learned

Guidance & resources

Generic guidance:

Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE.

Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering.

Davies, J.W &  Rutherford, U. (2012) Learning from fellow engineering students who have current professional experience, European Journal of Engineering Education, 37:4, 354-365, DOI: 10.1080/03043797.2012.693907

Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

Waterhouse, P (2020) Mentoring for Civil Engineers, London: ICE Publishing

University guidance:

University of Colorado Boulder (2022) Chemical & Biological Engineering: Alumni-Student Mentor Program, https://www.colorado.edu/chbe/ASMP

University of Exeter (2022) Career Mentor Scheme: Mentee Guide, http://www.exeter.ac.uk/media/universityofexeter/careersandemployability/employmentservices/Mentee_Guide_December_2021.pdf

University of Southampton (2022) Career Mentoring Programme: Mentor Handbook, https://www.southampton.ac.uk/~assets/doc/careers/Mentor_Handbook.pdf

The Pennsylvania State University (2022) Civil & Environmental Engineering (CEE) Mentoring Program, https://www.cee.psu.edu/alumni/mentor/index.aspx

End notes

[1] Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/effective-industrial-engagement-in-engineering-edu

[2] Stevenson, J & Clegg, S. (2011). Possible selves: students orientating themselves towards the future through extracurricular activity, British Educational Research Journal 37(2): 231–246.

[3] Sang, K., Ison, S., Dainty, A., & Powell, A. (2009). Anticipatory socialisation amongst architects: a qualitative examination. Education + Training 51(4):309-321, DOI: 10.1108/00400910910964584 .

[4] Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

[5] Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE, https://ore.exeter.ac.uk/repository/bitstream/handle/10036/79653/Higher%20Skills%20research%20report.pdf;jsessionid=0A6694CF9D25BBD80AC649069C2D9DFA?sequence=1

[6] Joint Board of Moderators (2021) Guidelines for developing degree programmes. https://www.jbm.org.uk/media/hiwfac4x/guidelines-for-developing-degree-programmes_ahep3.pdf

[7] Institution of Civil Engineers (2022) Code of Professional Conduct https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/About%20Us/ice-code-of-professional-conduct.pdf

[8] Murray. M., Ross. A., Blaney, N & Adamson, L. (2015). Mentoring Undergraduate Civil Engineering Students. Proceedings of the ICE-Management, Procurement & Law, 168(4): 189–198.

[9] University of Strathclyde (2013) Department of Civil & Environmental Engineering, Industrial Advisory Board Guide to mentoring.

[10] Institution of Civil Engineers (2022) Attributes for professionally qualified membership, https://www.ice.org.uk/my-ice/membership-documents/member-attributes#CEng2022

[11] Sambell, K, McDowell, L and Montgomery C (2013) Assessment for learning in Higher Education, Oxon: Routledge.

[12] Schon, D. (1987). Educating the Reflective Practitioner, San Francisco; Jossey-Bass.

[13] Davis, D., Trevisan, M., Leiffer,P., McCormack,J.,  Beyerlein, S., Khan, M.J., & Brackin, R.(2013) Reflection and Metacognition in Engineering Practice, In, Kaplan, M., Silver, N., Lavaque-Manty, D & Meizlish, D (edits) Using Reflection and metacognition to Improve Student Learning: Across the Disciplines, Across the Academy, Virginia: Stylus Publishing, pp78-103.

[14] Hase, S & Kenyon, C. (2013). Self-Determined Learning: Heutagogy in Action London: Bloomsbury Publishing Plc.

[15] Brott, P.E. (2020): Vlogging and reflexive applications, Open Learning: The Journal of Open, Distance and e-Learning, DOI: 10.1080/02680513.2020.1869536

[16] Moon, J (2004) A Handbook of Reflective & Experiential learning: Theory & Practice. London: Routledge.

[17] Murray, M., Hendry, G., & McQuade, R. (2020). Civil Engineering 4 Real (CE4R): Co-curricular Learning for Undergraduates. European Journal of Engineering Education. 45(1):128-150.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning

Authors: Bob Tricklebank (Dyson Institute of Engineering and Technology) and Sue Parr (WMG, University of Warwick).

Keywords: Partnerships, Academic, Industry

Abstract: This case study illustrates how, through a commitment to established guiding principles, open communication, a willingness to challenge and be challenged, flexibility and open communication, it’s possible to design and deliver a degree apprenticeship programme that is more than the sum of its parts. 

 

Introduction

Dyson is driven by a simple mission: to solve the problems that others seem to ignore.  From the humble beginnings of the world’s first bagless vacuum cleaner, Dyson is now a global research and technology company with engineering, research, manufacturing and testing operations in the UK, Singapore, Malaysia and the Philippines. The company employs 14,000 people globally including 6,000 engineers and scientists. Its portfolio of engineering expertise, supported by a £3 million per week investment into R&D, encompasses areas from solid-state batteries and high-speed digital motors to machine learning and robotics.

Alongside its expansive technology evolution, Dyson has spent the past two decades supporting engineering education in the UK through its charitable arm, the James Dyson Foundation. The James Dyson Foundation engages at all stages of the engineering pipeline, from providing free resources and workshops to primary and secondary schools to supporting students in higher education through bursaries, PhD funding and capital donations to improve engineering facilities.

It was against this backdrop of significant investment in innovation and genuine passion for engineering education that Sir James Dyson chose to take a significant next step and set up his own higher education provider: the Dyson Institute of Engineering and Technology.

The ambition was always to establish an independent higher education provider, able to deliver and award its own degrees under the New Degree Awarding Powers provisions created by the Higher Education and Research Act 2017. But rather than wait the years that it would take for the requisite regulatory frameworks to appear and associated applications to be made and quality assurance processes to be passed, the decision was made to make an impact in engineering education as quickly as possible, by beginning delivery in partnership with an established university.

Finding the right partner

The search for the right university partner began by setting some guiding principles; the non-negotiable expectations that any potential partner would be expected to meet, grounded in Dyson’s industrial expertise and insight into developing high-calibre engineering talent.

1.An interdisciplinary programme

Extensive discussions with Dyson’s engineering leaders, as well as a review of industry trends, made one thing very clear: the engineers of the future would need to be interdisciplinarians, able to understand mechanical, electronic and software engineering, joining the dots between disciplines to develop complex, connected products. Any degree programme delivered at the Dyson Institute would need to reflect that – alongside industrial relevance and technical rigour.

2. Delivered entirely on the Dyson Campus

It was essential that delivery of the degree programme took place on the same site on which learners would be working as Undergraduate Engineers, ensuring a holistic experience. There could be no block release of learners from the workplace for weeks at a time: teaching needed to be integrated into learners’ working weeks, supporting the immediate application of learning and maintaining integration into the workplace community.  

3. Actively supported by the Dyson Institute

This would not be a bipartisan relationship between employer and training provider. The fledgling Dyson Institute would play an active role in the experience of the learners, contributing to feedback and improvements and gaining direct experience of higher education activity by shadowing the provider.

WMG, University of Warwick

Dyson entered into discussions with a range of potential partners. But WMG, University of Warwick immediately stood out from the crowd.

Industrial partnership was already at the heart of WMG’s model. In 1980 Professor Lord Kumar Bhattacharyya founded WMG to deliver his vision to improve the competitiveness of the UK’s manufacturing sector through the application of value-adding innovation, new technologies and skills development. Four decades later, WMG continues to drive innovation through its pioneering research and education programmes, working in partnership with private and public organisations to deliver a real impact on the economy, society and the environment.

WMG is an international role model for how universities and businesses can successfully work together; part of a Top 10 UK ranked and Top 100 world-ranked university.

WMG’s expertise in working with industrial partners meant that they understood the importance of flexibility and were willing to evolve their approach to meet Dyson’s expectations – from working through the administrative challenge of supporting 100% delivery on the Dyson Campus, to developing a new degree apprenticeship programme.

Academics at WMG worked closely with Dyson engineers, who offered their insight into the industrial relevance of the existing programme – regularly travelling to WMG to discuss their observations in person and develop new modules. This resulted in a degree with a decreased focus on group work and project management, skills that learners would gain in the workplace at Dyson, and an increased focus on software, programming and more technically focused modules.

Importantly, WMG was supportive of Dyson’s intention to set up an entirely independent higher education provider. Rather than see a potential competitor, WMG saw the opportunity to play an important part in shaping the future of engineering education, to engage in reciprocal learning and development alongside a start-up HE provider and to hone its portfolio for future industrial partnerships.

The programme

In September 2017, the Dyson Institute opened its doors to its first cohort of 33 Undergraduate Engineers onto a BEng in Engineering degree apprenticeship, delivered over four years and awarded by the University of Warwick.

Two days per week are dedicated to academic study. The first day is a full day of teaching, with lecturers from WMG travelling to the Dyson Campus to engage in onsite delivery. The second day is a day of self-study, with lecturers available to answer questions and help embed learning. The remaining three days are spent working on live engineering projects within Dyson.

The first two years of the programme are deliberately generalist, while years three and four offer an opportunity to specialise. This academic approach is complemented in the workplace, with Undergraduate Engineers spending their first two years rotating through six different workplace teams, from electronics and software to research and product development, before choosing a single workplace team in which to spend their final two years. Final year projects are based on work undertaken in that team.

The Dyson Institute enhances WMG’s provision in a variety of ways, including administration of the admissions process, the provision of teaching and learning facilities, pastoral support, health and wellbeing support, social and extra-curricular opportunities, monitoring of student concerns and professional development support.  

Key enhancements include the provision of Student Support Advisors (one per cohort), a dedicated resource to manage learners’ workplace experience, quarterly Wellbeing and Development Days and the Summer Series, a professional development programme designed to address the broader set of skills engineers need, which takes the place of academic delivery across July and August.

Continuous improvement  

The collaborative partnership between Dyson, the Dyson Institute and WMG, the University of Warwick did not end when delivery began. Instead, the focus turned to iteration and improvement.

Dyson Institute and WMG programme leadership hold regular meetings to discuss plans, progress and challenges. These conversations are purposefully frank, with honesty on both sides allowing concerns to be raised as soon as they are noted. An important voice in these conversations is that of the student body, whose ‘on the ground experience’ is represented not only through the traditional course representatives, but through stream and workplace representatives.

Even as the Dyson Institute has begun independent delivery (it welcomed its first Dyson Institute-registered Undergraduate Engineers in September 2021), both partners remain dedicated to improving the student experience. The current focus is on increasing WMG’s onsite presence as well as the regularity of joint communications to the student body, with a view to supporting a more streamlined approach to challenge resolution.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Research

Author: Dr Salma .M.S. Al Arefi (University of Leeds)

Keywords: Science and Social Capitals, Sense of Belonging, Intersectionality, Student Success

Abstract: Being in a marginalised position due to feeling of otherness because of one’s gender as well as intersecting identity can create psychological hidden barriers. Coupled with science and social capitals such variables are key determines of student’s self-concept of engineering self-efficacy, competencies, and abilities. The impact of being othered may not only be limited to interest for participation in engineering but could extend beyond and significantly affect student engagement, success, and affiliation with engineering. This could impact students’ sense of belonging to their degree programme, university, and discipline, leading to adverse impacts ranging from low engagement to low attainment, or discontinuations. Such experiences can be greatly exacerbated for students with intersecting identities (‘double, triple, jeopardy’), e.g., a female student who identifies as a first-generation, working-class, disabled, commuter, carer, neurodiverse or mature student. This report presents work on progress on a student-centred interventional case study on exploring the impact of the intersectional lived experiences of underrepresented, disadvantaged and minoritised student groups in engineering beyond obvious gender and pre-university qualifications characteristics.

 

1.     Problem Statement

Initiatives on closing the technical skills gap remain limited to access to either engineering education or the workplace.  Identifying and supporting students facing barriers to continuation can be key to enhancing student success in a way that bridges the gap between the ignition of interest and transition to the engineering industry.  Early but sustained engagement throughout the life cycle of an engineering student is however vital to cultivate students’ sense of belonging to their modules, degree programmes and the wider industry. That would in turn support the formation of their engineering identity.

Gendered identity, as well as pre-university qualifications, are yet perceived to exert the strongest force for marginalisation and underrepresentation in engineering education and the workplace. The impact intersecting identities can have in relation to ignition of interest, participation, as well as the formation of engineering identity, also need consideration.  Along with gender, characteristics such as race, class, age, or language can have an added impact on already minoritized individuals (the ‘double, triple, quadrant…. jeopardy’), whereby the experience of exclusion and otherness can be exacerbated by overlapping marginalised identities. Coupled with the self-concept of own science capital, efficacies, and competencies [1-2], the formation of engineering identity could be expressed as a direct function of a sense of inclusion or otherwise exclusion [3]. Within this context, such an inherent feeling of connectedness describes the extent to which the lived experience of individuals is acknowledged valued and included [4], which is a healthy fertilizer for the formation of engineering identity. Perceived threats to one’s belonging due to a feeling of exclusion or rejection could on the contrary negatively impact one’s perception of self-efficacy and hence affiliation with engineering.

2.     Project Aims

The role of effect in learning to foster a sense of belonging and enhance a coherent sense of self and form the engineering identity has attracted growing pedagogical research interest. In academia, a sense of belonging has been shown to excrete the largest force on one’s intent to participate in engineering and to be the key sustainable vehicle for successful progressions. Because engineering learning activities are pursued in complex social interactions, acknowledging, and understanding the role of belonging in academic success is key to fostering an inclusive culture that encourages and recognises contributions from all.  It is hoped that the project outcomes can advise on understanding to support underrepresented, marginalised and minoritised students overcome self-perceived psychological barriers to their degree programme, university, or engineering workplace. The intersectional lens of the project is aimed to uncover key culprits that impact engineering identity formation for traditionally underrepresented, disadvantaged and minoritised students beyond obvious gender and pre-university education characteristics.

Outcomes will role model fostering an inclusive culture where engineering students from all backgrounds feel that they belong in an effort to support engineering higher education institutions to adhere to the changes introduced by the Engineering Council to the U.K. Standards for Professional Engineering Competency and Commitment around recognising inclusivity and diversity. This should be applicable to other STEM-related disciplines.

3.     Decolonial partnership

The project centres on students’ voices through a decolonial participation approach that acknowledges participants as co-researchers and enables them to take an active role in the co-creation of the project deliverables. Participation will be incentivised through recognition (authorship, certifications) as well as financial incentives.  The use of evidence-based active listening to enable students to share their lived experiences of belonging through storytelling and story sharing is hoped to create a safe space to empower and acknowledge student voices so that every student feel that they matter to their degree programme, university, and discipline. That in turn would cultivate authentic learner identity and a sense of belonging.

4.     Outcomes and future work

The findings are hoped to advise on a sustainable support approach whereby early and sustained engagement (throughout the student lifecycle from access to continuation, attainment, and progression) are prioritised to facilitate the transition of students into and from Engineering. Co-created artefacts from the project will be used to support access and continuation by providing examples of lived experiences for prospective students to associate with. Fostering a sense of belonging is hoped to have a direct impact on learner engagement, success, and attainment as well as enhancing students’ ability to progress towards achieving their unique goals beyond their degree.

The second phase of the 2-year project will involve student recruitment and selection, interventional listening, storytelling-based approaches and co-creation of artefacts.

Acknowledgement

The work is carried out as part of the fellowship of the Leeds Institute for Teaching Excellence in partnership with Dr Kendi Guantai, from Leeds Business School, Marketing Division and Dr Nadine Cavigioli Lifelong Learning Centre at the University of Leeds.

References

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website