Funded by the Royal Academy of Engineering the EPCâs Engineering Ethics toolkit was recently launched â containing a range of case studies and supporting articles to help engineering educators integrate ethics content into their teaching. EPC Board member and Professorial Teaching Fellow, Mike Bramhall, at The Engineering and Design Institute (TEDI-London) has incorporated three of the case studies from this recently produced toolkit into TEDIâs BEng (Hons) in Global Design Engineering. Mike and two of his students, Stuart Tucker and Caelan Vollenhoven, gave a presentation at this yearâs EPC Annual Congress about their positive experience teaching and learning with the case studies. In this blog, Mike reflects on how and why he incorporated these resources.
The BEng (Hons) Global Design Engineering programme was launched in our brand new institution â TEDI-London â in September 2022. The programme is a blended mix of online learning integrated with project-based learning. Through this project-based learning approach and working in partnership with industry, our students will create and contribute to solutions to some of the biggest challenges facing the 21st century and be equipped with the skills employers need from future engineers. Within these real-world projects, students work in teams and consider the ethical, environmental, social, and cultural impacts of engineering design. These issues are important for an engineer to understand whilst working with society. This importance is highlighted in the UK Standard for Professional Engineering Competence and Commitment (UK-SPEC: 4th edition) with accreditation bodies identifying ethics as one of the core learning outcomes and competencies in engineering programmes. The Accreditation of Higher Education Programmes in engineering standards (AHEP: 4th edition) reflects the importance of societal impact in engineering. To meet AHEP 4 our programme learning outcomes have been mapped against all required outcomes. The Engineer and Society outcomes include:
Sustainability
Ethics
Risk
Security
Equality, Diversity and Inclusion
To help students understand some of these issues whilst working on their design projects we chose three case studies from the Engineering Ethics Toolkit:
We converted key parts of these case studies to be compatible with our virtual learning environment and incorporated them into one online learning node. To support students in their development of ethical thinking, each case study focuses on different parts of ethics for engineers:
Everyday ethics
Ethical reasoning
Ethical analysis
Students are guided through the case studies in small chunks and asked to reflect upon each ethical issue. In this way students are not overwhelmed with too much information all at once. Eventually students are asked to incorporate their reflection into an end of year Professional and Personal Portfolio, explaining and evidencing how they have met each of the AHEP learning outcomes. The image below shows an example of a reflection task.
We asked the students to go through the online node individually prior to a class session in which staff then facilitated small-group discussions on each of the case studies. For example, for the Smart Meter case study we suggested that one group could look at being âfor smart metersâ and another group âagainst smart metersâ, using ethical issues and judgement in their decision making. Other issues arose during these discussions such as sustainability, data security, risk, and equality, diversity & inclusion. Some of the student comments are shown below:
On a high level, installing a smart meter is being portrayed as the decent thing to do in terms of the environment however it is just an instrument to monitor usage.
One way to be good to the environment is to be careful with your energy usage, e.g. switching off lights, only having heating and hot water when required so installing effective timers/thermostats in parts of your home where you need it.
Security & privacy: Who can see your consumption data and what can they do with it? The meters are all connected to the central wireless network, called the Data Communication Company (DCC). Concerns are that this network could be âhackedâ into. They may see a pattern of no-usage and provide opportunity for theft.
As first year undergraduate engineers we now have an insight and awareness of ethics and the responsibility of engineers in society.
Breaking down the case studies into a more interactive format and in manageable chunks made it easier for students, to stop us being overwhelmed â making it perfect for discussion in small groups.
We could put our thoughts on ethics into our end of year Portfolios â mapping against the AHEP requirements
These comments show how broadly and deeply students were able to engage with the ethical concepts presented in the case studies and apply them to their future work. As our course progresses, we intend to use more of the case studies, and map them appropriately against particular projects that students are working on at each level of the programme.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
In developing the case studies and guidance articles for the EPC’s Engineering Ethics toolkit, the authors and advisory group took into account recent scholarship on best practices in teaching engineering ethics through case studies – examples of this can be found here. They also reviewed existing case study libraries in order to add to the growing body of material available on engineering ethics; examples of these can be found below:
Previously published cases of the Applied Ethics in Professional Practice Program (formerly known as the AEPP Case of the Month Club)
Many of the cases are based on real world situations and experiences of a consulting engineer. Ideas for other cases came from the program’s Board of Review, consisting of practicing engineers and throughout the US.
Examples include: The Leaning Tower: A Timely Dilemma; To Flush or Not to Flush: That’s the Question; and The Plagiarized Proposal.
Explore a variety of case studies and scenarios including: A Client Opts for a Less Secure System; Air Bags, Safety, and Social Experiments; and Anhydrous Ammonia Hose Failure.
All published opinions of the NSPE Board of Ethical Review. Cases are filterable e.g. by keyword and/or subject, and each case is broken down into several sections: Facts; Questions; NSPE code of ethics references; Discussion; and Conclusions.
Case examples include: Public Health, Safety, and WelfareâDrinking Water Quality; and MisrepresentationâClaiming Credit for Work of Former Employer.
This series of engineering ethics case studies were created after interviews of numerous engineers, with the cases anonymised and written in a way that highlights the ethical content from each interview. These cases are primarily targeted at engineering students and professionals for their continuing professional development.
The case studies can be sorted into categories including; Academic ethics, Bioengineering, Electrical engineering and Science/research ethics and so on.
Case examples include: To Ship or Not to Ship; Disclosure Dilemma; Unintended Effects; and Is the Customer Always Right?
Cases devised by researchers aiming to advance understanding of ethical issues in engineering and technology, in addition to material supporting their use e.g. a glossary of ethical concepts.
These cases are exercises for teaching ethics in engineering studies, especially at Bachelor’s and Master’s levels.
GEC Project – Scenario Index: “The Global Engineering Competency (GEC) project aims to help technical professionals learn to more effectively span cultural boundaries. At the heart of this project is a collection of 70+ global engineering work scenarios designed for instruction and assessment.”
These case studies were created in partnership with the Royal Academy of Engineering.
Authors:Â Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Sarah Jayne Hitt SFHEA (NMITE); Professor Thomas Lennerfors (Uppsala University); Claire Donovan (Royal Academy of Engineering); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Isobel Grimley (Engineering Professorsâ Council).
Topic: Low earth orbit satellites for internet provision.Â
Ethical issues: Respect for environment, Public good, Future generations.
Professional situations: Communication, Management, Working cultures.
Educational level: Intermediate.
Educational aim: Practise ethical analysis. Ethical analysis is a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.Â
Â
Learning and teaching notes:
This case is about an experienced engineer leading a team at a tech start-up. The company has been awarded a contract to produce an innovative satellite that will be used in an internet constellation. While the team was initially excited about their work, some members are now concerned about the impact of the internet constellation. While mainly focused on environmental ethics, effects on human communities are also raised in this case study.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, this section enables students to practise different types of analysis and to introduce aspects of environmental ethics. It highlights the challenges of making ethical decisions with global consequences, in scenarios where policy isnât clear. Part two develops and complicates the concepts presented in Part one to provide for additional learning by focusing on the course of actions taken by an individual engineer based on the dilemma presented in Part one. The Challenge of Environmental Ethics linked below is recommended, though not required, for students engaging with this case. Additionally, throughout the case, there is the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
identify and define positions on an ethical issue;
learn fundamental concepts of environmental ethics;
practise applying moral theories such as consequentialism and justice;
consider short- and long-term consequences of engineering and technological development.
Teachers have the opportunity to:
integrate technical content on electrical or mechanical components of communications engineering;
address approaches to professional and / or interpersonal conflict;
introduce or reinforce life cycle analysis;
Informally evaluate critical thinking and analysis.
After years of working your way up the corporate ladder, you are now Head of Engineering for a tech start-up. The company has won a contract connected to a project creating a constellation of thousands of low Earth orbit satellites. This constellation has the potential to create a reliable system of internet access for areas of the world that are hard to reach by conventional infrastructure. Your company is one of those chosen to develop and build a low-cost, lightweight, efficient satellite that can be produced at scale. This is a huge accomplishment for you, as well as for your company.Â
Â
Dilemma – Part one:
A conference that brings together various project partners is met by protesters whose message is that the internet constellation has several potential negative impacts for nature and human communities. Disparaging comments have been made about your companyâs participation in the project on social media. Some members of your team seem quite rattled by the protests, and you convene at a coffee shop to discuss.Â
Â
Optional STOP for questions and activities:
1. Discussion: Technical analysis – Undertake a technical activity in the areas of electronic and / or mechanical engineering related to internet constellations.
2. Activity: Position analysis – Divide students into three groupsâconstellation project managers; satellite engineers and protestors. Imagine how their positions are related to the internet constellation. What values might inform their positions? What knowledge might inform their position that the other groups do not have access to or understanding of?
3. Discussion: Environmental analysis – While nature cannot speak for itself, if it could, what might be its position on the internet constellation? What aspects of the natural world might be affected by this technology in both the short- and long-term? For example, are there any direct or indirect effects on the health of humans and the ecosystems around them? Should the natural world of space be treated the same way as the natural world on earth?
4. Discussion: Policy analysis – Who should make decisions about projects that affect nature on a global scale? What laws or regulations exist that govern internet constellations?
5. Discussion and Activity: Moral analysis – Use environmental ethics principles such as intrinsic value and anthropocentrism to debate the project. Beyond environmental concerns, how might other ethical approaches, such as consequentialism or justice, inform positions on the issue?
Â
Dilemma – Part two:
You remind and explain to your team members that they, and the company, have a duty to the client. Everyone has been hired to deliver a specific project and been excited about overcoming the technical challenges to ensure the projectâs success. The team agrees, but also expresses concern about aspects that arenât in the project remit, such as how the satellite will be maintained and what will happen to it at the end of its life. They demand that you pause your work until an ethical review is conducted.Â
You report all of this to the CEO, who reacts with disappointment and unhappiness at your teamâs actions. She argues that the only thing your company is doing is building the satellite: itâs not your responsibility what happens to it afterwards. She feels that itâs your job to get your team back in line and on task. How do you approach this situation?Â
Â
Optional STOP for questions and activities:
1. Discussion and Activity: How do you respond to this situation? What responsibilities do you have to your team, your boss, and the client? How will you balance these? Are the teamâs engineers right to be concerned about the impact of their satellite within the wider constellation, or is it beyond their scope? Role-play an interaction between you and the engineering team, or between you and your boss.
2. Activity: Life cycle analysis – Research life cycles of satellites and their environmental impact.
3. Discussion and Activity: Debate if, and how, we have obligations to future generations. Is it possible to have a moral contract with a person that may never be born? How do we know that people in the future, will value the same things we do now? Both creating the internet constellation and preventing its implementation seem to potentially benefit future generations. How do we balance these âgoodsâ and make a decision on how to proceed? Who gets to decide?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Professor Dawn Bonfield MBE (Aston University);Professor Sarah Hitt SFHEA (NMITE); Dr Darian Meacham (Maastricht University); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Matthew Studley (University of the West of England, Bristol); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professorsâ Council).
Topic: Data centresâ impact on sustainable water resources.
Professional situations: Law or policy, Communication, Integrity.
Educational level: Intermediate.
Educational aim: Practise ethical judgement. Ethical Judgment is the activity of thinking about whether something has a moral attribute. Judgments involve reaching moral decisions and providing the rationale for those decisions.
Â
Learning and teaching notes:
This case involves a situation where environmental damage may be occurring despite the mechanism causing this damage being permissible by law. The engineer at this centre of the case is to represent the company that is responsible for the potential damage, at a council meeting. It requires the engineer to weigh up various harms and goods, and make a decision that could seriously impact their own job or career. There is also a section at the end of this case study that contains technical information providing further details about the water cooling of ICT equipment.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.
Students have the opportunity to:
apply their ethical judgement to a case study relating to environmental sustainability;
judge the societal impact of a technical solution to a complex problem;
identify and analyse objective and subjective risk;
consider the concept of consensus;
communicate the risks and judgements to technical and non-technical audiences.
Teachers have the opportunity to:
introduce environmental ethics concepts related to water;
highlight the components and processes of risk analysis;
integrate technical content related to heat transfer and flow;
informally evaluate studentsâ critical thinking and communication skills.
The company Data Storage Solutions (DSS) has built a large data centre on land that was historically used for agriculture and owned by a farming operation. DSS was incorporated as a subsidiary of the farming company so that it could retain the water rights that were attached to the property. This ensured access to the large amount of water needed to cool their servers. This centre manages data from a variety of sources including the local hospital and university.
When the property was used as a farm, the farming operation never used its full allocation of water. Now, the data centre always uses the maximum amount legally allotted to it. For the rainy half of the year, this isnât a problem. However, in more arid months, the nearby river almost runs dry, resulting in large volumes of fish dying. Other farmers in the area have complained that the water level in their wells has dropped, making irrigation much more expensive and challenging.
Â
Dilemma – Part one:
You are a civil engineer working for DSS and have been requested by your boss to represent the company at a forthcoming local council meeting where the issue will be discussed. Your employer is sending you to justify the companyâs actions and defend them against accusations of causing an environmental hazard in the local area which is reducing the water table for farmers and affecting local biodiversity. Your boss has told you that DSS has a right to the water and that it does not intend to change its behaviour. This meeting promises to be a contentious one as the local Green party and farmersâ union have indicated that they will be challenging the companyâs water usage. How will you prepare for the meeting?
Â
Optional STOP for questions and activities:Â
1. Discussion: Personal values – What is your initial position on the issue? Do you see anything wrong with DSSâs water use? Why, or why not?
2. Discussion: Professional responsibilities – What ethical principles and codes of conduct are relevant to this situation?
3. Activity: Define and identify the relevant data you should compile to take to the meeting. What information do you need in order to be prepared?
4. Activity: Stakeholder mapping – Who are all the characters in the scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully? Examples include:
Data Storage Solutions
Farmersâ union
Local Green party
Local council
Member of the public
Stakeholders who use DSSâs data storage services (such as the local hospital and schools)
Non-human stakeholders – for example, the fish, birds and insects.
5. Activity: Undertake a technical activity such as civil and / or electronic engineering related to the measurement of stream flow and calculating data centre cooling needs.
Â
Dilemma – Part two:
As you prepare for the meeting, you reflect on several competing issues. For instance, you are an employee of DSS and have a responsibility to represent its interests, but can see that the companyâs actions are environmentally harmful. You appreciate that the data centre is vital for the local community, including the safe running of schools and hospitals, and that its operation requires sufficient water for cooling. Your boss has told you that you must not admit responsibility for any environmental damage or biodiversity loss. You also happen to know that a new green battery plant is planning to open nearby that will create more data demand and has the potential to further increase DSSâs water use. You know that obtaining water from other sources will be costly to DSS and may not be practically possible, let alone commercially viable. What course of action will you pursue?
Â
Optional STOP for questions and activities:Â
1. Activity: Debate what course of action you should take. Should you take the company line despite knowing about the environmental impacts? Should you risk your reputation or career? What responsibilities do you have to fellow employees, the community, and the environment?
2. Activity: Risk analysis – What are the short- and long- term burdens and benefits of each course of action? Should environmental concerns outweigh others? Is there a difference between the environment locally and globally?
3. Activity and discussion: Read Sandra Postelâs case for a Water Ethic, and consider New Zealandâs recent legislation that gives a rainforest the same rights as a human. With this in mind, does the stream have a right to thrive? Do the fish have a right to a sustainable environment? Are humans ultimately at risk here, or just the environment? Does that answer change your decision? Why?
4. Activity: Prepare a statement for the council meeting. What will you argue?
You could take the company line and refuse to consider any compromise. After all, you have the legal right to the water.
You could take the environmentalistsâ side and go against your boss, admitting that the company is aware of the environmental damage, but that they refuse to do anything about it.
You could work up a proposal for obtaining the water from a different source, or alternative technical solutions, despite not having the backing of your boss.
Are there other alternatives available to you?
5. Activity: The students should interrogate the pros and cons of each possible course of action including the ethical, the practical, the cost, the local relationship and the reputational damage implications. They should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options.The students may wish to consider this from other perspectives, such as:
What actions are available to individuals at each level of hierarchy in DSS â for example, a junior engineer compared to a senior manager?
What would the best outcome be if the business or cost considerations were of no consequence?
What course of action would be taken if different perspectives were taken as the priority â for example, if the environmental perspective were the main priority what action would be taken, compared with action taken if the cost to the local economy were the main priority?
What are the wider implications of data storage on the environment and how can these be mitigated?
What could be other direct and indirect benefits of data centres, other than being a place to house data â for example, is there an opportunity for the waste heat from DSS to become a benefit? (Use theThe city where the internet warms peopleâs homes article.)
What are the possible solutions open to you?
Are there any short-term solutions versus longer-term solutions?
7. Activity: Allow students to reflect on how this case study has enabled them to see the situation from different angles, and whether this has helped them to understand the ethical concerns and come to an acceptable conclusion.
Â
Annex – Accompanying technical information:
ICT equipment generates heat and so most devices must have a mechanism to manage their temperature. Drawing cool air over hot metal transfers heat energy to that air, which is then pushed out into the environment. This works because the computer temperature is usually higher than the surrounding air. There are several different mechanisms for data centre cooling, but the general approach involves chillers reducing air temperature by cooling water â typically to 7â10â°C, which is then used as a heat transfer mechanism. Some data centres use cooling towers where external air travels across a wet media so that the water evaporates. Fans expel the hot, wet air and the cooled water is recirculated. Other data centres use adiabatic economisers â where water is sprayed directly into the air flow, or onto a heat exchange surface, thereby cooling the air entering the data centre. With both techniques the evaporation results in water loss. A small 1âMW data centre using one of these types of traditional cooling can use around 25.5 million litres of water per year. Data centre water efficiency deserves greater attention. Annual reports show water consumption for cooling directly paid for by the operator, so there is an economic incentive to increase efficiency. As the total energy share of cooling has fallen with improving PUEs (Power Usage Effectiveness metric), the focus has been on electricity consumption, and so water has been a low priority for the industry. However, the largest contributor to the water footprint of a data centre is electricity generation. Where data centres own and operate the entire facility, there is more flexibility for exploring alternative sources of water, and different techniques for keeping ICT equipment cool.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professorsâ Council).
Topic: Trade-offs in the energy transition.
Engineering disciplines: Chemical engineering, Electrical engineering, Energy.
Ethical issues: Sustainability, Honesty, Respect for the environment, Public good.
Professional situations: Communication, Bribery, Working cultures.
Educational level: Intermediate.
Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to consider, and respond to, a problem in a fair and responsible way.
Learning and teaching notes:
This case requires an engineer with strong convictions about sustainable energy to make a decision about whether or not to take a lucrative contract from the oil industry. Situated in Algeria, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations. The engineerâs own financial wellbeing is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about the environment and its connection to human life and services.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired. To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read the following academic articles: âEnvironmental ethics: An overviewâ or âMean or Green: Which values can promote stable pro-environmental behavior?â
Learners have the opportunity to:
analyse value assumptions related to environmental ethics;
consider whether decisions made by an engineer are ethically acceptable or unacceptable;
undertake cost-benefit and value trade-off analysis in the context of an ethical dilemma;
practise argument and reasoning related to an ethical dilemma;
use heuristics to help ethical decision-making.
Teachers have the opportunity to:
introduce concepts related to values in environmental ethics;
informally evaluate studentsâ argument and reasoning skills;
integrate technical content in the areas of chemical and / or electrical engineering related to energy trade-offs;
highlight heuristics as tools for ethical decision-making;
address cultural and professional norms in different countries.
You are an electrical engineer who had a three-year contract with a charity in Algeria to install solar systems on remote houses and farms that were not yet connected to the grid. The charityâs project came to an end and you have set up your own company to continue the work. It has been difficult raising money from investors to fund the project and the fledgling business is in debt. It is doubtful that your company will survive for much longer without a high-profit project.
During your time in Algeria, you have made many local and regional contacts in the energy industry. Through one of these contacts, you learn of an energy company operating a large oil field in the region that is looking to convert to solar energy to power its injection pumping, monitoring, and control systems. In doing so, the oil field will eliminate its dependency on coal-fired electricity, increasing production while boosting the companyâs environmental credentials. It also hopes to make use of a governmental tax credit for businesses that make such solar conversions.
Optional STOP for questions and activities:
1. Discussion: What is your initial reaction to using solar energy for oil and gas production? What might your initial reaction reveal to you about your own perspectives and values?
2. Discussion and activity: List the potential benefits and risks to implementing this technology. Are these benefits and risks the same no matter which country they are implemented in?
3. Activity: Research the trend for using solar energy in oil and gas production. Which companies are promoting it and which countries are using this technology?
4. Discussion and activity related to optional pre-readings: Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer.
Anthropocentrism versus Biocentrism – are humans above or a part of the environment?
Intrinsic versus Instrumental – is nature inherently valuable or only valuable because of the use humans can make of it?
Holism versus Individualism – are certain elements of the environment more valuable than others, or does every part of the ecosystem have equal value?
Egoism versus Altruism – do we care about the environment as a result of what we gain from it, or regardless of human benefits?
Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that donât yet exist, or for an ecosystem that will eventually change?
Dilemma – Part one:
The following week you receive a phone call in your home office. It is a representative of the energy company named Sami. He asks you to bid for the solar installation contract for the oilfield. At first you are reluctant, it doesnât seem right to use solar power to extract fuel that will contribute to the ongoing climate emergency. You explain your hesitation, saying âI got into the solar business because I believe we have a responsibility to future generations to develop sustainable energy.â Sami laughs and says âWhile youâre busy helping people who donât exist yet, Iâm trying to provide energy to the people who need it now. Surely we have a responsibility to them too?â
Sami then quotes a figure that the company is willing to pay you for the project work. You are taken aback at how large it is â the profit made on this contract would be enough to pay off your debts and give your business financial security moving forward. Still, you hesitate, telling Sami you need some time to think it over. He agrees and persuades you to attend dinner with him and his family later that week.
Optional STOP for questions and activities:
1. Discussion: Have you done anything wrong by accepting Samiâs dinner invitation?
2. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Like Sami, some people find that our obligation is greater to people who exist at this moment, not to those that donât yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now?
3. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case. Â Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. [use the Mapping actors and processes article to help with this activity].
4. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action.
5. Activity: Undertake technical calculations in the areas of chemical and / or electrical engineering related to carbon offset and solar installations.
Dilemma – Part two:
When you arrive at Samiâs house for dinner you are surprised to find you arenât the only guest. Leila, a finance manager at the oil company is also present. During the meal, she suggests they are considering investing in your business. âAfter all,â she points out, âmany of our employees and their families could really use solar at their homes. We have even decided to subsidise the installation as a benefit to them.â
You are impressed by the oil companyâs commitment to their workers and this would also guarantee you an income stream for 3-5 years. Of course, to guarantee the investment in your company, you will have to agree to undertake the oil field installation. You comment to Leila and Sami that it feels strange to be having these formal discussions over a family meal. âThis is how we do business here,â says Sami. âYou become part of our family too.â
Optional STOP for questions and activities:
1. Discussion: Do you accept the contract to complete the installation? Do you accept the investment in your company? Why, or why not?
2. Discussion: Is this bribery? Why, or why not?
3. Activity: Role-play the conversation between Sami, Leila, and the engineer.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Johnny Rich (Engineering Professorsâ Council); Dr Matthew Studley (University of the West of England, Bristol); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professorsâ Council).
Professional situations: Communication, Honesty, Transparency, Informed consent.
Educational level: Intermediate.
Educational aim: Practise ethical analysis. Ethical analysis is a process whereby ethical issues are defined and affected parties and consequences are identified so that relevant moral principles can be applied to a situation in order to determine possible courses of action.
Â
Learning and teaching notes:
This case involves a software engineer who has discovered a potential data breach in a smart home community. The engineer must decide whether or not to report the breach, and then whether to alert and advise the residents. In doing so, considerations of the relevant legal, ethical, and professional responsibilities need to be weighed. The case also addresses communication in cases of uncertainty as well as macro-ethical concerns related to ubiquitous and interconnected digital technology.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired
Learners will have the opportunity to:
analyse the ethical dimensions of an engineering situation;
identify professional responsibilities of engineers in an ethical dilemma;
determine and defend a course of action in response to an ethical dilemma;
practise professional communication;
debate possible solutions to an ethical dilemma.
Teachers will have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and/or professional conflict;
integrate technical content on software and/or cybersecurity;
informally evaluate studentsâ critical thinking and communication skills.
Smart homes have been called âthe road to independent livingâ. They have the potential to increase the autonomy and safety of older people and people with disabilities. In a smart home, the internet of things (IoT) is coupled with advanced sensors, chatbots and digital assistants. This combination enables residents to be connected with both family members and health and local services, so that if there there are problems, there can be a quick response.
Ferndale is a community of smart homes. It has been developed at considerable cost and investment as a pilot project to demonstrate the potential for better and more affordable care of older people and people with disabilities. The residents have a range of capabilities and all are over the age of 70. Most live alone in their home. Some residents are supported to live independently through: reminders to take their medication; prompts to complete health and fitness exercises; help completing online shopping orders and by detecting falls and trips throughout the house. The continuous assessment of habits, diet and routines allows the technology to build models that may help to predict any future negative health outcomes. These include detecting the onset of dementia or issues related to dietary deficiencies. The functionality of many smart home features depends on a reliable and secure internet connection.
Â
Dilemma – Part one:
You are the software engineer responsible for the integrity of Ferndaleâs system. During a routine inspection you discover several indicators suggesting a data breach may have occurred via some of the smart appliances, many of which have cameras and are voice-activated. Through the IoT, these appliances are also connected to Amazon Ring home security products – these ultimately link to Amazon, including supplying financial information and details about purchases.
Â
Optional STOP for questions and activities:Â
1. Activity: Technical analysis – Before the ethical questions can be considered, the students might consider a number of immediate technical questions that will help inform the discussion on ethical issues. A sample data set or similar technical problem could be used for this analysis.For example:
Is it possible to ascertain whether a breach has actually happened and data has been accessed?
What data may have been compromised?
Is a breach of this kind preventable, and could it be better prevented in the future?
Has the security been subject to a hack or is the data not secure?
Has the problem now been rectified, and all data secured?
2. Activity: Identify legal and ethical issues. The students should reflect on what might be the immediate ethical concerns of this situation. This could be done in small groups or a larger classroom discussion.
Possible prompts:
Is there a risk that the breach comprised the residentsâ personal details, financial information or even allowed remote and secret control of cameras? What else could have been compromised and what are the risks of these compromises? Are certain types of data more risky when breached than others? Why?
What are the legal implications if there has been a breach? Do you, as a software engineer, have any duty to the residents at this point?
At the stage where the breach and its potential implications are unknown, should you tell the community and, if so, what should you say? Some residents arenât always able to understand the technology or how it works, so they may be unlikely to recognise the implications of situations like this. Should you worry that it might cause them distress or create distrust in the integrity of the whole system if the possible data breach is revealed?
At the stage where the breach and its potential implications are unknown, is there anyone else you should inform? What should you tell them? Are there any risks you may be able to mitigate immediately? How?
Who owns the data collected on a person living in a smart home? What should happen to it after that person dies?
3. Activity: Determine the wider ethical context. Students should consider what wider moral issues are raised by this situation. This could be done in small groups or a larger classroom discussion.
Possible prompts:
When engineered products or systems go wrong, what is our responsibility to tell the people affected?
What is our right to privacy? Can, or should, it be traded away or sacrificed for another good? Who gets to decide?
Are smart homes a good thing if their technology is always going to present privacy risks? Should the technology be limited in some way?
The homes in this case are inhabited by senior citizens with disabilities. Do we owe a different level of care to these people than others? Why? Should engineers working on software for these homes employ a duty of care in a different way than they would in software for homes for young able-bodied professionals? Why? Should a duty of care be delivered by people who have the capacity to care in the emotional sense?
Should individuals have the ability to determine their own level of risk and choose what functionality to accept based on this risk? Should technology enable these kinds of choices?
Should engineers be held responsible for unsafe systems? If not, who is responsible?
Â
Dilemma – Part two:
You send an email to Ferndaleâs manager about the potential breach, emphasising that the implications are possibly quite serious. She replies immediately, asking that you do not reveal anything to anyone until you are absolutely certain about what has happened. You email back that it may take some time to determine if the software security has been compromised and if so, what the extent of the breach has been. She replies explaining that she doesnât want to cause a panic if there is nothing to actually worry about and says âWhat you donât know wonât hurt you.â How do you respond?    Â
Â
Optional STOP for questions and activities:Â
1. Discussion: Professional values – What guidance is given by codes of ethics such as the Royal Academy of Engineering/Engineering Councilâs Statement of Ethical Principles or the Association for Computing Machinery Code of Ethics?
2. Activity: Map possible courses of action. The students should think about the possible actions they might take. They can be prompted to articulate different approaches that could be adopted, such as the following, but also develop their own alternative responses.
Do nothing. Tell no one. Try to improve the security to avoid future breaches.
Shut down the smart home technology until any, and all, risks can be mitigated.
Explain the situation fully to the residents, detailing subsequent risks for the future and steps they should take to mitigate the risks themselves.
Offer a partial explanation of the situation, the solutions proposed (or carried out) and reassure them that everything is in order.
3. Activity: Hold a debate on which is the best approach and why. The students should interrogate the pros and cons of each possible course of action including the ethical, technical, and financial implications. They should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options.
4. Activity: Role-play a conversation between the engineer and the manager, or a conversation between the engineer and a resident.
5. Discussion: consider the following questions:
What is the role of robotics and artificial intelligence in caring for people in the future?
Is there a limit to what data should be shared and is it justified to use other peopleâs data for profit?
Could people like Ferndaleâs residents be exploited through access to their data? How?
What more could be achieved through the use of data and connectivity to care for older or ill people, in their homes or hospitals, and what additional safeguards should be put in place?
6. Activity: Change perspectives. Imagine that you are the child of one of Ferndaleâs residents and that you get word of the potential data security breach. What would you hope the managers and engineers would do?
7. Activity: Write a proposal on how the system might be improved to stop this happening in the future or to mitigate unavoidable risks. To inform the proposal, the students should also explore the guidance of what might be best practice in this area. For example, in this instance, they may decide on a series of steps.
Use human care providers to inform and explain to residents (or their families) about digital security.
Deploy a more rigorous security protocol as well as a programme of regular testing and updates to minimise the risk of the situation occurring again.
Shut down systems where the risks outweigh the potential benefits.
Instigate a reporting procedure and a chain of command for decision-making in the future.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Professor Thomas Lennerfors (Uppsala University); Nina Fowler (Uppsala University); Johnny Rich (Engineering Professorsâ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professorsâ Council).
Topic: Alternative food production.
Engineering disciplines: Energy; Chemical engineering.
Ethical issues: Sustainability; Social responsibility.
Professional situations: Public health and safety; Personal/professional reputation; Falsifying or misconstruing data / finances; Communication.
Educational level: Advanced.
Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to evaluate, and respond, to problems in a fair and responsible way.
Â
Learning and teaching notes:
This case involves an engineer navigating multiple demands on a work project. The engineer must evaluate trade-offs between social needs, technical specifications, financial limitations, environmental needs, legal requirements, and safety. Some of these factors have obvious ethical dimensions, and others are more ambiguous. The engineer must also navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
determine if an engineering situation / technological development has ethical dimensions and identify what these are;
identify where tensions might arise between professionals;
practise stakeholder mapping;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:Â
highlight professional codes of ethics and their relevance to engineering situations / technological development;
address approaches in order to resolve interpersonal and/or professional conflict;
integrate human and animal consumption industry codes and/or specifications;
integrate technical aspects of biochemical engineering;
informally evaluate studentsâ critical thinking and communication skills.
Power-to-X (P2X) describes a number of pathways for the transformation of electricity to alternative forms. This can be utilised for storing energy for later use, in order to balance periods of excesses and deficits resulting from the use of renewable energy technologies. It can also be used in applications that do not use electricity, such as through the transformation of electricity to hydrogen or other gases for industrial use.
One area that has seen significant development in recent years is power-to-food (PtF). This pathway results in CO2 being transformed, through chemical or biological processes powered by renewable energy, into food. One such process uses electrolysis and the Calvin cycle to create hydrocarbons from CO2, water and bacteria. The end result is a microbial protein, a substance that could be used in animal feed. Ultimately, the technology could produce a meat alternative suitable for human consumption, further reducing the carbon emissions produced by intensive animal farming.
Â
Optional STOP for questions and activities:Â
1. Activity: Identify the potential harms and risks of this technology, both objective and subjective. For example, could the shift of food production from soil to chemical industries concentrate power in the hands of a few? What public perceptions or cultural values might impact the acceptance or uptake of the technology?Â
2. Discussion: Wider context – What social, technological, economic, environmental, political, or legal factors might need to be considered in order to implement this technology?
3. Activity: Research companies that are currently developing P2X technologies. Which industries and governments are promoting P2X? How successful have early projects been? What obstacles exist in upscaling?
4. Activity: Undertake a technical activity in the area of biochemical engineering related to the storing and transforming of renewable energy.
Â
Dilemma – Part one:
You are the Chief Technical Officer at a company that has developed PtF technology that can convert CO2 to edible fatty acids (or triglycerides). The potential of CO2 capture is attractive to many stakeholders, but the combination of carbon reduction tied in with food production has generated positive media interest. The company also intends to establish its PtF facility near a major carbon polluter, that will reduce transport costs. However, some nearby residents are concerned about having a new industrial facility in their area, and have raised additional concerns about creating unsafe food.
As part of the process to commercialise this technology, you have been tasked with completing an ethical assessment. This includes an analysis of the technologyâs short and long-term effects in a commercial application.
2. Discussion: What cultural values might impact the ethical assessment? Does trust play a role in our ethical and consumption decisions? What internal logics / business goals might steer, or influence, the acceptance of various ethical considerations?
3. Discussion: Which areas of the ethical assessment might stakeholders be most interested in, or concerned about, and why?
4. Discussion: Does the choice of location for PtF facilities influence the ethical assessment? What problems could this PtF technology solve?
5. Discussion: What competing values or motivations might come into conflict in this scenario? What codes, standards, or authoritative bodies might be relevant to this? What is the role of ethics in technology development?
6. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.
7. Activity: Research the introduction of novel foods throughout history and / or engineering innovations in food production.
8. Activity: Write up the ethical assessment of the business case, and include findings from the previous questions and research.
Â
Dilemma – Part two:
You deliver your ethical assessment to your manager. Shortly afterwards you are asked to edit the report to remove or downplay some ethical issues you have raised. The company leadership is worried that potential investors in an upcoming financing round may be dissuaded from investing in the company if you do not edit these sections.
Â
Optional STOP for questions and activities:Â
1. Discussion: Professional and ethical responsibilities – What are the ethical implications of editing or not editing the report? What consequences could this type of editing have? Think about stakeholders such as the company, potential investors and society.
2. Discussion: Wider considerations of business ethics – How would you recognise an ethical organisation? What are its characteristics? What is the role of ethics in business?
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Chike Oduoza (University of Wolverhampton); Emma Crichton (Engineering Without Borders UK); Professor Mike Sutcliffe (TEDI-London); Dr Sarah Junaid (Aston University); Isobel Grimley (Engineering Professorsâ Council).
Topic: Monitoring and resolving industrial pollution.
Engineering disciplines: Chemical engineering; Civil engineering; Manufacturing; Mechanical engineering.
Ethical issues: Environment, Health, Public good.
Professional situations: Bribery, Whistleblowing, Corporate social responsibility, Cultural competency.
Educational level: Advanced.
Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action.Â
Â
Learning and teaching notes:
This case requires an engineer to balance multiple competing factors including: economic pressure, environmental sustainability, and human health. It introduces the perspective of corporate social responsibility (CSR) as a lens through which to view the dilemma. In this case study, the engineer must also make decisions that will affect their professional success in a new job and country. Â
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
practise preparing for a business presentation;
engage in problem definition in order to elicit ethical components of an issue;
investigate technical components of pipeline design and groundwater pollution;
evaluate CSR motivations and practices;
consider risks and obligations related to whistleblowing.
Teachers have the opportunity to:
highlight professional situations related to working in new countries or companies;
evaluate studentsâ ability to present and defend technical decisions;
address business approaches to CSR;
integrate technical content on pipelines and flow.
Yasin is a pipeline design engineer who has been employed to manage the wastewater pipeline for MMC Textile Company in Gujarat. The company has a rapidly growing business contributing to one of Indiaâs most important industries for employment and export. Yasin was hired through a remote process during the pandemic â he had never been to the industrial site or met his new colleagues in person until he relocated to the country. For 10 years, Yasin worked for the Water Services Regulation Authority in the UK as a wastewater engineer; this is the first time he has been employed by a private company and worked within the textile industry.
The production of textiles results in highly toxic effluent that must be treated and disposed of. A sludge pipeline takes wastewater away from MMCâs factory site and delivers it to a treatment plant downstream. On arrival at MMC, Yasin undertakes an initial inspection of the industrial site and the pipeline. He conducts some testing and measurements, then reviews the companyâs documents and specifications related to the pipeline. This pipeline was built 30 years ago when MMC first began operations. In the last five years, MMC has partnered with a fast fashion chain and invested in advanced production technologies, resulting in a 50% increase in its yearly output. Yasin soon realises that as production has increased, the pipeline sometimes carries nearly double its registered capacity. Yasin was hired because MMCâs managers were aware that the pipeline capacity might be stretched and needed his expertise to develop a solution. However, Yasin suspects they are unaware of the real extent of the problem, and is nervous about how they will react to confirmation of this suspicion. Yasin is due to provide an informal verbal report on his initial inspection to the factory managers. This will be his first official business meeting since arriving in India.
2. Discussion: What preparation does Yasin need to make for this informal meeting? What data or evidence should he present?
3. Activity: Role-play Yasinâs first meeting with the factory managers.
4. Activity: Research the environmental effects of textile production and / or Indiaâs policies on textile waste management.
Â
Dilemma – Part one:
At the meeting, Yasin is tasked with developing a menu of proposals to mitigate the problem. The options he puts forward include retrofitting the original pipeline, replacing it with a new one, eliminating the pipeline entirely and focusing on on-site water treatment technology, as well as other solutions. He is directed to consider the risks and benefits of the alternatives. These include the economic burdens, both the cost of the intervention as well as the decline in production necessitated while the intervention takes place, and the environmental consequences of action or inaction. Â
During his research, Yasin discovers that informal housing has sprung up in the grey zone between the areaâs formal zoned conurbation and the MMC industrial site. This is because there is little local regulation or enforcement as to where people are allowed to erect temporary or permanent dwellings. He estimates that there are several thousand people living in impoverished conditions on the edges of MMCâs property. Indeed, many of the people living in the informal settlement work in the lowest-skilled jobs at the textile factory. The informal settlement is located around a well that Yasin suspects may be polluted by effluent that seeps into the soil and groundwater when the pipeline overflows. He can find no information in company records about data related to this potential pollution.
Â
Optional STOP for questions and activities:
1. Discussion: Does Yasin have a responsibility to do anything about the potential groundwater pollution at the informal settlement?
2. Discussion: Should Yasin advocate for the solution with the lowest cost?
3. Activity: Practise problem definition. What are the parameters and criteria Yasin should use in defining the issues at stake? What elements of the problem is he technically or ethically obligated to resolve? Why?
4. Activity: Create a tether diagram mapping the effects of each potential solution on the company, the local people, and the environment.
5. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering related to groundwater pollution.
Â
Dilemma – Part two:
As Yasin learns more about MMC, he discovers that as the company grew rapidly in the last five years, and has boosted its CSR initiatives, MMC started a programme to hire and upskill local labourers and began a charitable foundation to make donations to local schools and charities. For these activities, MMC has recently received a government commendation for its community commitments. Yasin is concerned about how to make sense of these activities on the one hand, and the potential groundwater contamination on the other. He speaks to his supervisor about MMCâs CSR initiatives and learns that company directors believe that their commendation will pave the way for an even better relationship with the government and perhaps enable a favourable decision on a permit to build another textile factory site nearby. At the end of the conversation, his supervisor indicates that if a new factory is built, it will need a chief site engineer. âThat position would be double your current salary,â the supervisor says, âa good job on fixing this pipeline situation would make you look like a very attractive candidate.â Yasin is due to formally present his proposal about the pipeline next week to the factory manager and company directors.
Â
Optional STOP for questions and activities:
1. Discussion: How should Yasin respond to the suggestion of a job offer?
2. Discussion: Should Yasin report any of MMCâs actions or motivations to an external authority?
3. Activity: Research CSR and its ethical dimensions, both in the UK and in India.
4. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering, related to pipeline design and flow rates.
5. Activity: Debate whether or not Yasin should become a whistleblower, either about the groundwater pollution or the job offer.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
EPC President Prof Mike Sutcliffe introduces an ambitious new initiative to ensure engineering education is a force for good: the EPCâs Engineering Ethics toolkit, produced in partnership with the Royal Academy of Engineering.
Engineering can have significant impact on society and the environment, both positive and negative.  Harnessing the power of engineering to build a sustainable society that works for everyone requires us to navigate complexity, uncertainty and challenging ethical issues.
Understanding ethical issues and behaving in an ethical manner underpins other behaviours such as inclusivity and sustainability, ensuring that individual practitioners, professions and organisations are globally responsible. To maximise positive impact these behaviours must become instinctive â golden threads running through everything that engineers think and do.
The EPC Board considered its own ethical responsibility â including representing our membersâ views, supporting good practice and as an organisation â at its retreat in January 2020.  This led to the clear action for the EPC to promote engineering ethics more proactively and adopt clear ethical positions.  A key aspect of this is enabling the embedding of ethical best practice into the UK engineering higher education curriculum through creation of an âEngineering Ethics Toolkitâ.
There is growing advocacy for bringing engineering ethics to the fore in engineering programmes â alongside technical skills â as we equip future engineers with the skills and mindset they need to succeed.  At the policy level, this is evident in three general areas:
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC; 4th edition) and accreditation bodies identifying ethics as one of the core learning outcomes and competencies in accreditation documents;
The inclusion of more descriptive competencies that expand on the understanding and practical application engineering ethics; and
The Accreditation of Higher Education Programmes in engineering (AHEP, 4th edition) standards reflecting the importance of societal impact in engineering.
This will allow engineering students to be able to identify ethical issues, exercise ethical thinking and use ethical judgement within their projects and coursework.
Producing this first phase of the toolkit has been a fabulous team effort â the high priority placed on creating this exemplified by remaining on track and producing a high-quality resource despite the challenges faced from Covid-19.  Everyone has done an amazing job.
This would not have been possible without the generosity and support of the Royal Academy of Engineering, and the Engineering Council with whom they are partnering.  As chair, Raffaella Ocone (Heriot-Watt) is doing a wonderful job of guiding us â getting us off to a flying start with her previous trailblazing work on embedding ethics into the curriculum. And Sarah Jayne Hitt (formerly NMiTE) is doing an absolutely fabulous job of keeping us focused, on track and producing high-quality resources informed by best practice.
This achievement is a wonderful example of how, as engineers, we work most effectively when we work together to design effective solutions â a team I enjoy working with and am proud to be a part of.
We hope you find these resources for embedding ethics into the curriculum useful.  Do let us know how you get on and keep an eye out as we continue to expand these resources into a more comprehensive toolkit for engineering educators.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Dr Sarah Jayne Hitt (NMITE); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Dr Nik Whitehead (University of Wales Trinity Saint David); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professorsâ Council).
Educational aim: To develop ethical awareness. Ethical awareness is when an individual determines that a single situation has moral implications and can be considered from an ethical point of view.
Â
Learning and teaching notes:
This case concerns a construction engineer navigating multiple demands. The engineer must evaluate trade-offs between technical specifications, historical preservation, financial limitations, social needs, and safety. Some of these issues have obvious ethical dimensions, while others are ethically more ambiguous. In addition, the engineer must navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.
This case study addresses two of AHEP 4âs themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to the AHEP outcomes specific to a programme under these themes, access AHEP4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise between professionals;
practise stakeholder mapping;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:Â Â
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and / or professional conflict;
integrate technical content on glass – such as strength, failure, and manufacture;
integrate construction industry codes and / or specifications;
informally evaluate studentsâ critical thinking and communication skills.
Krystyna is a construction engineer working as part of a team that is retrofitting a Victorian-era factory into multi-unit housing. As an amateur history buff, she is excited to be working on a listed building for the first time in her career after finishing university three years ago. However, this poses additional challenges: she must write the specification for glass windows that will maintain the buildingâs heritage status but also conform to 21st century safety standards and requirements for energy efficiency. In addition, Krystyna feels under pressure because Sir Robert, the developer of the property, is keen to maximise profits while maintaining the historic feel valued by potential buyers. He also wants to get the property on the housing market as soon as possible to help mitigate a housing shortage in the area. This is the first of many properties that Dave, the projectâs contractor who is well-regarded locally and has 30 years of experience working in the community, will be building for Sir Robert. This is the first time that Krystyna has worked with Dave.
Â
Optional STOP for questions and activities:
1. Discussion: What competing values or motivations might conflict in this scenario?
2. Discussion: What codes, standards and authority bodies might be relevant to this scenario?
3. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.
4. Activity: Undertake a technical project relating to testing glass for fire safety and / or energy efficiency.
5. Activity: Research the use of glass as a building material throughout history and / or engineering innovations in glass production.
Â
Dilemma – Part one:
On her first walk through the property with Dave, Krystyna discovers that the factory building has large floor-to-ceiling windows on the upper stories. Dave tells her that these windows were replaced at some point in the past 50 years before the building was listed, at a time when it wasnât used or occupied, although the records are vague. The glass is in excellent condition and Sir Robert has not budgeted either the time or the expense to replace glass in the heritage building.
While writing the specification, Krystyna discovers that the standards for fire protection as well as impact safety and environmental control have changed since the glass was most likely installed. After this research, she emails Dave and outlines what she considers to be the safest and most responsible form of mitigation: to fully replace all the large windows with glass produced by a supplier with experience in fire-rated safety glass for heritage buildings. To justify this cost, she highlights the potential dangers to human health and the environment of not replacing the glass.
Dave replies with a reassuring tone and refers to his extensive experience as a contractor. He feels that too many additional costs would be incurred such as finding qualified installers, writing up new architectural plans, or stopping work altogether due to planning permissions related to historic properties. He argues that there is a low probability of a problem actually arising with the glass. Dave encourages Krystyna not to reveal these findings to Sir Robert so that âfuture conflicts can be avoided.â
Â
Optional STOP for questions and activities:
1. Discussion: What ethical issues that can be identified in this scenario?
2. Discussion: What interpersonal dynamics might affect the way this situation can be resolved?
3. Discussion: If you were the engineer, what action would you take, if any?
4. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities using the SERM found in the Learning and teaching resources section.
5. Activity: Role-play the engineerâs response to the contractor or conversation with the developer.
6. Discussion: How do the RAEng/Engineering Council Statement of Ethical Principles and the Society of Construction Law Statement of Ethical Principles inform what ethical issues may be present, and what solutions might be possible?
Â
Dilemma – Part two:
After considerable back and forth with Dave, Krystyna sees that she is unlikely to persuade him to make the changes to the project that she has recommended. Now she must decide whether to go against his advice and notify Sir Robert that they have disagreed about the best solution. Additionally, Krystyna has begun to wonder whether she has a responsibility to future residents of the building who will be unaware of any potential dangers related to the windows. Meanwhile, time is moving on and there are other deadlines related to the project that she must turn her focus to and complete.
Â
Optional STOP for questions and activities:
The Society of Construction Lawâs Statement of Ethical Principles advises âprovid[ing] information and warning of matters . . . which are of potential detriment to others who may be adversely affected by them.â
2. Discussion: If Krystyna simply warns them, is her ethical responsibility fulfilled?
3. Activity: Map the value conflicts and trade-offs Krystyna is dealing with. Use theMapping Actors and Processes article in the Learning and teaching resources section.
4. Discussion: If you were Krystyna, what would you do and why?
5. Discussion: In what ways are the professional codes helpful (or not) in resolving this dilemma?
6. Discussion: âAdvisesâ or ârequiresâ? Whatâs the difference between these two words in their use within a code of ethics? Could an engineerâs response to a situation based on these codes of ethics be different depending on which of these words is used?
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.