Downloads: A PDF of this resource will be available soon.
Related INCOSE Competencies: Toolkit resources are designed to be applicable to any engineering discipline, but educators might find it useful to understand their alignment to competencies outlined by the International Council on Systems Engineering (INCOSE). The INCOSE Competency Framework provides a set of 37 competencies for Systems Engineering within a tailorable framework that provides guidance for practitioners and stakeholders to identify knowledge, skills, abilities and behaviours crucial to Systems Engineering effectiveness. A free spreadsheet version of the framework can be downloaded.
This resource relates to the Systems Thinking, Systems Modelling and Analysis, Configuration Management, Requirements Definition, Communication, Verification, and Validation INCOSE Competencies.
AHEP4 mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):Analytical Tools and Techniques (critical to the ability to model and solve problems), and Integrated / Systems Approach (essential to the solution of broadly-defined problems). In addition, this resource addresses the themes of Sustainability and Communication.
Educational level: Advanced.
Learning and teaching notes:
Overview:
This multi-part case study guides students through the complex systems challenges of Prince Edward Island, Canada’s ambitious 100% renewable energy transition by 2030. Students will experience how technical, social, and economic factors interact through emergence, feedback loops, and multi-scale dynamics that traditional engineering analysis alone cannot capture.
Learners have the opportunity to:
Identify complex systems characteristics (emergence, feedback loops, nonlinearity) in real energy systems.
Apply multiple modelling approaches (ABM, system dynamics, network analysis) to analyse system behaviour.
Evaluate how technical decisions create emergent social and economic consequences.
Synthesise insights from different modelling approaches to inform policy recommendations.
Communicate complex systems concepts and uncertainties to non-technical stakeholders.
Teachers have the opportunity to:
Demonstrate complex systems concepts through hands-on modelling.
Facilitate discussions on emergence and system-level behaviours.
Evaluate learners’ ability to apply systems thinking to engineering problems.
Connect technical modelling to real-world policy and social implications.
Overview: Energy transition as a complex systems challenge:
Prince Edward Island (PEI), Canada’s smallest province, aims to achieve 100% renewable electricity by 2030. Its small grid, dependence on imported power, and growing renewable infrastructure make it a natural laboratory for systems thinking in energy transitions.
This case invites students to explore how technical, social, and policy decisions interact to shape renewable integration outcomes. Using complexity-science tools, they will uncover how local actions produce emergent system behaviour, and why traditional linear models often fail to predict real-world dynamics.
The complex challenge: Traditional engineering approaches often treat energy systems as predictable and linear, optimising components like generation, transmission, or storage in isolation. However, energy transitions are complex socio-technical systems, characterised by feedback loops, interdependencies, and emergent behaviours.
In PEI’s case, replacing stable baseload imports with variable wind and solar generation creates cascading effects on grid stability, pricing, storage demand, and social acceptance. The island’s bounded geography magnifies these interactions, making it an ideal context to observe emergence and system-level behaviour arising from local interactions.
PEI currently imports about 75% of its electricity via two 180 MW submarine cables, while 25% is produced locally through onshore wind farms (204 MW). Plans for offshore wind, community solar, and hydrogen projects have triggered debates around stability, affordability, and social acceptance.
Taking on the role of an engineer at TechnoGrid Consulting, students are tasked to advise Maritime Electric, the island’s utility, on modelling strategies to guide $2.5 billion in renewable investments.
Competing goals:
Maintain grid reliability while replacing fossil baseloads.
Achieve policy targets without increasing public resistance.
Balance economic cost, environmental benefit, and technological feasibility.
Discussion prompt:
In systems terms, where do you see tensions between policy, technology, and society? How might feedback loops amplify or mitigate these tensions?
While Maritime Electric’s engineering team insists the project scope should stay strictly technical, limited to grid hardware, generation, and storage, policy advisors argue that social behaviour, market pricing, and community engagement are part of the system’s real dynamics.
Expanding boundaries makes the model richer but harder to manage; narrowing them simplifies computation but risks missing the very factors that determine success.
Temporal boundaries: timescales from milliseconds (grid response) to decades (infrastructure).
Organisational boundaries: stakeholders, regulations, and markets.
Discuss how including or excluding elements (e.g., electric-vehicle uptake, community cooperatives, carbon policy) changes the model’s focus and meaning.
Learning insight:
Complex systems cannot be fully understood in isolation; boundaries are analytical choices that shape both perception and leverage. Every inclusion or exclusion reflects an assumption about what matters and that assumption determines which complexities emerge, and which stay hidden.
Part three: Modelling the system: Multiple lenses of complexity:
(a) Agent-Based Modelling (ABM) with NetLogo:
Students construct simplified models of households, businesses, and grid operators:
Household agents: decide to adopt rooftop solar based on payback time and neighbour influence.
Technology providers: adjust prices in response to market demand.
Grid operator: balances reliability and cost.
Emergent patterns such as adoption S-curves or network clustering illustrate how simple local rules generate complex collective dynamics.
(b) System Dynamics (SD) with Vensim:
Students then develop causal loop diagrams capturing key feedbacks:
Adoption–Learning Loop: installations ↓ costs ↓ encourage more adoption.
Cost–Acceptance Loop: higher bills ↓ public support ↓ investment capacity.
This provides a macroscopic view of feedback, delay, and leverage points.
(c) Network Analysis with Python (NetworkX):
Students model actor interdependencies: how households, utilities, industries, and regulators interact. Network metrics (centrality, clustering, connectivity) reveal where resilience or vulnerability is concentrated.
Reflection prompt:
Which modelling approach offered the most insight into system-level behaviour? What were the trade-offs in complexity and interpretability?
Part four: Scenario exploration: Pathways to 2030:
Students explore three transition scenarios, each with distinct emergent behaviours:
A. Distributed Solar + Community Storage
300 MW solar, 150 MWh batteries
Decentralised coordination challenges and social clustering effects.
B. Offshore Wind + Grid Enhancement
400 MW offshore wind, new 300 MW interconnection
Weather-dependent reliability and cross-border dependency.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Relevant disciplines:Energy engineering; Chemical engineering; Process systems engineering; Mechanical engineering; Industrial engineering.
Keywords: Available soon.
Licensing:This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. It is based upon the author’s 2025 article “A Simulation Tool for Pinch Analysis and Heat Exchanger/Heat Pump Integration in Industrial Processes: Development and Application in Challenge-based Learning”. Education for Chemical Engineers 52, 141–150.
Related INCOSE Competencies: Toolkit resources are designed to be applicable to any engineering discipline, but educators might find it useful to understand their alignment to competencies outlined by the International Council on Systems Engineering (INCOSE). The INCOSE Competency Framework provides a set of 37 competencies for Systems Engineering within a tailorable framework that provides guidance for practitioners and stakeholders to identify knowledge, skills, abilities and behaviours crucial to Systems Engineering effectiveness. A free spreadsheet version of the framework can be downloaded.
This resource relates to the Systems Thinking, Systems Modelling and Analysis and Critical Thinking INCOSE competencies.
AHEP mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): Analytical Tools and Techniques (critical to the ability to model and solve problems), and Integrated / Systems Approach (essential to the solution of broadly-defined problems). In addition, this resource addresses the themes of Science, mathematics and engineering principles; Problem analysis; and Design.
Educational level: Intermediate.
Educational aim:To equip learners with the ability to model, analyse, and optimise pathways for industrial decarbonisation through a complex-systems lens – integrating technical, economic, and policy dimensions – while linking factory-level design decisions to wider value-chain dynamics, multi-stakeholder trade-offs, and long-term sustainability impacts.
Learning and teaching notes:
This teaching activity explores heat integration for the decarbonisation of industrial processes through the lens of complex systems thinking, combining simulation, systems-level modelling, and reflective scenario analysis. It is especially useful in modules related to energy systems, process systems, or sustainability.
Learners analyse a manufacturing site’s energy system using a custom-built simulation tool to explore the energy, cost and carbon-emission trade-offs of different heat-integration strategies. They also reflect on system feedback, stakeholder interests and real-world resilience using causal loop diagrams and role-played decision frameworks.
This activity frames industrial heat integration as a complex adaptive system, with interdependent subsystems such as process material streams, utilities, technology investments and deployments, capital costs, emissions, and operating constraints.
Learners run the simulation tool to generate outputs to explore different systems integration strategies: pinch-based heat recovery by heat exchangers, with and without heat pump-based waste heat upgrade. Screenshots of the tool graphical user interface are attached as separate files:
The learning is delivered in part, through active engagement with the simulation tool. Learners interpret the composite and grand composite curves and process tables, to explore how system-level outcomes change across various scenarios. Learners explore, using their generated simulation outputs, how subsystems (e.g. hot and cold process streams, utilities) interact nonlinearly and with feedback effects (e.g., heat recovery impacts), shaping global system behaviour and revealing leverage points and emergent effects in economics, emissions and feasibility.
Using these outputs as a baseline, and exploring other systems modelling options, learners evaluate trade-offs between heat recovery, capital expenditure (CAPEX), operating costs (OPEX), and carbon emissions, helping them develop systems-level thinking under constraints.
The activity embeds scenario analysis, including causal loop diagrams, what-if disruption modelling, and stakeholder role-play, using multi-criteria decision analysis (MCDA) to develop strategic analysis and systems mapping skills. Interdisciplinary reasoning is encouraged across thermodynamics, economics, optimisation, engineering ethics, and climate policy, culminating in reflective thinking on system boundary definitions, trade-offs, sustainability transitions and resilience in industrial systems.
Learners have the opportunity to:
Analyse non-linear interactions in thermodynamic systems.
Reconcile conflicting demands (e.g. energy savings vs costs vs emissions vs technical feasibility) using data generated from real system simulation.
Model and interpret feedback-driven process systems using pinch analysis, heat recovery via heat exchangers, and heat upgrade via heat pump integration.
Explore emergent behaviour, trade-offs, and interdisciplinary constraints.
Navigate system uncertainties by simulation data analysis and scenario thinking.
Understand the principles of heat integration using pinch analysis, heat exchanger networks, and heat pump systems, framed within complex industrial systems with interdependent subsystems.
Evaluate decarbonisation strategies and their performances in terms of energy savings, CAPEX/OPEX, carbon reduction, and operational risks, highlighting system-level trade-offs and nonlinear effects
Develop data-driven decision-making, navigating assumptions, parameter sensitivity, and model limitations, reflecting uncertainty and systems adaptation.
Explore ethical, sustainability, and resilience dimensions of engineering design, recognising how small changes or policy shifts may act on leverage points and produce emergent behaviours.
Analyse stakeholder dynamics, policy impacts, and uncertainty as part of the broader system environment influencing energy transition pathways.
Construct and interpret causal loop diagrams (CLDs), explore what-if scenarios, and apply multi-criteria decision analysis (MCDA), building competencies in feedback loops, system boundaries, and systems mapping.
Teachers have the opportunity to:
Embed systems thinking and complex systems pedagogy into energy and process engineering, using real-world simulations and data-rich problem-solving.
Introduce modelling and scenario-based reasoning, helping students understand how interactions between process units, energy streams, and external factors affect industrial decarbonisation.
Facilitate exploration of design trade-offs, encouraging learners to consider technical feasibility, economic sustainability, and environmental constraints within dynamic system contexts.
Support students in identifying leverage points, feedback loops, and emergent behaviours, using tools like CLDs, composite curves, and stakeholder role play.
Assess complex problem-solving capacity, including students’ ability to model, critique and adapt industrial systems under conflicting constraints and uncertain futures.
Proprietary Simulator for Pinch Analysis & Heat Integration. Freely available for educational use and can be accessed online through a secure link provided by the author on request (james.atuonwu@nmite.ac.uk or james.atuonwu@gmail.com). No installation or special setup is required; users can access it directly in a web browser.
About the simulation tool (access and alternatives):
This activity uses a Streamlit-based simulation tool, supported with process data (Appendix A, Table 1, or an educator’s equivalent). The tool is freely available for educational use and can be accessed online through a secure link provided by the author on request (james.atuonwu@nmite.ac.uk or james.atuonwu@gmail.com). No installation or special setup is required; users can access it directly in a web browser.The activity can also be replicated using open-source or online pinch analysis tools such as OpenPinch, PyPinchPinCH, TLK-Energy Pinch Analysis Online. SankeyMATIC can be used for visualising energy balances and Sankey diagrams.
Pinch Analysis, a systematic method for identifying heat recovery opportunities by analysing process energy flows, forms the backbone of the simulation. A brief explainer and further reading are provided in the resources section. Learners are assumed to have prior or guided exposure to its core principles. A key tunable parameter in Pinch Analysis, ΔTmin, represents the minimum temperature difference allowed between hot and cold process streams. It determines the required heat exchanger area, associated capital cost, controllability, and overall system performance. The teaching activity helps students explore these relationships dynamically through guided variation of ΔTmin in simulation, reflection, and trade-off analysis, as outlined below.
Introducing and prioritising ΔTmin trade-offs:
ΔTmin is introduced early in the activity as a critical decision variable that balances heat recovery potential against capital cost, controllability, and safety. Students are guided to vary ΔTmin within the simulation tool to observe how small parameter shifts affect utility demands, exchanger area, and overall system efficiency. This provides immediate visual feedback through the composite and grand composite curves, helping them connect technical choices to system performance.
Educators facilitate short debriefs using the discussion prompts in Part 1 and simulation-based sensitivity analysis in Part 2. Students compare low and high ΔTmin scenarios, reasoning about implications for process economics, operability, and energy resilience.
This experiential sequence allows learners to prioritise competing factors (technical, economic, and operational), while recognising that small changes can create non-linear, system-wide effects. It reinforces complex systems principles such as feedback loops and leverage points that govern industrial energy behaviour.
Data for decisions:
The simulator’s sidebar includes some default values for energy prices (e.g. gas and electricity tariffs) and emission factors (e.g. grid carbon intensity), which users can edit to reflect their own local or regional conditions. For those replicating the activity with other software tools, equivalent calculations of total energy costs, carbon emissions and all savings due to heat recovery investments can be performed manually using locally relevant tariffs and emission factors.
The Part 1–3 tasks, prompts, and assessment suggestions below remain fully valid regardless of the chosen platform, ensuring flexibility and accessibility across different teaching contexts.
Educator support and implementation notes:
The activity is designed to be delivered across 3 sessions (6–7.5 hours total), with flexibility to adapt based on depth of exploration, simulation familiarity, or group size. Each part can be run as a standalone module or integrated sequentially in a capstone-style format.
Part 1: System mapping: (Time: 2 to 2.5 hours) – Ideal for a classroom session with blended instruction and group collaboration:
This stage introduces students to the foundational step of any heat integration analysis: system mapping. The aim is to identify and represent energy-carrying streams in a process plant, laying the groundwork for further system analysis. Educators may use the Process Flow Diagram of Fig. 1, Appendix A (from a real industrial setting: a food processing plant) or another Process Diagram, real or fictional. Students shall extract and identify thermal energy streams (hot/cold) within the system boundary and map energy balances before engaging with software to produce required simulation outputs.
Key activities and concepts include:
Defining system boundaries: Focus solely on thermal energy streams, ignoring non-thermal operations. The boundary is drawn from heat sources (hot streams) to heat sinks (cold streams).
Identifying hot and cold streams: Students classify process material streams based on whether they release or require heat. Each stream is defined by its inlet and target temperatures and its heat capacity flow rate (CP).
Building the stream table: Students compile a simple table of hot/cold streams (name, supply temperature, target temperature and heat capacity flow CP).
Constructing energy balances and Sankey Diagrams: Students manually calculate energy balances across each subsystem in the defined system boundary, identifying energy inputs, useful heat recovery, and losses. Using this information, they construct Sankey diagrams to visualise the magnitude and direction of energy flows, strengthening their grasp of system-wide energy performance before optimisation.
Pinch Concept introduction: Students are introduced to the concept of “the Pinch”, including the minimum heat exchanger temperature difference (ΔTmin) and how it affects heat recovery targets (QREC), as well as overall heating and cooling utility demands (QHU & QCU, respectively).
Assumptions: All analysis is conducted under steady-state conditions with constant CP and no heat losses.
Discussion prompts:
What insights does the Sankey diagram reveal about energy use, waste and recovery potential in the system? How might these visual insights shape optimisation decisions?
Why might certain streams be excluded from the analysis?
How does the choice of ΔTmin influence the heat recovery potential and cost?
What trade-offs are involved in system simplification during mapping?
How can assumptions (like steady-state vs. transient) impact integration outcomes?
Student deliverables:
A labelled system map showing the thermal process boundaries, hot and cold streams.
A structured stream data table.
Justification for selected ΔTmin values based on process safety, economics, or practical design and operational considerations.
A basic Sankey diagram representing the energy flows in the mapped system, based on calculated heat duties of each stream.
Part 2: Running and interpreting process system simulation results (Time: 2 to 2.5 hours) – Suitable for lab or flipped delivery;only standard computer access is needed to run the tool (optional instructor demo can extend depth):
Students use the simulation tool to generate their own results.The process scenario of Fig. 1, Appendix A, with the associated stream data (Table 1) can be used as a baseline.
Tool-generated outputs:
Curves: Composite and Grand Composite (pinch location, recovery potential).
Scenario summary: QREC, QHU, QCU; COP (where applicable); CAPEX/OPEX/CO₂; payback period for various values of system levers (e.g., ΔTmin levels, tariffs, emission factors).
Heat Pump (HP) tables: Feasible pairs, Top-N heat pump selections (where N = 0, 1, or 2); QEVAP, QCOND, QCOMP, COP. All notations are designated in the simulator’s help/README section.
Learning tasks:
1. Scenario sweeps Run different scenarios (e.g., different ΔTmin levels, tariffs, emission factors, and Top-N HP selections). Prompts: How do QREC, QHU/QCU, HX area, and CAPEX/OPEX/CO₂ shift across scenarios? Which lever moves the needle most?
2. Group contrast (cases A vs B: see time-phased operations A & B in Appendix A) Assign groups different cases; each reports system behaviours and trade-offs. Prompts: Where do you see CAPEX vs. energy-recovery tension? Which case is more HP-friendly and why?
3. Curve reading Use the Composite & Grand Composite Curves to identify pinch points and bottlenecks; link features on the curves to the tabulated results. Prompts: Where is the pinch? How does ΔTmin change the heat-recovery target and utility demands?
4. Downstream implications Trace how curve-level insights show up in HX sizing/costs and HP options. Prompts: When does adding HP reduce utilities vs. just shifting costs? Where do stream temperatures/CP constrain integration?
5. Systems lens: feedback and leverage Map short causal chains from the results (e.g., tariffs → HP use → electricity cost → OPEX; grid-carbon → HP emissions → net CO₂). Prompts: Which levers (ΔTmin, tariffs, EFs, Top-N) create reinforcing or balancing effects?
Outcome:
Students will be able to generate and interpret industrial simulation outputs, linking technical findings to economic and emissions consequences through a systems-thinking lens. They begin by tracing simple cause–effect chains from the simulation data and progressively translate these into causal loop diagrams (CLDs) that visualise reinforcing and balancing feedback. Through this, learners develop the ability to explain how system structure drives performance both within the plant and across its broader industrial and policy environment.
Optional extension: Educators may provide 2–3 predefined subsystem options (e.g., low-CAPEX HX network, high-COP HP integration, hybrid retrofit) for comparison. Students can use a decision matrix to justify their chosen configuration against CAPEX, OPEX, emissions, and controllability trade-offs.
Part 3: Systems thinking through scenario analysis (Time: 2 to 2.5 hours) – Benefits from larger-group facilitation, a whiteboard or Miro board (optional), and open discussion. It is rich in systems pedagogy:
Having completed simulation-based pinch analysis and heat recovery planning, learners now shift focus to strategic implementation challenges faced in real-world industrial settings. In this part, students apply systems thinking to explore the broader implications of their heat integration simulation output scenarios, moving beyond process optimisation to consider real-world dynamics, trade-offs, and stakeholder interactions. The goal is to encourage students to interrogate the interconnectedness of decisions, feedback loops, and unintended consequences in process energy systems including but not limited to operational complexity, resilience to disruptions, and alignment with long-term sustainability goals.
Activity: Stakeholder role play / Multi-Criteria Decision Analysis Students take on stakeholder roles and debate which design variant or operating strategy should be prioritised. They then conduct a Multi-Criteria Decision Analysis (MCDA), evaluating each option based on criteria such as CAPEX, OPEX savings, emissions reductions, risk, and operational ease.
Stakeholders include:
Operations managers, focused on ease of control and process stability.
Investors and finance teams, focused on return on investment.
Environmental officers, concerned with emissions and policy compliance.
Engineers, responsible for design and retrofitting.
Community members, advocating for sustainable industry practices.
Government reps responsible for regulations and policy formulation, e.g. taxes and subsides.
The team must present a strategic analysis showing how the heat recovery system behaves as a complex adaptive system, and how its implementation can be optimised to balance technical, financial, environmental, and human considerations.
Optional STOP for questions and activities:
Before constructing causal loop diagrams (CLDs), learners revisit key results from their simulation — such as ΔTmin, tariffs, emission factors, and system costs — and trace how these parameters interact to influence overall system performance. Educators guide this transition, helping students abstract quantitative outputs (e.g., changes in QREC, OPEX, or CO₂) into qualitative feedback relationships that reveal cause-and-effect chains. This scaffolding helps bridge the gap between process simulation and systems-thinking representation, supporting discovery of reinforcing and balancing feedback structures.
Activity: Construct a causal loop diagram (CLD) Students identify at least five variables that interact dynamically in the implementation of a heat integration system (e.g. energy cost, investment risk, emissions savings, system complexity, staff training). They must map reinforcing and balancing feedback loops that illustrate trade-offs or virtuous cycles.
Where could policy or process changes trigger leverage points?
How could delays in response (e.g. slow staff adaptation to new technologies) affect outcomes?
How might design choices affect local energy equity, air quality, or community outcomes?
What policy incentives or ethical trade-offs might reinforce or hinder your proposed solution?
Instructor debrief (engineering context with simulation linkage): After students share their CLDs, the educator facilitates a short discussion linking their identified reinforcing and balancing loops to common dynamic patterns observable in the simulation results. For instance:
Limits to growth: As ΔTmin decreases, heat recovery (QREC) initially improves, but exchanger area, CAPEX, and controllability demands grow disproportionately — diminishing overall economic benefit.
Shifting the burden: Installing a heat pump may appear to improve carbon performance, but if low process efficiency remains unaddressed, electricity use and OPEX rise — creating a new dependency that shifts rather than solves the problem.
Tragedy of the commons: Competing units or stakeholders optimising locally (e.g. for their own OPEX or production uptime) can undermine total system efficiency or resilience.
Success to the successful: Design options with early financial or policy support (e.g. high-COP heat pumps) attract more investment and attention, reinforcing a positive but unequal feedback loop.
This reflection connects quantitative model outputs (e.g. QREC, OPEX, CAPEX, emissions) to qualitative system behaviours, helping learners recognise leverage points and understand how design choices interact across technical, economic, and social dimensions of decarbonisation.
Activity: Explore “What if?” scenarios
Working in groups, students choose one scenario to explore using a systems lens:
What if gas prices fluctuate drastically?
What if capital funding is delayed by 6 months?
What if a heat exchanger fouls during peak season?
What if CO₂ emissions policy tightens?
What if current electricity grid decarbonisation trends suffer an unexpected setback?
What if government policies now encourage onsite renewable electricity generation?
Each group evaluates the resilience and flexibility of the proposed integration design. They consider:
System bottlenecks and fragilities.
Leverage points for intervention.
Need for redundancy or modular design.
Educators may add advanced scenarios (e.g. carbon tax introduction, supplier failure, or project delay) to challenge students’ resilience modelling and stakeholder negotiation skills.
Stakeholder impact reflection:
To extend systems reasoning beyond the technical domain, students assess how their chosen design scenarios (e.g., low vs. high ΔTmin, with or without heat pump integration) affect each stakeholder group. For instance:
Operations managers assess control complexity, downtime risk, and maintenance implications.
Finance teams evaluate CAPEX/OPEX trade-offs and payback periods.
Environmental officers examine lifecycle emissions and regulatory compliance.
Engineers reflect on reliability, retrofit feasibility, and process safety.
Community members or regulators consider social and policy outcomes, such as visible sustainability impact or energy equity.
Each team member rates perceived benefits, risks, or compromises under each design case, and the results are summarised in a stakeholder impact matrix or discussion table. This exercise links quantitative system metrics (energy recovery, emissions, cost) to qualitative stakeholder outcomes, reinforcing the “multi-layered feedback” perspective central to complex systems analysis.
Learning Outcomes (Part 3):
By the end of this part, students will be able to:
Identify systemic interdependencies in industrial energy systems.
Analyse how feedback loops and delays influence system behaviour.
Assess the resilience of energy integration solutions under different future scenarios.
Balance multiple stakeholder objectives in complex engineering contexts.
Apply systems thinking tools to communicate complex technical scenarios to diverse stakeholder audiences.
Use systems diagrams and decision tools to support strategic analysis.
Instructor Note – Guiding CLD and archetype exploration:
Moving from numerical heat-exchange and cost data to CLD archetypes can be conceptually challenging. Instructors are encouraged to model this process by identifying at least one reinforcing loop (e.g. “energy savings → lower OPEX → more investment in recovery → further savings”) and one balancing loop (e.g. “higher capital cost → reduced investment → lower heat recovery”). Relating these loops to common system archetypes such as “Limits to Growth” or “Balancing with Delay” helps students connect engineering data to broader system dynamics and locate potential leverage points. The activity concludes with students synthesising their findings from simulation, systems mapping, and stakeholder analysis into a coherent reflection on complex system behaviour and sustainable design trade-offs.
Assessment guidance:
This assessment builds directly on the simulation and systems-thinking activities completed by students. Learners generate and interpret their own simulation outputs (or equivalent open-source pinch analysis results), using these to justify engineering and strategic decisions under uncertainty.
Assessment focuses on students’ ability to integrate quantitative analysis (energy, cost, carbon) with qualitative reasoning (feedbacks, trade-offs, stakeholder dynamics), demonstrating holistic systems understanding.
Deliverables (portfolio; individual or group):
1. Reading and interpretation of simulation outputs
Use the outputs you generate (composite & grand composite curves: HX match/area/cost tables; HP pairing/ranking; summary sheets of QHU, QCU, QREC, COP, CAPEX, OPEX, CO₂, paybacks) for a different industrial process (from the one used in the main learning activity) to:
Identify the pinch point(s) and explain what the curves imply for recovery potential and bottlenecks.
Comment on QHU/QCU/QREC and how they change across the scenarios you run (e.g., ΔTmin, tariffs, emission factors, Top-N HP selection).
Interpret trade-offs among energy, CAPEX, OPEX, emissions, using numbers reported by the simulator. No calculations beyond light arithmetic/annotation.
2. Systems mapping and scenario reasoning
A concise system boundary sketch and a simple stream table.
A Causal Loop Diagram (CLD) highlighting key feedbacks (e.g., tariffs ↔ HP use ↔ grid carbon intensity ↔ emissions/cost).
A short MCDA (transparent criteria/weights) comparing the scenario variants you test; include a brief stakeholder reflection.
3. Decision memo (max 2 pages)
Your recommended integration option under stated assumptions, with one “what-if” sensitivity (e.g., +20% electricity price, tighter CO₂ factor).
State uncertainties/assumptions and any implementation risks (operations, fouling, timing of capital).
Students should include a short reflective note addressing assumptions, feedback insights, and how their stakeholder perspective shaped their recommendation.
Appendix A: Example process scenario for teaching activity:
Sample narrative: Large-scale food processing plant with time-sliced operations
The following process scenario explains the industrial context behind the main teaching activity simulations. A large-scale food processing plant operates a milk product manufacturing line. The process, part of which is shown in Fig. 1, involves the following:
Thermal evaporation of milk feed.
Cooking operations after other ingredient mixing and formulation upstream.
Oven heating to drive off moisture and stimulate critical product attributes.
Pre-finishing operations as the product approaches packaging.
In real operations, the evaporation subprocessoccurs at different times from the cooking/separation, oven and pre-finishing operations. This means that their hot and cold process streams are not simultaneously available for direct heat exchange. For a realistic industrial pinch analysis, the process is thus split into two time slices:
Time Slice A (used for scenario Case A): Evaporation streams only.
Time Slice B (Case B): Cooking/separation, oven and pre-finishing streams only.
Separate pinch analyses are performed for each slice, using the yellow-highlighted sections of Table 1 as stream data for time slice A, and the green-highlighted sections as stream data for time slice B. Any heat recovery between slices would require thermal storage (e.g., a hot-water tank) to bridge the time gap.
Fig.1. Simplified process flowsheet of food manufacturing facility.
Note on storage and system boundaries:
Because the two sub-processes occur at different times, direct process-to-process heat exchange between their streams is not possible without thermal storage. If storage is introduced:
Production surplus heat at time slice A can be stored at high temperature (e.g., 80 °C) and later discharged to preheat time slice B cold streams.
The size of the tank depends on the portion of hot utility demand of sub-process B to be offset, the temperature swing, and the duration of the sub-process B.
Table 1. Process stream data corresponding to flowsheet of Fig. 1. Yellow-highlighted sections represent processes available at time slice A, while green-highlighted sections are processes available at time slice B.
Appendix B: Suggested marking rubric (Editable):
Adopter note: The rubric below is a suggested template. Instructors may adjust criteria language, weightings and band thresholds to align with local policies and learning outcomes. No marks depend on running software.
1) Interpretation of Simulation Outputs — 25%
A (Excellent): Reads curves/tables correctly; uses QHU/QCU/QREC, COP, CAPEX/OPEX/CO₂, payback figures accurately; draws clear, defensible trade-offs.
B (Good): Mostly accurate; links numbers to decisions with some insight.
C (Adequate): Mixed accuracy; limited or generic trade-off discussion.
D/F (Weak): Frequent misreads; cherry-picks or contradicts generated data.
2) Systems Thinking & Scenario Analysis — 30%
A: Clear CLD with at least one reinforcing and one balancing loop; leverage points identified; scenarios coherent; MCDA with explicit criteria, weights, and justified ranking; uncertainty acknowledged.
B: Reasonable CLD; scenarios sound; MCDA present with partial justification.
C: Superficial CLD; scenarios/MCDA incomplete or weakly reasoned.
D/F: Little or no systems view; scenarios/MCDA absent or not meaningful.
Atuonwu, J.C. (2025). A Simulation Tool for Pinch Analysis and Heat Exchanger/Heat Pump Integration in Industrial Processes: Development and Application in Challenge-based Learning. Education for Chemical Engineers 52, 141-150.
Oh, X.B., Rozali, N.E.M., Liew, P.Y., Klemes, J.J. (2021). Design of integrated energy- water systems using Pinch Analysis: a nexus study of energy-water-carbon emissions. Journal of Cleaner Production 322, 129092.
Rosenow, J., Arpagaus, C., Lechtenböhmer, S.,Oxenaar, S., Pusceddu, E. (2025). The heat is on: Policy solutions for industrial electrification. Energy Research & Social Science 127, 104227.
Bale, C.S.E., Varga, L., Foxon, T.J. (2015). Energy and complexity: New ways forward. Applied Energy 138, 150-159.
Atuonwu, J.C. (2025). Proprietary Simulator for Pinch Analysis & Heat Integration. Private reviewer access available on request (demo video or temporary login).
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Gill Lacey, SFEA, MIEEE (Teesside University).
Topic: Calculating effects of implementing energy-saving standards.
Keywords: Built environment; Housing; Energy efficiency; Decarbonisation; AHEP; Sustainability; Higher education; Pedagogy.
Sustainability competency: Systems thinking; Critical thinking; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and the following specific themes from Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
F1.Apply knowledge of mathematics, statistics, natural science and engineering principles to broadly defined problems.
F4.Select and use technical literature and other sources of information to address broadly defined problems.
F6.Apply a systematic approach to the solution of broadly-defined problems.
F7. Evaluate the environmental and societal impact of solutions to broadly-defined problems.
Related SDGs: SDG 11 (Sustainable Cities and Communities); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action).
Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner / intermediate. Learners are required to have basic (level 2) science knowledge, and ability to populate a mathematical formula and use units correctly.
Learning and teaching notes:
This activity allows students to consider the dilemmas around providing housing that is cheap to heat as well as cheap to buy or rent. It starts with researching these issues using contemporary news and policy, continues with an in-depth study of insulation, together with calculations of U values, heat energy and indicative costs.
Learners have the opportunity to:
solve given technical tasks relating to insulation properties (AHEP: SM1m)
assess the heating requirement of a given house (AHEP: EA1m)
research a contemporary issue using websites and guided material
Teachers have the opportunity to:
introduce concepts related to heating and energy theory
develop learners’ mathematical skills in a practical context.
Structure a task around a sustainability issue and recognise the economic, social and cultural issues, as well as the technical ones
Supporting resources:
To prepare for these activities, teachers may want to explain, or assign students to pre-read articles relating to heating a house with respect to:
Provide the stimulus to motivate the students by considering the dilemma: How do we provide affordable housing whilst minimising heating requirement? There are not enough homes in the UK for everyone who needs one. Some of the houses we do have are expensive to run, poorly maintained and cost a fortune in rent. How do we get the housing builders to provide enough affordable, cheap to run housing for the population?
One possible solution is adopting Passivhaus standards. The Passivhaus is a building that conforms to a standard around heating requirements that ensures the insulation (U value) of the building material, including doors, windows and floors, prevents heat leaving the building so that a minimum heating requirement is needed. If all houses conformed to Passivhaus standards, the running costs for the householder would be reduced.
Teaching schedule:
Provide stimulus by highlighting the housing crisis in the UK:
How many houses are needed, now and in the future?
How many people currently live in temporary accommodation, and is this number expected to change?
Are developers required to add affordable housing to their plot? Should they be?
People requiring affordable housing for rent are likely to be among the poorest, so how many people are in ‘fuel poverty’?
Affordable housing needs to be built in such a way as to minimise the heat needed to keep the house warm. What categories of people are especially vulnerable?
What features/standards must a Passivhaus satisfy? How does this standard address the problems?
Students can work in groups to work on the extent of the problem from the bullet points provided. This activity can be used to develop design skills (Define the problem)
1. Get the engineering knowledge about preventing heat leaving a house:
If you can prevent heat leaving, you won’t need to add any more, it will stay at the same temperature. Related engineering concepts are:
Newtons law of cooling
U values
Heat transfer
2. Task:
a. Start with a standard footprint of a three-bed semi, from local estate agents. Make some assumptions about inside and outside temperatures, height of ceilings and any other values that may be needed.
b. Use the U value table to calculate the heat loss for this house (in Watts). The excel table has been pre-populated or you can do this as a group
With uninsulated materials (single glazing, empty cavity wall, no loft insulation.
With standard insulation (double glazing, loft insulation, cavity wall insulation.
If Passivhaus standards were used to build the house.
c. Costs
Find the typical cost for heating per kWh
Compare the costs for replacing the heat lost.
d. Final synoptic activity
Passivhaus costs a lot more than standard new build. How do housebuilders afford it?
Provide examples of the cost of building a Passivhaus standard building materials and reduced heating bills.
Suggest some ‘carrots’ and ‘sticks’ that could be used to make sure housing in the UK is affordable to rent/buy and run.
3. Assessment:
The spreadsheet can be assessed, and the students could write a report giving facts and figures comparing different levels of insulation and the effects on running costs.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief.
Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below.
Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate / Advanced.
Learning and teaching notes:
This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.
The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.
Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways:
Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4)
LO1: Describe the operation of electronic circuits and associated discrete components (AHEP4: SM1m).
LO2: Compare the operation principles of a variety of electronic sensors and actuators and apply them to a given task (AHEP4: EA2m).
LO3: Interpret how transistors and operational amplifiers function (AHEP4: EA4m).
LO4: Know how amplifiers operate and assess their performance for a given application (AHEP4: EA1m; EA2m).
LO5: Integrate the operation of an actuator, sensor, and power supply into a system for a given task (AHEP4: EA4m; EA6m).
In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification.
Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5)
LO1: communicate the primary challenges inherent in wireless communication (AHEP4: SM1m
LO2: devise solutions to a given design challenge (AHEP4: SM1m; SM3m) In this pathway, the project deliverable could be in the form of a Technical Report.
This project allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
analyse local environmental factors that affect river water levels,
appreciate local planning with respect to installing devices on or near a riverbank,
consider how to communicate with a variety of stakeholders,
undertake cost-benefit and value trade-off analysis in the context of using sustainable materials,
undertake cost-benefit and value trade-off analysis in the context of using renewable energy,
practise argument and reasoning related to sustainability dilemmas.
Teachers have the opportunity to:
introduce concepts related to climate change in the local environment,
introduce concepts related to environmental sensors,
introduce concepts related to renewable energy sources,
introduce concepts related to battery systems,
introduce concepts related to local planning laws,
informally evaluate students’ argument and reasoning skills,
integrate technical content in the areas of electrical or mechanical engineering related to water level monitoring,
authentically assess a team activity and individual work.
A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation.
Time frame & structure: This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.
It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem.
To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article: ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’
Context and Stakeholders:
Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered.
Pathway 1
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and doesit surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change?
Design Process:
To satisfy the learning outcomes identified above the following activities are suggested.
Assessment activity 1 – Physical artefact:
Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level.
b) It will integrate to appropriate Operational Amplifier circuitry.
c) The circuitry will control an output device or devices.
d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build).
The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements.
The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references).
Pathway 2
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.
You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity:Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.
Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town.
Design Process:
Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m.
Assessment activity – Technical report:
A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report:
Highlighting the benefits and drawbacks of each.
Explaining the inherent challenges in wireless communication that defined your selections
Design tools and problem-solving techniques should be used to define the product requirements and consequent component selection
The report shall be no more than 3000 words (plus illustrations and references)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts).
The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Recognise the significance of the SDGs in engineering solutions;
Enhance their skills in applying sustainable engineering practices in real-world scenarios.
Delve into the complexities of implementing off-grid solutions.
Navigate through the ethical considerations of deploying technologies in remote, often vulnerable, communities.
Engage in critical thinking to balance technological, societal, and environmental aspects.
Teachers have the opportunity to:
Highlight the importance of SDGs in engineering.
Facilitate discussions on ethical implications in technology deployment.
Evaluate learners’ ability to devise sustainable and ethical engineering solutions.
DGS; Planning and installing photovoltaic systems: A guide for installers, architects and engineers; ISBN: 978-1849713436; Planning and installing series.
In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions.
Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain.
Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002.
Part one: Household energy for Siwa Oasis
Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.
Data on Household Energy for Siwa Oasis:
Activities:
Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
Simulate daily energy usage patterns using smart meter data.
Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
Calculate appliance power consumption and estimate electricity costs.
Discussion:
a. How does this situation relate to SDG 7, and why is it essential for sustainable development?
b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages?
Part two: Power supply options
Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel).
Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations.
Fossil fuel: Briefly discuss diesel generators and their environmental impact.
The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis.
Optional STOP for questions and activities:
Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.
Part three: Community mini-grid via harnessing the desert sun
Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly.
Electrical components of a typical PV system can be classified into DC and AC.
DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.
The key DC components are:
PV cables and connectors: PV modules are usually delivered with a junction box and pre-assembled cables with single-contact electrical connectors. They enable easy interconnection of individual modules in strings. Solar cables are made of copper or aluminum (more cost-efficient).
Combiner boxes: Here, incoming strings are connected in parallel, and the resulting current is channeled through an output terminal to the inverter. A combiner box usually contains all required protection devices, disconnectors, and measuring equipment for string monitoring.
AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:
Transformers, to increase the inverter output voltage to the grid voltage level
AC cables, buried
Circuit breakers, switchgears, and protection devices, for large PV plants (MV/HV connection)
Electricity meters
Activities:
Research and discuss the safety precautions and regulations for working with DC systems.
Analyse the DC components of a typical PV system, including cables, connectors, and combiner boxes.
Calculate the voltage and current levels at different points in the DC circuit based on the system design.
Investigate the concept of power factor and its significance in grid stability and energy bills.
Analyse the power factor of common household appliances and discuss its impact on the mini-grid.
Propose strategies to improve the overall power factor of the mini-grid, such as using capacitors or choosing energy-efficient appliances.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Design and innovation; Conflicts of interest; Ethics; Regulatory compliance; Stakeholder engagement; Environmental impact; AHEP; Sustainability; Higher education; Pedagogy; Assessment.
Sustainability competency: Systems thinking; Anticipatory; Critical thinking; Integrated problem-solving; Strategic; Collaboration.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational aim: Apply interdisciplinary engineering knowledge to a real-world sustainability challenge in aviation, foster ethical reasoning and decision-making with regards to environmental impact, and develop abilities to collaborate and communicate with a diverse range of stakeholders.
Educational level: Intermediate.
Learning and teaching notes:
This case study provides students an opportunity to explore the role of hydrogen fuel in the aviation industry. Considerable investments have been made in researching and developing hydrogen as a potential clean and sustainable energy source, particularly for hydrogen-powered aircraft. Despite the potential for hydrogen to be a green and clean fuel there are lingering questions over the long-term sustainability of hydrogen and whether technological advancements can progress rapidly enough to significantly reduce global carbon dioxide emissions. The debate around this issue is rich with diverse perspectives and a variety of interests to consider. Through this case study, students will apply their engineering expertise to navigate this complex problem and examine the competing interests involved.
This case is presented in parts, each focusing on a different sustainability issue, and with most parts incorporating technical content. Parts may be used in isolation, or may be used to build up the complexity of the case throughout a series of lessons.
Learners have the opportunity to:
Understand the principles of hydrogen production, storage, and emissions in the context of aviation.
Assess the environmental, economic, and social impacts of adopting hydrogen technology in the aviation industry.
Develop skills in making estimates and assumptions in real-world engineering scenarios.
Explore the ethical dimensions of engineering decisions, particularly concerning sustainability and resource management.
Examine the influence of policy and stakeholder perspectives on the adoption of green hydrogen within the aviation industry.
Teachers have the opportunity to:
Integrate concepts related to renewable energy sources, with a focus on hydrogen.
Discuss the engineering challenges and solutions in storing and utilising hydrogen in aviation.
Foster critical thinking about the balance between technological innovation, environmental sustainability, and societal impact.
Guide students in understanding the role of policy in shaping technological advancements and environmental strategies.
Assess students’ ability to apply engineering principles to solve complex, open-ended, real-world problems.
Supporting resources:
Learning and teaching resources:
Hydrogen fundamentals resources:
Case Study Workbook – designed for this study to give a broad overview of hydrogen, based primarily on the content below from US DoE.
Hydrogen Aware – Set of modules for a more comprehensive background to hydrogen with a UK-specific context.
We recommend encouraging the use of sources from a variety of stakeholders. Encourage students to find their own, but some examples are included below:
FlyZero Open Source Reports Archive: A variety of technical reports focused on hydrogen in aviation specifically including concept aircraft, potential life cycle emissions, storage, and usage.
Hydrogen in Aviation Alliance: Press release (September 2023) announcing an agreement amongst some of the major players in aviation to focus on hydrogen.
Safe Landing: A group of aviation workers campaigning for long-term employment. Projected airline growth is not compatible with net zero goals and the current technology is not ready for decarbonisation, action is drastically needed now to safeguard the aviation industry and prevent dangerous levels of warming.
UK Government Hydrogen Strategy: Sets out the UK government view of how to develop a low carbon hydrogen sector including aviation projects including considerations of how to create a market.
Pre-Session Work:
Students should be provided with an overview of the properties of hydrogen gas and the principles underlying the hydrogen economy: production, storage and transmission, and application. There are several free and available sources for this purpose (refer to the Hydrogen Fundamentals Resources above).
Introduction
“At Airbus, we believe hydrogen is one of the most promising decarbonisation technologies for aviation. This is why we consider hydrogen to be an important technology pathway to achieve our ambition of bringing a low-carbon commercial aircraft to market by 2035.” – Airbus, 2024
As indicated in the industry quote above, hydrogen is a growing area of research interest for aviation companies to decarbonise their fleet. In this case study, you are put in the role of working as an engineering consultant and your customer is a multinational aerospace corporation. They are keen to meet their government issued targets of reducing carbon emissions to reach net zero by 2050 and your consultancy team has been tasked with assessing the feasibility of powering a zero-emission aircraft using hydrogen. The key areas your customer is interested in are:
The feasibility of using green hydrogen as a fuel for zero-emission aviation;
The feasibility of storing hydrogen in a confined space like an aircraft;
Conducting a stakeholder analysis on the environmental impact of using hydrogen for aviation.
Part one: The aviation landscape
Air travel connects the world, enabling affordable and reliable mass transportation between continents. Despite massive advances in technology and infrastructure to produce more efficient aircraft and reduce passenger fuel consumption, carbon emissions have doubled since 2019 and are equivalent to 2.5 % of global CO2 emissions.
Activity: Discuss what renewable energy sources are you aware of that could be used for zero-emission aviation?
Your customer is interested in the feasibility of hydrogen for aviation fuel. However, there is a debate within the management team over the sustainability of hydrogen. As the lead engineering consultant, you must guide your customer in making an ethical and sustainable decision.
Hydrogen is a potential energy carrier which has a high energy content, making it a promising fuel for aviation. Green hydrogen is produced from water and is therefore potentially very clean. However, globally most hydrogen is currently made from fossil fuels with an associated carbon footprint. Naturally occurring as a gas, the low volumetric density makes it difficult to transport and add complications with storage and transportation.
Activity: From your understanding of hydrogen, what properties make it a promising fuel for aircraft? And what properties make it challenging?
Optional activity: Recap the key properties of hydrogen – particularly the low gas density and low boiling point which affect storage.
Part two: Hydrogen production
Hydrogen is naturally abundant but is often found combined with other elements in various forms such as hydrocarbons like methane (CH4) and water (H2O). Methods have been developed to extract hydrogen from these compounds. It is important to remember that hydrogen is an energy carrier and not an energy source; it must be generated from other primary energy sources (such as wind and solar) converting and storing energy in the form of hydrogen.
Research: What production methods of hydrogen are you aware of? Where does most of the world’s hydrogen come from currently?
The ideal scenario is to produce green hydrogen via electrolysis where water (H2O) is split using electricity into hydrogen (H2) and oxygen (O2). This makes green hydrogen potentially completely green and clean if the process uses electricity from renewable sources. The overall chemical reaction is shown below:
However, the use of water—a critical resource—as a feedstock for green hydrogen, especially in aviation, raises significant ethical concerns. Your customer’s management team is divided on the potential impact of this practice on global water scarcity, which has been exacerbated by climate change. You have been tasked with assessing the feasibility of using green hydrogen in aviation for your client. Your customer has chosen their London to New York route (3,500 nmi), one of their most popular, as a test-case.
Activity: Estimate how much water a hydrogen plane would require for a journey of 3500 nmi (London to New York). Can you validate your findings with any external sources?Hint: How much water does it take to produce 1 kg of green hydrogen? Consider the chemical equation above.
Activity: Consider scaling this up and estimate how much water the entire UK aviation fleet would require in one year. Compare your value to the annual UK water consumption, would it be feasible to use this amount of water for aviation?
Discussion: From your calculations and findings so far, discuss the practicality of using water for aviation fuel. Consider both the obstacles and opportunities involved in integrating green hydrogen in aviation and the specific challenges the aviation industry might face.
Despite its potential for green production, globally the majority of hydrogen is currently produced from fossil fuels – termed grey hydrogen. One of your team members has proposed using grey hydrogen as an interim solution to bridge the transition to green hydrogen, in order for the company to start developing the required hydrogen-related infrastructure at airports. They argue that carbon capture and storage technology could be used to reduce carbon emissions from grey hydrogen while still achieving the goal of decarbonisation. Hydrogen from fossil fuels with an additional carbon capture step is known as blue hydrogen.
However, this suggestion has sparked a heated debate within the management team. While acknowledging the potential to address the immediate concerns of generating enough hydrogen to establish the necessary infrastructure and procedures, many team members argued that it would be a contradictory approach. They highlighted the inherent contradiction of utilising fossil fuels, the primary driver of climate change, to achieve decarbonisation. They emphasised the importance of remaining consistent with the ultimate goal of transitioning away from fossil fuels altogether and reducing overall carbon emissions. Your expertise is now sought to weigh these options and advise the board on the best course of action.
Optional activity: Research the argument for and against using grey or blue hydrogen as an initial step in developing hydrogen infrastructure and procedures, as a means to eventually transition to green hydrogen. Contrast this with the strategy of directly implementing green hydrogen from the beginning. Split students into groups to address both sides of this debate.
Discussion: Deliberate on the merits and drawbacks of using grey or blue hydrogen to catalyse development of hydrogen aviation infrastructure. What would you recommend—prioritising green hydrogen development or starting with grey or blue hydrogen as a transitional step? How will you depict or visualise your recommendation to your client?
Part three: Hydrogen storage
Despite an impressive gravimetric energy density (the energy stored per unit mass of fuel) hydrogen has the lowest gas density and the second-lowest boiling point of all known chemical fuels. These unique properties pose challenges for storage and transportation, particularly in the constrained spaces of an aircraft.
Activity: Familiarise yourself with hydrogen storage methods. What hydrogen storage methods are you aware of? Thinking about an aviation context what would their advantages and disadvantages be?
As the lead engineering consultant, you have been tasked with providing expert advice on viable hydrogen storage options for aviation. Your customer has again chosen their London to New York route (3,500 nmi) as a test-case because it is one of their most popular, transatlantic routes. They want to know if hydrogen storage can be effectively managed for this route as it could set a precedent for wider adoption for their other long-haul flights. The plane journey from London to New York is estimated to require around 15,000 kg of hydrogen (or use the quantity estimated previously estimated in Part 2 – see Appendix for example).
Activity: Estimate the volume required to store the 15,000 kg of hydrogen as a compressed gas and as a liquid.
Discussion: How feasible are compressed gas and liquid hydrogen storage solutions? The space taken up by the fuel is one consideration but what other aspects are important to consider? How does this compare to the current storage solution for planes which use conventional jet fuel. Examples of topics to consider are: materials required for storage tanks, energy required to liquify or compress the hydrogen, practicality of hydrogen storage and transport to airports, location and distance between hydrogen generation and storage facilities, considerations of fuel leakage. When discussing encourage students to compare to the current state of the art, which is jet fuel.
Part four: Emissions and environmental impact
In Part four, we delve deeper into the environmental implications of using hydrogen as a fuel in aviation with a focus on emissions and their impacts across the lifecycle of a hydrogen plane. Aircraft can be powered using either direct combustion of hydrogen in gas turbines or by reacting hydrogen in a fuel cell to produce electricity that drives a propeller. As the lead engineering consultant, your customer has asked you to choose between hydrogen combustion in gas turbines or the reaction of hydrogen in fuel cells. The management team is divided on the environmental impacts of both methods, with some emphasising the technological readiness and efficiency of combustion and others advocating for the cleaner process of fuel cell reaction.
Activity: Research the main emissions associated with combustion of hydrogen and electrochemical reaction of hydrogen in fuel cells. Compare to the emissions associated with combustion of standard jet fuel.Students should consider not only CO2 emissions but also other pollutants such as NOx, SOx, and particulate matter.
Discussion: What are the implications of these emissions on air quality and climate change. Discuss the trade-offs between the different methods of utilising hydrogen in terms of the environmental impact. Compare to the current standard of jet fuel combustion.
Both combustion of hydrogen in an engine and reaction of hydrogen in a fuel cell will produce water as a by-product. The management team are concerned over the effect of using hydrogen on the formation of contrails. Contrails are clouds of water vapour produced by aircraft that have a potential contribution to global warming but the extent of their impact is uncertain.
Activity: Investigate how combustion (of both jet fuel and hydrogen) and fuel cell reactions contribute to contrail formation. What is the potential climactic effect of contrails?
Optional extension: How can manufacturers and airlines act to reduce water emissions and contrail formation – both for standard combustion of jet fuel and future hydrogen solutions?
Discussion: Based on your findings, which hydrogen propulsion technology would you recommend to the management team?
So far we have considered each aspect of the hydrogen debate in isolation. However, it is important to consider the overall environmental impact of these stages as a whole. Choices made at each stage of the hydrogen cycle – generation, storage, usage – will collectively impact the overall environmental impact and sustainability of using hydrogen as an aviation fuel and demonstrates how interconnected our decisions can be.
Activity: Assign students to groups based on the stage of a hydrogen lifecycle (generation, storage/transport, usage). Each group could research and discuss the potential emissions and environmental impacts associated with their assigned stage. Consider both direct and indirect emissions, like energy used in production processes or emissions related to infrastructure development. Principles such as life cycle assessment can be incorporated for a holistic view of hydrogen emissions.
Activity: After the individual group discussions, each group could present their findings and perspectives on their stage of the lifecycle. The whole class could then reflect on the overall environmental impacts of hydrogen in aviation. How do these impacts compare across different stages of the lifecycle? What are the trade-offs involved in choosing different types of hydrogen (green, blue, grey) and storage/transportation solutions?
Discussion: Conclude with a reflective discussion. Students bring together their findings on the life cycle stages of hydrogen and present their overall perspectives on the environmental sustainability of using hydrogen in aviation.
Part five: Hydrogen aviation stakeholders
Hydrogen aviation is an area with multiple stakeholders with conflicting priorities. Understanding the perspectives of these key players is important when considering the feasibility of hydrogen in the aviation sector.
Activity: Who are the key players in this scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully?
Your consultancy firm is hosting a debate for the aviation industry in order to help them make a decision around hydrogen-based technologies. You have invited representatives from consumer groups, the UK government, Environmental NGOs, airlines, and aircraft manufacturers.
Activity: Take on the role of these key stakeholders, ensuring you understand their perspective and priorities. This could form part of a separate research exercise, or students can use the key points given below. Debate whether or not hydrogen fuel should be used to help the aviation sector reach net zero.
Stakeholder
Key priorities and considerations
Airline & Aerospace Manufacturer
Cost efficiency (fuel, labour, fleet maintenance) – recovering from pandemic.
Passenger experience (commercial & freight).
Develop & maintain global supply chains.
Safety, compliance and operational reliability.
Financial responsibility to employees and investors.
Need government assurances before making big capital investments.
UK Government
Achieve net zero targets by 2050
Promote economic growth and job creation (still recovering from pandemic).
Fund research and innovation to put their country’s technology ahead.
Fund renewable infrastructure to encourage industry investment.
Environmental NGOs
Long-term employment for aviation sector.
Demand a sustainable future for aviation to ensure this – right now, not in 50 years.
Standards and targets for industry and government and accountability if not met.
Some NGOs support drastic cuts to flying.
Want to raise public awareness over sustainability of flying.
Consumer
Environmentally aware (understand the need to reduce carbon emissions).
Also benefit greatly from flying (tourism, commercial shipping, etc.).
Safety and reliability of aircraft & processes.
Cost effectiveness – want affordable service
Appendix: Example calculations
There are multiple methods for approaching these calculations. The steps shown below are just one example for illustrative purposes.
Part two: Hydrogen production
Challenge: Estimate the volume of water required for a hydrogen-powered aircraft.
Assumptions around the hydrogen production process, aircraft, and fuel requirement can be given to students or researched as a separate task. In this example we assume:
All hydrogen is generated via electrolysis of fresh water with an efficiency of 100%.
A mid-size aircraft required with ~300 passenger capacity and flight range of ~3500 nmi (London to New York).
Flight energy requirement for a kerosene-fuelled jet is the same as a hydrogen-fuelled jet.
Example estimation:
1. Estimate the energy requirement for a mid-size jet
No current hydrogen-fuelled aircraft exists, so we can use a kerosene-fuelled analogue. Existing aircraft that meet the requirements include the Boeing 767 or 747. The energy requirement is then:
2. Estimate the hydrogen requirement
Assuming a hydrogen plane has the same fuel requirement:
3. Estimate the volume of water required
Assuming all hydrogen is produced from the electrolysis of water:
Electrolysis reaction:
For this reaction, we know one mole of water produces one mole of hydrogen. We need to calculate the moles for 20,000 kg of hydrogen:
With a 1:1 molar ratio, we can then calculate the mass of water:
This assumes an electrolyser efficiency of 100%. Typical efficiency values are under 80%, which would yield:
Challenge: Is it feasible to power the UK aviation fleet with water?
The total energy requirement for UK aviation can be given to students or set as a research task.
Estimation can follow a similar procedure to the above.
Multiple methods for validating and assessing the feasibility of this quantity of water. For example, the UK daily water consumption is 14 billion litres. The water requirement estimated above is < 1 % of this total daily water consumption, a finding supported by FlyZero.
Part three: Hydrogen storage
Challenge: Is it feasible to store 20,000 kg of hydrogen in an aircraft?
There are multiple methods of determining the feasibility of storage volume. As example is given below.
1. Determining the storage volume
The storage volume is dependent on the storage method used. Density values associated with different storage techniques can be research or given to students (included in Table 2). The storage volume required can be calculated from the mass of hydrogen and density of storage method, example in Table 2.
Table 2: Energy densities of various hydrogen storage methods
2. Determining available aircraft volume
A straightforward method is to compare the available volume on an aircraft with the hydrogen storage volume required. Aircraft volumes can be given or researched by students. Examples:
This assumes hydrogen tanks are integrated into an existing aircraft design. Liquid hydrogen can feasibly fit into an existing design, though actual volume will be larger due to space/constraint requirements and additional infrastructure (pipes, fittings, etc) for the tanks. Tank size can be compared to conventional kerosene tanks and a discussion encouraged over where in the plane hydrogen tanks would need to be (conventional liquid fuel storage is in the wings of aircraft, this is not possible for liquid storage tanks due to their shape and infrastructure storage is inside the fuselage). Another straightforward method for storage feasibility is modelling the hydrogen volume as a simple cylinder and comparing to the dimensions of a suitable aircraft.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Ethical issues: Sustainability; Social responsibility; Risk.
Professional situations: Public health and safety,
Educational level: Beginner.
Educational aim: Engaging in Ethical Judgement: reaching moral decisions and providing the rationale for those decisions.
Learning and teaching notes:
At COP26, H.E. President Muhammadu Buhari announced Nigeria’s commitment to carbon neutrality by 2050. This case involves an engineer who is one of the stakeholders invited by the president of Nigeria to implement an Energy Transition Plan (ETP). It requires the engineer, who is a professional and well experienced in renewable energy and energy transition, to deliver a comprehensive decarbonisation roadmap that will ensure net zero emissions.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
research various aspects of decarbonisation and the energy transition;
consider short- and long-term components of ethical decision-making;
practice negotiating between stakeholders;
develop and present an energy transition plan.
Teachers have the opportunity to:
introduce or expand on technical content related to decarbonisation;
introduce or reinforce bibliographic research skills;
informally evaluate critical thinking and argumentation.
You are an electrical engineer working as a technical consultant in an international organisation aiming to transform the global energy system to secure a clean, prosperous, zero-carbon future for all. The organisation is one of the stakeholders invited by the federal government of Nigeria to implement the country’s new Energy Transition Plan (ETP) and you are given the task of creating a comprehensive decarbonisation roadmap and presenting it at the stakeholder meeting.
Optional STOP for questions and activities:
1. Discussion: In what ways could an electrical engineer bring needed expertise to the ETP? Why are engineers essential to ensuring a zero-carbon future? Should engineers be involved in policy planning? Why or why not?
2. Activity: Wider context research: Nigeria is currently an oil-producing country. What might policy makers need to consider about this reality when implementing an ETP? How strongly should you advocate for a reduction of the use of fossil fuels in the energy mix?
3. Discussion and activity: List the potential benefits and risks to implementing the ETP. Are these benefits and risks the same no matter which country they are implemented in?
4. Activity: Research and outline countries that have attained a zero emission target. What are their energy distribution mixes? Based on this information, what approach should Nigeria take and why?
5. Activity: What will be your presentation strategy at the stakeholder meeting? What will you advocate for and why? What ethical justifications can you make for the plan you propose?
Dilemma – Part two:
At the stakeholder meeting, you were given the opportunity to present your decarbonisation roadmap and afterwards faced serious opposition by the chief lobbyist of the Fossil Fuel and Mining Association, Mr. Abiola. Mr. Abiola is of the opinion that because Nigeria contributes less than 1% to the global emissions, it should not be held accountable for climate change, and therefore no country-wide climate policy is necessary. Furthermore, he fears the domestic market for coal that is used to produce electricity as well as the global market for fossil fuels will shrink because of the new policy. He also argues that a shift away from coal and fossil fuels could result in challenges to the security of supply, since renewables are by definition unreliable and volatile. Other stakeholders, such as activists and environmental experts, also voiced different concerns and opinions. They argue that time has already run out, and no country can delay decarbonisation plans no matter how small their impact on the global total. This conflict has resulted in disagreements in the negotiation.
Optional STOP for questions and activities:
1. Debate: Do different countries have different ethical responsibilities when it comes to decarbonisation? Why or why not? If so, for what reasons?
2. Discussion: How should countries weigh the short-term versus long-term benefits and burdens of the energy transition? What role do governments and corporations play in managing those? What role should citizens play?
3. Discussion: How will you prepare for and handle opposing questions to your roadmap plan?
4. Activity: Create a participatory stakeholder engagement plan embedded in the overall decarbonisation strategy.
5. Activity: How will you utilise the different renewable energy mix to provide 100% access to electricity and ensure security of supply as an electrical engineer?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Gill Lacey (Teesside University).
Topic: Maintenance of an offshore wind farm.
Engineering disciplines: Mechanical; Energy.
Ethical issues: Sustainability; Risk.
Professional Situations: Public health and safety; Quality of work; Conflicts with leadership/management.
Educational level: Beginner.
Educational aim: Becoming Ethically Aware: determining that a single situation can be considered from a ethical point of view.
Learning and teaching notes:
The case is based on a genuine challenge raised by a multinational energy company that operates an offshore wind farm in the North Sea. It involves three professional engineers responsible for various aspects of the project to negotiate elements of safety, risk, environmental impact, and costs, in order to develop a maintenance plan for the wind turbine blades.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
This case is presented in two parts. In the first part, the perspectives and responsibilities of the three engineers are outlined so that students can determine what professional and ethical responsibilities are inherent in their roles. In the second part, a scenario is developed that puts the roles into potential conflict. Students then have the opportunity to work through a real-world brief that requires them to negotiate in order to present a solution to management. Teachers can choose to use Part one in isolation, or some or all of Part two to expand on the issues in the case. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise between professionals and practise resolving those tensions;
consider and present possible solutions to a professional dilemma;
integrate ethical considerations into an engineering solution.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and/or professional conflict;
integrate technical content on engineering design;
evaluate students’ critical thinking and communication skills.
Offshore wind has huge benefits to the electricity industry as a renewable, low carbon resource. The size and scale of the turbines, together with the remoteness – the wind farm referred to in this case is 200 km from shore – are a problem. However, it is a rapidly maturing industry and many of the issues around accessibility during installation have been solved. A wind farm is expected to generate for twenty years and so a system of inspection and maintenance needs to be put in place. At the same time, the environmental impact of industrial activity (including ongoing maintenance and repairs) needs to be managed in order to mitigate risks to ecosystem resources and services provided by the open sea.
In this wind farm there are one hundred turbines, each with three blades. The blades are 108 m long. Clearly, they need to be kept in good condition. However, inspecting the blades is a difficult and time consuming job.
There are three engineers that are responsible for various aspects of maintenance of the wind turbine blades. They are:
1. Blade engineer: My job is to make sure the blades are in good condition so that the wind farm operates as it was designed and generates as much power as possible. I am responsible for:
Checking each blade for damage;
Assessing whether repairs are needed, what repairs those are, and how urgently;
Determining how maintenance can be conducted efficiently and cost-effectively.
2. Health and safety engineer: My job is to make sure that the technicians who inspect and maintain the turbine blades are at minimal risk. I need to ensure compliance with:
Employment safety regulations;
Legal guidelines governing industrial activity in the open sea.
3. Environmental engineer: My job is to ensure that the ecosystem is damaged as little as possible during turbine inspection and maintenance, and to rectify as best as possible any adverse effects that are incurred. After all, wind power is considered to be “green” energy and so wind farms should do as little damage to the environment as possible. This work helps:
The company to meet or exceed its corporate responsibility commitments relating to social licence to operate;
Maintain the ecological integrity of the ecosystem.
Optional STOP for questions and activities:
1. Discussion: What sort of instances might cause damage to the turbine blades? (Possible answers: bird strike, collision with a vessel, storm, ice etc.)
2. Discussion: What problems might a damaged blade cause? (Possible answers: a damaged blade cannot generate properly; it might unbalance the other two blades until the whole turbine is affected. If a blade were to come loose it could strike another turbine blade, a vessel, sea creatures etc.)
3. Activity: Research how blade inspection is done. (Answer: a combination of photos from drones and reports from crew who need to use rope access to take a close look.)
a. If a drone is used, what issues might the drone have? (Answers: needs to be operated from a nearby vessel; weather (wind!); getting good resolution photos from a vibrating and moving drone; energy (battery) to power the drone.)
b. If a technician goes onsite, what issues are there with rope access? (Answers: time consuming; dangerous; can only be done in good weather; have to stop the turbine to access; training the inspection team; recording the findings.)
4. Discussion: What competing values or motivations might conflict in this scenario? Explain what constraints each engineer might be operating under and the potential conflicts between the roles.
5. Activity: Research what health and safety, environmental, and legal policies affect offshore wind farms. If they are in the open sea, which country’s laws are applied? Who is responsible for maintaining ecosystem health in the open sea? How are harms identified and mitigated?
Dilemma – Part two:
So, the blade engineer wants maintenance done effectively, with as little down time as possible; the H&S engineer wants it done safely, with as little danger to crew as possible; while the environmental engineer wants it done with as little damage to the ecosystem as possible. These three people must together develop an inspection plan that will be approved by upper management, who are largely driven by profitability – limited downtime in maintenance means increased profits as well as more energy delivered to customers.
Optional STOP for questions and activities:
The students are then presented with a brief that gives some background to the wind farms and the existing inspection regime. The brief is structured to allow engineering design, engineering drawing and technical research to take place alongside consideration of potential ethical dilemmas.
Brief: In teams of three, where each team member is assigned a different role outlined above (blade engineer, health and safety engineer, environmental engineer), propose a feasible method for blade inspection that:
Minimises or removes the need for personnel rope access and working from height;
Minimises or removes downtime of a wind turbine generator (WTG) during inspection.
Aspects to consider:
Types of damage that the solution can detect
Detection methods
Accuracy of data and how data is retrieved and processed
Weather and sea conditions
Ease and flexibility of operation e.g., distance from turbines, battery life, charging requirements
Speed of inspection
Safety of operation
Effects on the environment.
Teachers could task teams to work together to:
Develop a feasible blade inspection solution
Create a project programme for development of the solution
Assess risk, technical merit and personnel health & safety within the field
Pitch the solution in a technical sales meeting.
The pitch could include details of:
Overview of solution, methodology and unique selling points
Technical explanation of solution (including product specifications and risk)
Explanation of operability within the field
Assessment of health & safety and environmental impact.
1. Activity: Working in groups,consider possible solutions:
a. Explore 2 or 3 alternatives to answer the need or problem, identifying the ethical concerns in each.
b. Analyse the alternative solutions to identify potential benefits, risks, costs, etc.
c. Justify the proposed solution.
(Apart from the design process, this activity allows some discussion over the choice of solution. Looking at more than one allows the quieter students to speak out and justify their thinking.)
2. Activity: Working in groups, present a solution that consists of one or more of the following:
a. Make a CAD or drawn prototype.
b. Make a physical or 3D model.
c. Create a poster detailing the solution which could include technical drawings.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr J.L. Rowlandson (University of Bristol).
Ethical issues: Sustainability; Social responsibility.
Professional situations: Public health and safety; Conflicts of interest; Quality of work; Conflicts with leadership/management; Legal implication.
Educational level: Intermediate.
Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others.
Learning and teaching notes:
This case study considers not only the environmental impacts of a clean technology (the heat pump) but also the social and economic impacts on the end user. Heat pumps form an important part of the UK government’s net-zero plan. Our technical knowledge of heat pump performance can be combined with the practical aspects of implementing and using this technology. However, students need to weigh the potential carbon savings against the potential economic impact on the end user, and consider whether current policy incentivises consumers to move towards clean heating technologies.
This case study offers students an opportunity to practise and improve their skills in making estimates and assumptions. It also enables students to learn and practise the fundamentals of energy pricing and link this to the increasing issue of fuel poverty. Fundamental thermodynamics concepts, such as the second law, can also be integrated into this study.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in six parts. If desired, a teacher can use the Summary and Part one in isolation, but Parts two to six develop and complicate the concepts presented in the Summary and Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
understand how the current energy system works;
relate the implementation of new technologies to real-world impacts on the consumer;
improve their zeroth order approximation skills and use these back of the envelope calculations to inform decisions;
consider how to weigh the benefits and burdens of ethical decisions;
consider the influence of policy on technology uptake and consumer behaviour.
Teachers have the opportunity to:
introduce concepts related to energy pricing;
integrate technical content about energy and thermodynamics;
informally evaluate students’ research skills and zeroth order approximation.
Summary – Heating systems and building requirements:
You are an engineering consultant working for a commercial heat pump company. The company handles both the manufacture and installation of heat pumps. You have been called in by a county council to advise and support a project to decarbonise both new and existing housing stock. This includes changes to social housing (either directly under the remit of the council or by working in partnership with a local housing association) and also to private housing, encouraging homeowners and landlords to move towards net zero emissions. In particular, the council is interested in the installation of clean heating technologies with a focus on heat pumps, which it views as the most technologically-ready solution. Currently most heating systems rely on burning natural gas in a boiler to provide heat. By contrast, a heat-pump is a device that uses electricity to extract heat from the air or ground and transfer it to the home, avoiding direct emission of carbon dioxide.
The council sets your first task of the project as assessing the feasibility of replacing the existing gas boiler systems with heat pumps in social housing. You are aware that there are multiple stakeholders involved in this process you need to consider, in addition to evaluating the suitability of the housing stock for heat pump installation.
Optional STOP for questions and activities:
1. Discussion: Why might the council have prioritised retrofitting the social housing stock with heat pumps as the first task of the project? How might business and ethical concerns affect this decision?
2. Activity: Use stakeholder mapping to determine who are the main stakeholders in this project and what are their main priorities? In which areas will these stakeholders have agreements or disagreements? What might their values be, and how do those inform priorities?
3. Discussion: What key information about the property is important for choosing a heating system? What does the word feasibility mean and how would you define it for this project?
4. Activity: Research the Energy Performance Certificate (EPC): what are the main factors that determine the energy performance of a building?
5. Discussion: What do you consider to be an ‘acceptable’ EPC rating? Is the EPC rating a suitable measure of energy efficiency? Who should decide, and how should the rating be determined?
Technical pre-reading for Part one:
It is useful to introduce the thermodynamic principles on which heat pumps operate in order to better understand the advantages and limitations when applying this engineering technology in a real-world situation. A heat pump receives heat (from the air, ground, or water) and work (in the form of electricity to a compressor) and then outputs the heat to a hot reservoir (the building you are heating). We recommend covering:
the second law of thermodynamics and how a heat pump works;
Dilemma – Part one – Considering heat pump suitability:
You have determined who the main stakeholders are and how to define the project feasibility. A previous investigation commissioned by the council into the existing housing stock, and one of the key drivers for them to initiate this project, has led them to believe that most properties will not require significant retrofitting to make them suitable for heat pump installation.
Optional STOP for question and activities:
1. Activity: Research how a conventional gas boiler central heating system works. How does a heat pump heating system differ? What heat pump technologies are available? What are the design considerations for installing a heat pump in an existing building?
Dilemma – Part two – Inconsistencies:
You spot some inconsistencies in the original investigation that appear to have been overlooked. On your own initiative, you decide to perform a more thorough investigation into the existing housing stock within the local authority. Your findings show that most of the dwellings were built before 1980 and less than half have an EPC rating of C or higher. The poor energy efficiency of the existing housing stock causes a potential conflict of interest for you: there are a significant number of properties that would require additional retrofitting to ensure they are suitable for heat pump installation. Revealing this information to the council at this early stage could cause them to pull out of the project entirely, causing your company to lose a significant client. You present these findings to your line manager who wants to suppress this information until the company has a formal contract in place with the council.
Optional STOP for question and activities:
1. Discussion: How should you respond to your line manager? Is there anyone else you can go to for advice? Do you have an obligation to reveal this information to your client (the council) when it is they who overlooked information and misinterpreted the original study?
2. Activity: An example of a factor that causes a poor EPC rating is how quickly the property loses heat. A common method for significantly reducing heat loss in a home is to improve the insulation. Estimate the annual running cost of using an air-source heat pump in a poorly-insulated versus a well-insulated home to look at the potential financial impact for the tenant (example approach shown in the Appendix, Task A).
3. Discussion: What recommendations would you make to the council to ensure the housing is heat-pump ready? Would your recommendation change for a new-build property?
Dilemma – Part three – Impact of energy costs on the consumer:
Your housing stock report was ultimately released to the council and they have decided to proceed, though for a more limited number of properties. The tenants of these dwellings are important stakeholders who are ultimately responsible for the energy costs of their properties. A fuel bill is made up of the wholesale cost of energy, network costs to transport it, operating costs, taxes, and green levies. Consumers pay per unit of energy used (called the unit cost) and also a daily fixed charge that covers the cost of delivering energy to a home regardless of the amount of energy used (called the standing charge). In the UK, currently the price of natural gas is the main driver behind the price of electricity; the unit price of electricity is typically three to four times the price of gas.
Your next task is to consider if replacing the gas boiler in a property with a heat pump system will have a positive or negative effect on the running costs.
Optional STOP for questions and activities:
1. Activity: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler (see Appendix Task B for an example approach).
2. Discussion: Energy prices are currently rising and have seen drastic changes in the UK over the past year. The lifetime of a new heat pump system is around 20 years. How would rising gas and electric prices affect the tenant? Does this impact the feasibility of using a gas boiler versus a heat pump? How can engineering knowledge and expertise help inform pricing policies?
Dilemma – Part four – Tenants voice concerns:
After a consultation, some of the current tenants whose homes are under consideration for heat pump installation have voiced concerns. The council is planning to install air-source heat pumps due to their reduced capital cost compared to a ground-source heat pump. The tenants are concerned that the heat pump will not significantly reduce their fuel bills in the winter months (when it is most needed) and instead could increase their bills if the unit price and standing charge for electricity continue to increase. They want a guarantee from the council that their energy bills will not be adversely affected.
Optional STOP for questions and activities:
1. Discussion: Why would air-source heat pumps be less effective in winter? What are the potential effects of increased energy bills on the tenants? How much input should the tenants have on the heating system in their rented property?
2. Discussion: Do the council have any responsibility if the installation does result in an increased energy bill in the winter for their tenants? Do you and your company have any responsibility to the tenants?
Dilemma – Part five – The council consultation:
The council has hosted an open consultation for private homeowners within the area that you are involved in. They want to encourage owners of private dwellings to adopt low-carbon technologies and are interested in learning about the barriers faced and what they can do to encourage the adoption of low carbon-heating technologies. The ownership of houses in the local area is similar to the overall UK demographic: around 20% of dwellings are in the social sector (owned either by the local authority or a housing association), 65% are privately owned, and 15% are privately rented.
Optional STOP for questions and activities:
1. Activity: Estimate the lifetime cost of running an air-source heat pump and ground-source heat pump versus a natural gas boiler. Include the infrastructure costs associated with installation of the heating system (see Appendix Task C for an example approach). This can be extended to include the impact of increasing energy prices.
2. Activity: Research the policies, grants, levies, and schemes available at local and national levels that aim to encourage uptake of net zero heating.
3. Discussion: From your estimations and research, how suitable are the current schemes? What recommendations would you make to improve the uptake of zero carbon heating?
Dilemma – Part six – Recommendations:
Energy costs and legislation are important drivers for encouraging homeowners and landlords to adopt clean heating technologies. There is a need to weigh up potential cost savings with the capital cost associated with installing a new heat system. Local and national policies, grants, levies, and bursaries are examples of tools used to fund and support adoption of renewable technologies. Currently, an environmental and social obligations cost, known as the ‘green levies,’ are added to energy bills which contribute to a mixture of social and environmental energy policies (including, for example, renewable energy projects, discounts for low-income households, and energy efficiency improvements).
Your final task is to think more broadly on encouraging the uptake of low-carbon heating systems in private dwellings (the majority of housing in the UK) and to make recommendations on how both councils locally and the government nationally can encourage uptake in order to reduce carbon emissions.
Optional STOP for questions and activities:
1. Discussion: In terms of green energy policy, where does the ethical responsibility lie – with the consumer, the local government, or the national government?
2. Discussion: Should the national Government set policies like the green levy that benefit the climate in the long-term but increase the cost of energy now?
3. Discussion: As an employee of a private company, to what extent is the decarbonisation of the UK your problem? Do you or your company have a responsibility to become involved in policy? What are the advantages or disadvantages to yourself as an engineer?
Appendix:
The three tasks that follow are designed to encourage students to practise and improve their zeroth order approximation skills (for example a back of the envelope calculation). Many simplifying assumptions can be made but they should be justified.
Task A: Impact of insulation
Challenge: Estimate the annual running cost for an air-source heat pump in a poorly insulated home. Compare to a well-insulated home.
Base assumptions around the heat pump system and the property being heated can be researched by the student as a task or given to them. In this example we assume:
The air source heat-pump has a COP of 2.5
The air-source heat pump runs for 8 hours a day to maintain a temperature of 21 °C
The average UK property size is 82 m2
A poorly insulated property (Victorian, single-glazed, no loft insulation) has an average heat loss of 110 W/m2
A well-insulated property (recent new build, post-2006) has an average heat loss of 30 W/m2
The unit price of electricity is 33.8 p per kWh
Example estimation:
1. Estimate the overall heat loss for a poorly- and well-insulated property.
Note: heat loss is greater in the poorly insulated building.
2. Calculate the work input for the heat pump.
Assumption: heat pump matches the heat loss to maintain a consistent temperature.
Note: a higher work input is required in the poorly insulated building to maintain a stable temperature.
3. Determine the work input over a year.
Assumption: heat pump runs for 8 hours per day for 365 days.
4. Determine the running cost
For an electricity unit price of 33.8 p per kWh.
Note: running cost is higher for the poorly insulated building due to the higher work input required to maintain temperature.
Task B: Annual running cost estimation
Challenge: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler.
Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume:
The building requires 15,000 kWh for heating every year
A boiler has an efficiency of 85 %
An air-source heat pump (ASHP) has a COP of 2.5
A ground-source heat pump (GSHP) has a COP of 4.0
Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount:
Domestic energy tariffs
Electric standing charge
51.0p per day
Unit price of electricity
33.8p per kWh
Gas standing charge
26.8p per kWh
Unit price of gas
10.4p per kWh
Example estimation:
1. Calculate the annual power requirement for each case.
Assumed heating requirement is 15,000 kWh for the year.
2. Calculate the annual cost for each case:
Note: the higher COP of the ground-source heat pump makes this the more favourable option (dependent on the fuel prices).
Task C: Lifetime cost estimation
Challenge: Estimate the total lifetime cost for a property when using a heat pump versus a natural gas boiler.
Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume:
Identical assumptions to Task B on the heating requirement (15,000 kWh), boiler efficiency (85%), and heat pump COP (2.5 for air-source and 4.0 for ground-source)
The average boiler lifetime is 10 years
The average heat pump lifetime (air-source and ground source) is 20 years
The infrastructure cost for boiler installation is £1,500, for an ASHP is £7,000, and for a GSHP is £14,000
Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount:
Domestic energy tariffs
Electric standing charge
51.0p per day
Unit price of electricity
33.8p per kWh
Gas standing charge
26.8p per kWh
Unit price of gas
10.4p per kWh
1. Calculate the lifetime running cost for each case.
2. Calculate the total lifetime cost for each case.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Diana Martin (Eindhoven University of Technology); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Topic: Participatory approaches for engaging with a local community about the development of risky technologies.
Engineering disciplines: Nuclear engineering; Energy; Chemical engineering.
Ethical issues: Corporate Social Responsibility; Risk; Accountability; Respect for the Environment.
Professional situations: Conflicts of interest; Public health and safety; Communication.
Educational level: Advanced.
Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.
Learning and teaching notes:
This case study involves an early career engineer tasked with leading the development of plans for the construction of the first nuclear plant in a region. The case can be customised by instructors when specifying the name of the region, as to whether the location of the case study corresponds to the location of the educational institution or if a more remote context is preferred. The case incorporates several components, including stakeholder mapping, participatory methods for assessing risk perception and community engagement, qualitative risk analysis, and policy-making.
The case study asks students to identify and define an open-ended risk problem in engineering and develop a socially acceptable solution, on the basis of limited and possibly contradictory information and differing perspectives. Additionally, students can gain awareness of broader responsibilitiesof engineers in the development of risky technologies, as well as the role of engineers in public debates and community engagement related to the adoption or development of risky technologies.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
apply their ethical judgement to a case study focused on the adoption of a risky technology;
understand the national and supranational policy context related to the development of novel technologies;
analyse engineering risks related to the development of a novel technology;
investigate the risk perception of the population about the development and operation of a risky technology;
debate how to factor risks as well as community preferences and risk perceptions into decision-making related to the development and operation of a risky technology;
identify the key stakeholder groups in the adoption and operation of risky technology in a local and national setting;
reflect on how risks may differ for different demographic groups and identify the stakeholder groups most vulnerable to the negative effects of risky technologies;
propose methods for communicating and engaging with stakeholders during the adoption, development and operation stages of a risky technology.
Teachers have the opportunity to:
introduce a range of ethical considerations related to risk, risk perception and responsibility;
create a theoretical context for applying methods for qualitative risk analysis, stakeholder mapping and engagement;
provide an opportunity for group reflection and debate on the topic of a contested and polarising technology;
present the link between novel technologies and national or supranational targets and plans towards climate neutrality;
adapt the range and complexity of issues to the characteristics and levels of the class.
You are an early career engineer working in the civil nuclear industry for Ultra Nuclear. This is a major company overseeing the construction of new power stations that has a strong reputation as a leader in the field with no controversies associated with its activity. Indeed, you have been impressed with Ultra Nuclear’s vision that the transition to using more nuclear energy can significantly reduce carbon emissions, and their development of next-generation nuclear technologies. After two years of working on the strictly technical side of the business, you have been promoted to a project manager role which requires you to do more public engagement. Your manager has assigned your first major project which involves making the plans for the development of a new power plant.
Optional STOP for questions and activities:
1. Activity:Societal context – What is the context in which Ultra Nuclear operates? Identify the national and supranational policies and regulation in your country related to the adoption of nuclear energy. Reflect on the broader rationale given for the adoption of nuclear energy. Research the history of nuclear technological developments (including opposition and failures) in your country. When tracing the context, you may consider:
What is your country’s policy on nuclear energy?
What are your country’s main sources of energy?
What are your country’s targets for climate neutrality?
Will this target be reached?
What is the current and projected level of emissions?
How do these national targets fit with EU targets or targets of major economies?
2. Discussion: Personal values – What is your initial position on the adoption of nuclear energy? What are the advantages and disadvantages that you see for the adoption of nuclear energy in your country? What alternatives to nuclear energy do you deem more suitable and why?
3. Discussion: Risk perception – How do you perceive the risk of nuclear energy? How do your family and friends see this risk? How is nuclear energy portrayed in the media? Do you see any differences in how people around you see these risks? Why do you think this is so?
4. Activity: Risk mapping – Using a qualitative risk matrix, map the risks of a nuclear power plant.
Dilemma – Part two:
As it happens, this will be the first power plant established in the region where you were born, and your manager counts on your knowledge of the local community in addition to your technical expertise. To complete your project successfully, you are expected to ensure community approval for the new nuclear power plant. In order to do this, you will have to do some research to understand different stakeholders and their positions.
Optional STOP for questions and activities:
1. Activity:Stakeholder mapping – Who are all the groups that are involved in the scenario?
1.a. Activity:Read the article bySven Ove Hansson, which puts forward a method for categorising stakeholders as risk-exposed, beneficiaries, or decision-makers (including overlaps of the three categories). Place each stakeholder group in one of these categories.
1.b. Discussion:Why are some groups risk-exposed, others beneficiaries, and others decision-makers? Why is it undesirable to have stakeholder groups solely in one of the categories?
1.c. Discussion: What needs to change for some stakeholder groups to be not only in the category of risk-exposed, but also in the category of beneficiaries or decision-makers?
2. Activity: Stakeholder mapping– How does each stakeholder group view nuclear energy? For each stakeholder group identified, research the arguments they put forward, their positions and preferences in regard to the adoption of nuclear energy. In addition to the stakeholder groups previously identified, you may consider:
The Green party
Other political parties
Member of the public
Local residents
Advocates of other sources of energy
Environmental groups and activists (such as Extinction Rebellion, including local chapters, if they exist)
Human rights activists
Power plant workers
The Union of Concerned Scientists
Climate change deniers
The Ultra Nuclear company
Any other stakeholder?
For your research, you may consult the webpage of the stakeholder group (if it exists); any manifesto they present; mass media features (including interviews, podcasts, news items or editorials); flyers and posters.
3. Discussion: How convincing are these arguments according to you? Do you see any contradictions between the arguments put forward by different groups?
3.a. Discussion: Which group relies most on empirical data when presenting their position? Which stakeholders take the most extreme positions, according to you (radical either against or for nuclear energy), and why do you think this is so?
3.b. Discussion: In groups of five students, rank the stakeholders from those that provide the most convincing to the least convincing arguments, then discuss these rankings in plenary.
3.c. Roleplay (with students divided into groups): Each group is assigned a stakeholder, and gets to prepare and make the case for why their group is right, based on the empirical data and position put forward publicly by the group. The other groups grade on different criteria for how convincing the group is (such as 1. reliability of data, 2. rhetoric, 3. soundness of argument).
4. Guest speaker activity:The instructor can invite as a guest speaker a representative of one of the stakeholder groups to talk with students about the theme of nuclear energy. Students can prepare a written reflection after the session on the topic of “What I learned about risks from the guest speaker” or “What I learned about my responsibility as a future engineer in regard to the adoption of nuclear energy.”
Dilemma – Part three:
You arrive at the site of the intended power plant. You are received with mixed emotions. Although you are well liked and have many friends and relatives here, you are also warned that some residents are against the plans for the development of nuclear energy in the area. Several people with whom you’ve had informal chats have significant concerns about the power plant, and whether their health or safety will be negatively affected. At the same time, many people from the surrounding area do not yet know anything about the plans for building the nuclear site. In addition, in the immediate vicinity of the power plant site, the community hosts a small number of refugees who, having just arrived, are yet to be proficient in the language, and whose communication relies mostly on a translator. How will you ensure that this community is well informed of the plans for developing the power plant in their region and approves the plans of Ultra Nuclear? How will you engage with the community and towards what aims?
Optional STOP for questions and activities:
1. Activity: Research empirical data on the risk awareness and risk perception of public attitudes about nuclear energy, and sum up any findings that you find interesting or relevant for the case study.
1.a. Discussion: According to you, is risk awareness and perception the same thing? How do they differ as concepts? Considering the research you just did, is there a relation between people’s risk awareness and perception? What does this imply?
1.b Discussion: Do you identify any differences in the risk perception of the public (based on gender, age, geographical location, educational level)? Why do you think this is so?
1.c. Discussion: Does the public see the same risks about nuclear energy as technical experts do? Why is this so?
The entire island of Ireland, comprising The Republic of Ireland and Northern Ireland (part of the UK), has never produced any electricity from nuclear power stations. Previous plans have been opposed as early as the 1970s through large public rallies, concerts, and demonstrations against the production of nuclear energy on the island. At the time, Carnsore Point was proposed as a site for the development of four nuclear reactors by the Electricity Supply Board. Public opposition led to the cancelling of this nuclear project and its replacement with a coal burning power station at Moneypoint. Since the 2000s there has been a renewed interest in the possibilities for producing nuclear energy on the island, in response to climate change and the need to ensure energy security. Surveys for identifying public acceptance and national forums have been proposed as ways to identify current perceptions and prospects for the development of nuclear energy. Nevertheless, nuclear energy in the Republic of Ireland is still prohibited by law, through the Electricity Regulation Act (1999). Nuclear energy is currently a contentious topic of debate, with many involved parties holding varying positions and arguments.
Example of stakeholders: The Irish government; the UK government; political parties; electricity supply board (state owned electricity company); BENE – Better Environment with Nuclear Energy (lobby group); Friends of the Irish Environment (environmental group), Friends of the Earth – Ireland (environmental group); The Union of Concerned Scientists; Wind Aware (lobby group); local community (specified further based on demographic characteristics, such as the Traveller community); scientists in the National Centre for Plasma Science & Technology at Dublin City University (university researchers).
Sources used for the description of the roles: Policy documents; official websites; institutional or group manifestos; news articles, editorials and other appearances in the media.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.