This month marked a milestone for the engineering education community, as the EPC and E-DAP launched their practical, step-by-step Deaf Awareness Toolkit* to a wider audience for the first time.

Designed for engineers at all career stages, the toolkit offers practical training to build inclusive skills, implement meaningful measures, and encourage open participation, ultimately improving engineering outcomes through greater accessibility and communication.

 

Breaking new ground in Engineering inclusion

Hosted by EPC CEO Johnny Rich, the toolkit’s accompanying webinar ‘Being heard: How everyone benefits from deaf awarenessbrought together over 50 attendees from more than 29 institutions. It marked the first time the UK engineering community has come together in this way to explore how deaf awareness can unlock stronger communication, collaboration and innovation across the sector.

The panel featured voices from RNID, the EPC, E-DAP and professionals with lived experience, offering engineers practical, experience-led guidance grounded in real-world insight—not just theory.

 

Closed captions: a simple shift, a big impact

One key takeaway is that closed captions do more than support communication. They encourage presenters to structure content more clearly, making complex ideas easier to follow. This is especially important in engineering, where technical information needs to be communicated accurately across classrooms, meetings, and fast paced R&D environments.

Lucia Capogna (E-DAP) showed just how simple this can be in practice, giving a live demonstration of how to activate captions in PowerPoint. It is a small shift that can make a big difference, and it is easier to implement than many people realise.

 

Key messages from the panel

Frankie Garforth (RNID)
Frankie addressed widespread misconceptions around deafness, hearing loss and tinnitus, reminding us that over 18 million people in the UK are affected. “You’ll know people living with this,” she said. “It’s good to support them.” She highlighted how deaf-aware technologies like closed captions can significantly improve communication – often in ways people don’t realise until they experience it first hand.

Dr. Sarah Jayne Hitt (EPC)
Sarah Jayne emphasised that some of the most impactful accessibility technologies are already freely available. Many were showcased earlier in the webinar, and others can be explored via the EPC website. These tools, she explained, complement the learning that happens through real human connection – like her own journey learning ASL from a school teacher and later embedding deaf awareness in everyday university life.

Ellie Haywood (E-DAP)
Ellie shared how she took personal responsibility to embed deaf awareness into her workplace a few years ago. Her goal: to make accessibility part of the default way her team operated, so no one would need to ask for special measures. The impact was immediate – improving team efficiency and communication well beyond the deaf community. This inclusive approach proved particularly effective in high-tech R&D projects.

 

Pilot and student feedback

E-DAP piloted the Deaf Awareness Toolkit with nearly 500 first-year students across civil, mechanical and other engineering disciplines. Feedback was overwhelmingly positive, particularly among non-native English speakers, who reported being better able to follow lectures and understand the content.

One simple innovation, using a blank PowerPoint slide during Q&A, made a big difference in helping students catch questions that might otherwise be lost in the noise of a busy classroom.

Survey responses showed nearly two-thirds of students felt neutral to strongly positive about captions and wanted to see them used more widely.

 

Resources and tools available now

The Deaf Awareness Toolkit is designed to help educators and engineers improve everyday communication and inclusion. It includes:

 

Beyond communication: safety, inclusion and culture

Deaf awareness goes beyond communication. In engineering environments, visual alarms and clear auditory cues support safety. Inclusive meeting behaviours, accessible research environments, and awareness of hearing health can all contribute to a more inclusive and effective working culture. Clear communication isn’t just a benefit for deaf individuals, it supports better outcomes for everyone.

 

The vision: One Million Engineers

This is just the beginning. Our goal is to engage one million engineers with accessibility.

With the EPC platform reaching 7,500 engineering academics across 82 institutions, and 179,000 students enrolled in those institutions, we are taking our first steps towards that vision.

Accessibility isn’t an optional extra. It’s a core part of engineering education and inclusion that we want to instil in future engineers.

 

What’s next

E-DAP and the EPC are now working together to embed deaf awareness more deeply into engineering practice and culture. Future activities will include:

 

*E-DAP’s Role as an Ally

E-DAP is an active ally to the Deaf and deaf communities. We do not speak for them, but work in partnership with experts, advocates, and individuals with lived experience to improve awareness and inclusion in engineering and education.

We collaborate with the community to learn and co-create. Our goal is to support engineering innovation by enabling better communication for everyone, and to implement inclusion in engineering through technology, tools, learning, and partnerships that embed inclusive practices and create lasting change.

A Note on Language

Language matters. Whether someone identifies as Deaf, deaf, has hearing loss or tinnitus, they are all individuals, and respectful language helps create more inclusive spaces. If you’re unsure how to phrase something, ask. It’s always better to check than assume. Helpful guidance on terminology is available from the RNID.  

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Overview

The Engineering Deaf Awareness Project (E-DAP) is a pioneering initiative dedicated to making deaf awareness a standard in engineering. E-DAP is a movement for meaningful, measurable change in the number of people who proactively use accessibility tech in their daily lives, supporting everyone around them. By embedding accessibility into the fabric of engineering, E-DAP is breaking down barriers, changing perceptions and creating a future where engineering truly works to make everyone’s lives more effective

Imagine a world where talented individuals and dynamic growth oriented companies are turbo charged by removing barriers in communication and understanding. In engineering—a field where communication is critical to innovation, being proactive and embedding accessibility at the norm is critical. At E-DAP, we believe technology for accessibility is the foundation for accessibility and increased performance and ground-breaking ideas. By fostering technology for accessibility and increased performance, we’re not just improving workplaces—we’re demonstrating how inclusivity fuels economic growth, creativity, collaboration and benefits everyone.

The EPC has published E-DAP resources in a toolkit in solidarity with the Project’s aims.

 

Mission and Strategic Aims

E-DAP’s mission is to embed deaf awareness into the core of engineering practices, ensuring that the profession is accessible and for all . Our strategic aims include:

 

Challenges

The engineering sector has historically faced challenges in creating inclusive environments for deaf individuals, including:

 

Initiatives and Activities

To address these challenges, E-DAP is implementing several key initiatives:

 

Toolkit Content

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

PowerPoint Subtitles Guidelines

 

1. Benefits of subtitles

 

2. Main steps

STEP 1: Activate the subtitles (See section 3)

STEP 2: Customise your settings (See section 4)

2.1. Select the language to be used
2.2. Select the subtitles position
2.3. Customise subtitles appearance (background, text size and colour)

STEP 3: Create your slide to leave room for the subtitles in line with your settings (avoid overlapping)

Note 1: You need to be connected to the internet for the subtitles to work.
Note 2: You need to change your security settings to authorise PowerPoint to access the microphone.
Note 3: You do not have to customise your settings for each presentation unless you wish to change something.

 

3. How do you activate the subtitles?

Open PowerPoint and on the main task bar select “Slide show” and tick “Always Use Subtitles” on the ribbon:

 

4. Subtitles settings

When activated, you can customise the subtitles:

 

Subtitles position

“Below slide” and “Above slide”

If one of the following options is selected

● Below slide
● Above slide

you do not have to worry about the subtitle background overlapping with slide content. However, the overall dimension of the projected slide will be reduced, so please check that it is still ok.

The examples below show the difference between “Bottom (Overlaid)” and “Below slide”.

Bottom (Overlaid)

 

Below slide

 

“Bottom (Overlaid)” and “Top (Overlaid)”

Important: If you select one of the following options

● Bottom (Overlaid)
● Top (Overlaid)

you will need to prepare your slides to leave room for the subtitles in line with your settings, and change the subtitle settings to improve visibility (see “Subtitles” > “More settings”).

The example below uses “Bottom (Overlaid)” and default settings for text and background.

On the above example we can see that the subtitles overlap with both the logo and the contents of the slide, making the visibility poor. In addition, the size of the subtitles text appears to be quite small.

The following example shows how the settings may provide better visibility of the subtitles and the contents of the slide.

More settings: Text size and colour, background colour and transparency

1) Change the settings to use a “Large Text” or “Extra Large Text” and colours that improve visibility (e.g. yellow on solid black)

2) If you cannot rework the master slides and move the logo, select a solid background to provide more visibility to the subtitles. (Although you will make the logo less visible, this should give a better experience to the people attending the presentation.)

 

Subtitles background colour

How can the slide background influence the colour of the subtitles background and text colour?

What colour is the slide background?

If the slide background is white or a light colour, you should consider using a dark colour as subtitle background to create the right level of contrast and improve the visibility of the subtitles. Similarly, if the slide background is black or another dark colour, you should consider using a light colour as subtitle background.

The subtitles text colour should in turn be in contrast with the subtitles background colour.

Where is the logo? Are the subtitles overlapping with the logo? Can you re-work the master slides and move it?

If you cannot move the logo, you may want to consider this:

The subtitle background is not a solid colour by default, but has a certain degree of transparency. This may still be ok if there are no other objects (like a logo) under the subtitles background. Otherwise, you may need to update this setting to have a solid colour as background.

 

5. Guidance scope and feedback

Thank you for reading this guide and for your interest in E-DAP. We hope that this guide will help you to implement deaf awareness practises.

If you’d like to be involved in any further E-DAP led events, training materials or to join the E-DAP mailing list, please complete the form via the link below or scan the QR code.

Your feedback is important to us, as it allows us to improve our events and materials for others. Please provide your feedback on this guideline and on the subtitles usage by completing the following form:

Link to form

 

Additionally, to find out more about E-DAP or to contact us, find us on LinkedIn.

You can also downloaded this guide here.

Also see How to add subtitles in PowerPoint: Demo video.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This content is published under a Creative Commons Attribution 4.0 International license.

Also see How to add subtitles in PowerPoint: Guidelines.

 

 

 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This content is published under a Creative Commons Attribution 4.0 International license.

Here you will find additional resources related to the deaf awareness.

 

E-DAP resources

 

EPC/E-DAP resources

 

Ellie Hayward blogs 

 

RNID resources

 

Other resources

 

Got a relevant resource to share? Email w.attwell@epc.ac.uk

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

At the Engineering Professors Council (EPC), we believe that inclusivity should be embedded into the heart of engineering education. One of the key areas where this is essential is supporting individuals who are deaf or hard of hearing. We are proud to be a supporter of the the Engineering Deaf Awareness Project (E-DAP), a pioneering initiative established by Dr. Emma Taylor, focused on making Deaf Awareness a standard practice within engineering, both in academia and industry.

Why This Matters in Engineering Education and Workplace Settings. 

A recent study by the University of Manchester and University of Nottingham, published in the International Journal of Audiology revealed that deafness and hearing loss affects 18 million people in the UK—around one-third of adults. Despite its prevalence, many educational institutions and industries, including engineering, face challenges in making environments fully accessible to deaf or hard of hearing individuals. The E-DAP project highlights a crucial issue: without deaf awareness, talented engineering students and professionals face significant barriers that limit their ability to contribute fully in all aspects of their daily personal, academic and professional lives.

Gaining Momentum

The E-DAP has gained significant momentum through increased collaboration and has expanded its reach, engaging a wider audience in conversations about accessibility in engineering. This growth culminated in a recent visit to Google’s Accessibility Discovery Centre (ADC) in London, where next generation Engineering Leaders Scholarship (ELS) awardees from the Royal Academy of Engineering joined forces with a diverse community to explore how technology can drive meaningful change. 

Hackathon Innovating for Deaf Awareness at Google’s Accessibility Discovery Centre (ADC)

At the ADC, the team toured the latest tech and heard a keynote presentation by award-winning EDI lead Maria Grazia Zedda, followed by a hackathon focused on developing new ideas for accessible tech in engineering. 

The hackathon hosted by Ellie Hayward (leading in implementing deaf awareness in start-up environments) and judged by Royal Academy of Engineering Visiting Professor Dr. Emma Taylor, brought together the best next generation engineering minds to tackle real-life deaf accessibility challenges.

Working in pairs, they focused on how they could develop technologies to break down barriers and develop integrated technology support for deaf individuals, in both academic and professional environments. The hackathon participants came from diverse engineering disciplines (biomedical, aerospace, software, manufacturing, mechanical, structural and spacecraft) and included;  

The team was supported by Stella Fowler and Professor Sarah Hitt of the Engineering Professors Council. Stella is also an Honorary Research Fellow at UCL and Sarah is Professor of Liberal Studies at NMITE, which focuses on a real-world, holistic and contextual approach to engineering. 

The team also benefited from valuable advice and sustained support provided by RNID, a Google ADC partner, whose expertise supported the accessibility focus of the hackathon. For further insights on fostering inclusive environments, RNID’s guidelines on accessible meetings are an essential resource.

The hackathon sparked a wide range of innovative ideas, inspired by the ADC visit and Maria’s keynote speech, and these will be further refined in a future hackathon later this year. 

Looking Forward

In the coming months, the E-DAP will collaborate on a series of outputs including hackathons, a webinar and the development of a manifesto for change outlining key recommendations for integrating deaf awareness into education and industry. It’s evident that the momentum of the E-DAP will continue to build, with a strong focus on two key areas;

A Shared Vision for Change

At the EPC, we recognise inclusivity benefits everyone. By supporting the E-DAP, we aim to create an environment where all can thrive and contribute to the future of engineering. Together, we can ensure that deaf awareness is not just an initiative but a standard practice in our field. We look forward to bringing more updates to the EPC community over the coming months.

Read our Engineering Ethics Toolkit blog Embedding ethics in engineering education through wide use of deaf awareness: a gateway to a more inclusive practice and see our Engineering Deaf Awareness Project (E-DAP) Toolkit.

This post is also available here.

Dr Emma A Taylor, founder of the Engineering Deaf Awareness Project (E-DAP), Royal Academy of Engineering Visiting Professor, Cranfield University, and Professor Sarah Jayne Hitt, PhD SFHEA, NMITE, Edinburgh Napier University, discuss embedding ethics in engineering education through wide use of deaf awareness: a gateway to a more inclusive practice.

“An ethical society is an inclusive society”. This is a statement that most people would find it hard to disagree strongly with. As users of the EPC’s Engineering Ethics Toolkit and readers of this blog we hope our message is being heard loud and clear.

But hearing is a problem:

One in five adults in the UK are deaf, have hearing loss or tinnitus. That is 12 million adults or 20% of the population. In the broader context of‘ ‘communication exclusion’ (practices that exclude or inhibit communication), this population figure may be even larger, when including comprehension issues experienced by non-native speakers and poor communication issues such as people talking over one another in group settings such as during meetings.

This ‘communication exclusion’ gap is also visible in an education context, where many educators have observed group discussion and group project dynamics develop around those who are the most dominant (read: loudest) communicators. This creates an imbalanced learning environment with the increased potential for unequal outcomes. Even though this ‘communication exclusion’ and lack of skills is such a huge problem, you could say it’s hidden in plain sight. Identification of this imbalance is an example of ethics in action in the classroom.

Across all spheres, we suggest that becoming deaf aware is one way to begin to address communication exclusion issues. Simple and practical effective tips are already widely disseminated by expert organisations with deep in the field experience (see list of resources below from RNID). Our collective pandemic experience took us all a great step forward in seeing the benefits of technology, but also in understanding the challenges of communicating through the barriers of technology. As engineering educators we can choose to become more proactive in using tools that are already available, an action that supports a wider range of learners beyond those who choose to disclose hearing or understanding related needs. This approach is inclusive; it is ethical.

And as educators we propose that there is an even greater pressing need to amplify the issue and promote practical techniques towards improving communication. Many surveys and reports from industry have indicated that preparing students for real world work environments needs improving. Although they often become proficient in technical skills, unless they get an internship, students may not develop the business skills needed for the workplace. Communication in all its forms is rightly embedded in professional qualifications for engineers, whether EngTech, IEng, CEng or other from organisations such as the UK’s Engineering Council.

And even when skills are explicitly articulated in the syllabus and the students are assessed, much of what is already being taught is not actually being embedded into transferable skills that are effectively deployed in the workplace. As education is a training ground for professional skills, a patchy implementation of effective and active practice of communication skills in the education arena leads to variable skill levels professionally.

As engineers we are problem solvers, so we seek clarification of issues and derivation of potential solutions through identification and optimisation of requirements. The problem-solving lens we apply to technology can also be applied to finding ways to educate better communicators. The “what” is spoken about in generic terms but the “how”, how to fix and examine root causes, is less often articulated.

So what can be done? What is the practical framework that can be applied by both academics and students and embedded in daily life? And how can deaf awareness help get us there?

Our proposal is to work to embed and deploy deaf awareness in all aspects of engineering education. Not only because it is just and ethical to do so, but because it can help us see (and resolve) other issues.  But this won’t, and can’t, be done in one step. Our experience in the field shows that even the simplest measures aren’t broadly used despite their clear potential for benefit. This is one reason why blogs and toolkits like this one exist: to help educators embed resources and processes into their teaching practice.

It’s important to note that this proposal goes beyond deaf awareness and is really about reducing or removing invisible barriers that exist in communication and education, and addressing the communication problem through an engineering lens. Only when one takes a step back with a deaf awareness filter and gets the relevant training, do your eyes (and ears) open and see how it helps others. It is about improving the effectiveness of teaching and communication.

This approach goes beyond EDI principles and is about breaking barriers and being part of a broader student development approach, such as intellectual, emotional, social, and personal growth. The aim is to get students present and to be in the room with you, during the process of knowledge transfer.

As we work on making our engineering classrooms better for everyone, we are focusing on understanding and supporting students with hearing impairments. We are taking a step back and getting re-trained to have a fresh perspective. This helps us see things we might have missed before. The goal is not just to be aware but to actually improve how we teach and communicate.

We want our classrooms to be inclusive, where everyone’s needs are considered and met. It is about creating an environment where all our students, including those with hearing impairments, feel supported and included in the learning process. And stepping back and taking a whole human (“humanist”) view, we can define education as an endeavour that develops human potentialnot just an activity that produces nameless faceless quantifiable outcomes or products. As such, initiatives such as bringing forward deaf awareness to benefit broader communication and engagement provide a measurable step forward into bringing a more humanistic approach to Engineering Education.

So what can you do?

Through the EPC’s growing efforts on EDI, we welcome suggestions for case studies and other teaching materials and guidance that bring together ethics, sustainability and deaf awareness (or other issues of inclusivity).

We’re pleased to report that we are aiming to launch an EDI Toolkit project soon, building on the work that we’ve begun on neurodiversity. Soon we’ll be seeking  people to get involved and contribute resources, so stay tuned! (i.e. “If you have a process or resource that helped your teaching become more inclusive, please share it with us!”).

 

RNID resources list

 

Other resources

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This article is also available here.

Author: Martin Griffin (Knight Piésold Consulting, United Kingdom). 

Keywords: Equity; Equality, diversity and inclusion (EDI); Collaboration; Bias; Social responsibility; Design. 

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for. 

 

Premise:

No engineer is an island; it is not good for an engineer to act in isolation. Rather engineers need to be part of a welcoming community in order to thrive.  How an engineering professional interacts with either other engineers and non-engineers is essential for building a culture and professional environment of collaboration, creating environments where engineers can create meaningful bonds with one another and feel comfortable communicating openly. This requires recognising and understanding how unconscious bias and privileges can create divides and foster negative professional (toxic) environments, and being committed to establishing standards of conduct for and addressing issues related to EDI. There is a great need to advocate for fellow engineers providing places to belong and empowering them to thrive in their chosen profession and career pathways. This includes people who are part of one or more underrepresented groups that have been historically, persistently, and systemically marginalised in society based on their identity, such as race, colour, religion, marital status, family status, disability, sex, sexual orientation, gender identity, and age. 

The Royal Academy of Engineering and EngineeringUK (2018) frequently publish reports on the demographics of engineers and the skills shortage in the workforce.  These reports highlight the under-representation of people from ethnic and minority groups, those with a disability or impairment, or those who are LGBTQ+.  In addition, the Institute of Engineering and Technology  recently reported that only 9% of businesses take particular action to increase underrepresented groups into their workforces.   

Engineering and technology are for everyone. It is morally right to ensure that everyone has equal opportunities and by doing so we can improve our world, shape our future, and solve complex global challenges. In order to accomplish these moral imperatives, we need to include a diversity of talent and knowledge. Furthermore, in the UK we still face a nationwide skills shortage threatening our industry. To address this and ensure the sustainability of our industry we must support equal opportunities for all and be truly inclusive. 

 

The three values: 

The three values of EDI are timeless and should be embedded into the way that engineering professionals act, starting with recognition that the unfair treatment of others exists. This unfair treatment may take the form of bullying, harassment, discrimination (either direct or indirect), victimisation, microaggressions, gaslighting, bias and inequity. An engineer’s role must also include advocating for the support of others in this regard too.  Each of the three values are very different, but all three together are essential to create opportunities for engineers to grow and thrive, and for a productive and creative engineering community to flourish. 

Equity encourages fair processes, treatment, and possibilities for everyone, resulting in an equal playing field for all. It acknowledges that oppressive systems have created varied circumstances for different engineers. By valuing equity, engineers must commit to fairly redistributing resources and power to address inequalities that systems have intentionally or unintentionally created, diminishing the impact of such circumstances and ensuring equitable opportunities.  Equality relates to ensuring engineers and groups are treated fairly and have access to equal opportunities. Note, it should be emphasised that equity is not the same as equality; in the simplest terms, equality means ‘sameness,’ and equity means ‘fairness’.  Thus, equality has become synonymous with ‘levelling the playing field’, whereas equity is synonymous with ‘more for those who need it’. 

Diversity refers to how diverse or varied a particular environment is, be it an engineering consultancy, academic funded research team, interdisciplinary joint venture designing as part of a national megaproject, and so on. Diversity involves professional openness and conscientiousness towards diverse social interactions. Therefore, diversity also involves intentional representation and collaboration with others from different demographic characteristics, identities, and differing experiences. Engineers should feel welcome to be their full self without the need to mask, being able to contribute and bring fresh perspectives where they are in attendance. 

Inclusion refers to a state of conscious belonging, meaning all are respected, empowered, and valued. Inclusivity should therefore be ingrained in an engineer’s daily operations and surrounding culture, being able to feel comfortable being their authentic selves. Inclusion involves extensive representation across roles, levels (grades) and the aforementioned demographic characteristics, recognising who is and is not in the room and the valuable perspectives and experiences they can bring. Inclusion also relates to ensuring all engineers feel valued and supported, where the benefits of creativity, innovation, decision making and problem solving are realised.   

 

Incorporating EDI in engineering education:

It is not possible to place EDI in a box and open it occasionally such as for annual awareness weeks or as an induction week module. It is a lifestyle, a conscious choice, and it needs to be embedded in an engineer’s values, approach and behaviours. Making engineering EDI an integral part of engineering ethics education will not involve an abstract ethical theory of EDI but rather a case-based approach. The teaching of EDI within engineering ethics through case studies helps students consider their philosophy of technology, recognise the positive and negative impact of technology, imagine ethical conduct, and then apply these insights to engineering situations. Moreover, when similar ethical modules have touched students, they are likely to remember the lessons learned from those cases. Several case studies found in the Ethics Toolkit that reference EDI concerns are listed at the end of this article. 

Good contemporary practical examples should be presented alongside case studies to promote and demonstrate why EDI ought to be embedded into a professional engineer’s life. The need to raise awareness, highlight the issues faced, and accelerate inclusion of Black people is provided in the Hamilton Commission report, focusing on all aspects of UK Motorsport including engineering. The importance of gender inclusivity in engineering design and how user-centred practices address this are addressed by Engineers Without Borders UK. Creating accessible solutions for everyone, including those who are disabled, is seen in the ongoing development of Microsoft’s Accessibility Technology & Tools. BP has launched a global framework for action to help them stay on track and progress in a positive way. The further benefits EDI brings to design and delivery in construction engineering are demonstrated by Mott Macdonald.   

Inclusive Engineering (similar to the principles of Universal Design) ensures that engineering products and services are accessible and inclusive of all users. Inclusive Engineering solutions aim to be as free as possible from discrimination and bias, and their use will help develop creative and enlightened engineers. Ethical responsibility is key to all aspects of engineering work, but at the design phase it is even more important, as we can literally be designing biases and discrimination into our technological solutions, thus amplifying existing biases. Recommended guidance is provided within PAS 6463:2022 as part of the engineering design process; this is a new standard written to give guidance on designing the built environment for our neurodiverse society. With the right design and management, it is possible to eliminate, reduce or adjust potentially negative impacts to create places where everyone can flourish equally.  

It is vital to recognise that achieving true equality, diversity, and inclusion is complex and cannot be ‘fixed’ quickly. An engineer must participate in active learning and go on a six stepped journey of self-awareness from being ‘not listening,’ ‘unaware,’ ‘passive,’ ‘curious,’ and ‘ally,’ to ‘advocate.’ A ‘not listening’ attitude involves shaming the unaware, speaking on behalf of others, invalidating others, clumsy behaviours, being bigoted, prejudiced, antagonistic and unwilling to listen and learn. Cultivating an ‘ally’ attitude is being informed and committed, routinely and proactively championing inclusion by challenging accepted norms, and taking sustained action to make positive change. It is for this reason the values of EDI should be part of an engineering professional’s ongoing lifestyle to have any real and lasting effect on engineering environments. 

Therefore, the importance of EDI needs to influence how an engineering professional thinks, acts, includes others and where engineers seek collaborative input. The concept of engineering is far more important than any individual engineer and sometimes engineers need to facilitate opportunities for voices to be heard. This involves respect and empathy to create trusted relationships and the need for self-awareness and self-development. Sometimes this means stepping back so that other engineers can step forward.   

 

Resources and support: 

Specific organisations representing protected characteristics such as InterEngineering have the goal to connect, inform and empower LGBTQ+ engineers.  Likewise, the Women’s Engineering Society (WES) and the Association for Black Engineers (AFBE-UK) provide support and promote higher achievements in education and engineering.  The aforementioned organisations are partnered with the Royal Academy of Engineering to highlight unheard voices, raise awareness of the barriers faced by minority groups, and to maximise impact. Many other umbrella groups, for instance Equal Engineers, also raise awareness of other underrepresented groups, such as the neurodivergent in engineering, by documenting case studies, undertaking surveys, holding regular careers events and annual conferences, and more.   

There is evidence to support the widely accepted view that supporting and managing EDI is a crucial element in increasing productivity and staff satisfaction. Diverse experiences and perspectives bring about diversity of thought which leads to innovation. It allows everybody to be authentic at work and provides the opportunity for diverse voices to be heard. Consequently, implementing EDI has proven to increase performance, growth, and innovation, as well as improvements in health, safety and wellbeing. EDI will therefore help to prepare students with the fundamental attitudes that are needed as practitioners and human beings.  

Finally, engineering with EDI embedded into a professional engineer’s lifestyle will make a difference to those most in need. In a globalised world it will put us in a good position to bring innovation and creativity to some of the biggest challenges we face together. Equitable, diverse and inclusive engineering must be at the heart of finding sustainable solutions to help shape a bright future for all. 

 

References: 

Resources in the Ethics Toolkit that link to EDI: 

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Professor Manuela Rosa (Algarve University). 

Keywords: Societal impact; Equity; Equality, diversity and inclusion (EDI); Design; Justice; Equity; Communication; Global responsibility. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for. 

 

Premise: 

The Declaration on the Rights of Disabled Persons, adopted by the General Assembly of United Nations on 9 December 1975, stipulated protection of the rights of people with disabilities. The United Nations 2030 Agenda for Sustainable Development, a plan of action for people, planet, and prosperity, demands that all stakeholders, acting in collaborative partnership, must recognise that the dignity of the human person is fundamental and so the development of the 17 Sustainable Development Goals must meet all segments of society in a way that “no one will be left behind”.  

In relation to engineering, The Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering in 2005 and revised in 2017, articulates one of its strategic challenges to be positioning engineering at the heart of society, enhancing its wellbeing, improving the quality of the built environment, and promoting EDI. To uphold these principles, engineering professionals are required to promote social equity, guaranteeing equal opportunities to access the built environment and transportation systems, enabling the active participation of all citizens in society, including vulnerable groups. The universal design approach is one method that engineers can use to ensure social sustainability. 

 

The challenges of universal and inclusive design: 

Every citizen must have the same equality of opportunities in using spaces because the existence of an accessible built environment is fundamental to guarantee vitality, safety, and sociability. These ethical values associated with the technical decision-making process were considered by the American architect Ronald Lawrence Mace (1941-1998) who defined the universal design concept as “designing all products, buildings and exterior spaces to be usable by all people to the greatest extent possible” (Mace et al., 1991), thus contributing to social inclusion.  

Universal accessibility according to this universal design approach is “the characteristic of an environment or object which enables everybody to enter into a relationship with, and make use of, that object or environment in a friendly, respectful and safe way” (Aragall et al., 2003). It focuses on people with reduced mobility, such as people with disabilities (mobility, vision, hearing and cognitive dimensions), children and elderly people. Built environment and transport systems must be designed considering this equity attribute which is associated with social sustainability and inclusion. 

The Center for Universal Design of the North Carolina State University developed seven principles of universal design (Connell et al., 1997):  

1. Equitable use 

2. Flexibility in use  

3. Simple and intuitive use  

4. Perceptible information  

5. Tolerance for error  

6. Low physical effort  

7. Size and space for approach and use.    

These principles must always be incorporated in the conception of products and physical environments, so as to create a ‘fair built’ environment, where all have the right to use it, in the same independent and natural way. This justice design must guarantee autonomy in the use of spaces and transport vehicles, contributing to the self-determination of citizens.   

The perceptions of the space users are fundamental to be considered in the design process to achieve the usability of the built environment and transport systems. Pedestrian infrastructure design and modal interfaces demand user-centred approaches and therefore processes of co-design and co-creation with communities, where people are effectively involved as collaborators and participants. 

Achieving an inclusive society is a great challenge because there are situations where the needs of users are divergent: technical solutions created for a specific group of people are inadequate for others. For example, wheelchair users and elderly people need smooth surfaces and, on the contrary, blind people need tactile surfaces.  

Consequently, in the process of universal design, some people can feel excluded because they need other technical solutions. It is then necessary to consider precise inclusive design when projecting urban spaces for all.   

Universal design is linked with designing one-space-suits-almost-all, and inclusive design focuses on one-space-suits-one, for example design a space for everyone (collective perspective) versus design a space for one specific group (particular perspective). As the built environment must be understandable to and usable by all people, both are important for social sustainability. Universal design contributes to social inclusion, but added inclusive design is needed, matching the excluded users to the object or space design.  

In order to promote social inclusion and quality of life, to which everyone is entitled, universal and inclusive co-design of the built environment and the transportation systems demands specific approaches that have to be integrated in engineering education: 

 

Conclusion: 

Universal and inclusive co-design of the built environment and transportation systems must be seen as an ethical act in engineering. Co-design for social sustainability can be strengthened through engineering acts. Ethical responsibility must be assumed to create inclusive solutions considering human diversity, empowering engineers to act and design justice.  

There is a strong need for engineers to possess a set of skills and competencies related to the ability to work with other professionals (for example from the social sciences),  users, or collaborators. In the 21st century, beyond the use of technical knowledge to solve problems, engineers need communication skills to achieve the sustainable development goals, requiring networking, cooperating in teams, and working with communities.  

Engineering education must consider transdisciplinary approaches which make clear progress in tackling urban challenges and finding human-centred solutions. Universal and inclusive co-design must be incorporated routinely into the practice of engineers and assumed in Engineering Ethics Codes.  

 

References: 

Aragall, F. and EuCAN members, (2003) European Concept for Accessibility: Technical Assistance Manual. Luxemburg: EuCAN – European Concept for Accessibility Network.  

Connell, B. R., Jones, M., Mace, R., Mueller, J., Mullick, A., Ostroff, E., Sanford, J., Steinfeld, E., Story, M. and Vanderheiden, G. (1997) The Principles of Universal Design, Version 2.0. Raleigh: North Carolina State University, The Center for Universal Design. USA.  

Mace, R. L., Hardie G. J. and Place, J. P. (1991) ‘Accessible environments: Toward universal design,’ in W.E. Preiser, J.C. Vischer, E.T. White (Eds.). Design Intervention: Toward a More Human Architecture. New York: Van Nostrand Reinhold, pp. 155-180.  

Declaration on the Rights of Disabled Persons. (1975). Proclaimed by G/A/RES 3447 of 9 December 1975. 

United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the United Nations General Assembly on 25 September 2015, New York.  

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The decisions engineers make on a daily basis can have significant consequences for underrepresented and disadvantaged groups in society. Prof Dawn Bonfield, Visiting Professor of Inclusive Engineering at Aston University, Royal Society Entrepreneur in Residence at King’s College London and a member of the EPC’s Engineering Ethics Advisory Group explains…

In the recent ethics report published by the RAEng (1) you might have noticed the explicit references, in an ethics context, to the societal and social justice implications of our engineering solutions that can lead to biased or discriminatory outcomes for different groups of people. This prioritisation of inclusive outcomes is a welcome expansion of the conventional focus of engineering ethics, which is often rooted in issues such as safety, corruption, and competence.

Reference was made in the first page of the report to the use of crash test dummies that have been designed to represent male drivers, leaving women (and pregnant women in particular) at greater risk in car accidents; the potential for algorithms and internet search engines to influence our thoughts on the world; issues arising from facial recognition technology failing to accurately identify those from Black, Asian and Ethnic Minority communities; and the use of artificial intelligence systems that will make safety-critical, legal, and other life changing decisions, which are often based on historical and biased datasets. You can further explore some of the issues with facial recognition technology in one of the ethics case studies produced by the EPC for their RAEng-supported Engineering Ethics Toolkit.

These are all examples of how, as engineers, we can inadvertently create solutions that are biased against minoritized groups of people if we are not careful. This generally occurs as a direct result of the fact that these groups of people are poorly represented in the engineering sector, and so their inputs are missing in the specification, design, and testing of new technologies (2).

But even before we get to a truly diverse engineering workforce, all engineers must be mindful of the ways in which the decisions they take can be discriminatory or can promulgate bias. In situations like the ones mentioned above it is relatively easy to spot the opportunity for discrimination, but in other cases it can be much more difficult. For example, there are ethical implications associated with the sort of ducting that gets chosen for a new building, where one material causes more pollution to socially and economically disadvantaged populations than another. It is in cases like this that a little more thought is required to spot whether the outcomes of these decisions are inclusive and ethical, or not.

Recently, the Covid-19 pandemic has shown us very clearly what the ethical implications are of our built environment decisions and designs, where people living in densely populated and overcrowded urban areas with minimal access to outdoor space have had significantly worse health outcomes than those with access to outdoor and green spaces. Inclusive design of the built environment is now a growing and recognised area of our engineering work, and as well as the more obvious examples of ensuring equitable access to those with disability issues, it also recognises that public spaces should be equitable and accessible to all communities. Everybody needs to see themselves represented in these environments and feel able to use them safely and fully. These are issues of ethics and inclusion, as well as social justice and equality, and the requirement we have as engineers to consider all of these perspectives as the creators of our future world must be a part of our systems engineering mindset. Several of the EPC’s ethics case studies focus on responsibility, equity, and stakeholder engagement, such as the Ageing Pipeline and its Impact on Local Communities case.

The importance of systems, design, iterative thinking, and the focus on ensuring that the whole life cycle of a product, including maintenance, repair, deconstruction, and end of life decommissioning, requires true stakeholder engagement, means that these inclusive outcomes can be considered at the very start of projects, rather than as an afterthought, where any changes are much more difficult and costly to integrate. The strengthening of the Social Value Act (3), which requires people who commission public services to explicitly evaluate how they can secure wider social, economic and environmental benefits, also puts emphasis on ensuring the outcomes of any procurement are inclusive and ethical. Similarly, the Sustainable Development Goals ethos of Leave No One Behind (4) requires that outcomes are considered from all perspectives, and that solutions taking all of the goals into account are balanced and not considered in silos. The EPC’s ethics case study on Business Growth Models allows engineering students to explore many of these issues.

Designing with the gender perspective in mind, especially in parts of the world where women have very different societal roles based on culture, stereotypes, local norms, and religion, is key to ensuring that the differences and disadvantages that women face are not exacerbated. Understanding these differences is the first step in addressing them, and in many cases, technology can act as a real enabler in situations where women have limited access to traditional education, information, and independence. For example, the widespread use of microfinance in many parts of Africa – a technology not aimed specifically at women – is nevertheless giving women much better access to loans and financial independence than the traditional banking structures did, which women are not always able to access easily. Other examples include understanding the need for sanitation facilities in public spaces such as schools, government offices, transportation hubs and health clinics, without which women’s access to these facilities becomes restricted and their participation curtailed (5).

Another ethical issue comes into play here too. Do we design just to remove bias and discrimination, or do we design to reverse historical bias and discrimination? For example, women have traditionally worked in certain sectors such as care giving roles, and not in sectors like engineering and technology. Algorithmic decision-making tools can use this historical data to preferentially show stereotypical job opportunities based on past trends and evidence, which could foreseeably prevent women from being targeted for engineering related roles. Adapting these tools to make these job opportunities open to all in an equitable way is one thing, but what if we decided to preferentially show engineering roles to women and caring roles to men – a kind of social engineering, if you will? What are the ethics of this, and would that be going too far to remove biases? I will leave you to think about this one yourselves!  If you would like to write a case study about it, we are currently looking for contributors to the toolkit!

The decisions we make daily as engineers have consequences to individuals and communities that have not always been understood or considered in the past, but by understanding the need for inclusive outcomes for all stakeholders, we also ensure that our solutions are ethical, and that we leave no on behind. The ethics case studies in the EPC’s recently launched Engineering Ethics Toolkit reveal the ethical concepts that comprise our everyday activities and what lies behind those decisions – resources like this should be used to ensure ethical decision making is integrated throughout an engineers’ education and continuing professional development.

This blog is also available here.

 

References

  1. RAEng Ethics Report https://raeng.org.uk/policy-and-resources/education-policy/the-engineering-profession/global-responsibility-and-progressive-engineering-leadership/ethics
  2. inceng.org website
  3. Social Value Act https://www.gov.uk/government/publications/social-value-act-information-and-resources/social-value-act-information-and-resources
  4. Sustainable Development Goals ethos of Leave No One Behind https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind
  5. Towards Vision Website ‘Gender Perspective in Engineering’ http://www.towardsvision.org/the-gender-perspective-in-engineering.html

 

Dawn Bonfield MBE CEng FIMMM FICE HonFIStructE FWES is Visiting Professor of Inclusive Engineering at Aston University and Royal Society Entrepreneur in Residence at King’s College London.

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website