Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University), Professor Jarka Glassey (Director of Education, School of Engineering, Newcastle University). 

Topic: How to integrate the SDGs using a practical framework.   

Type: Guidance.  

Relevant disciplines: Any.  

Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy. 
 
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):The Engineer and Society(acknowledging that engineering activity can have a significant societal impact) andEngineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4hereand navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).  
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.

Who is this article for?  This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design.  

 

Premise: 

The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context. 

 

For programme-wide alignment: 

 1. Look around. The outcome of this phase is a framework that identifies current and future requirements for programme graduates. 

a. Review guidelines and subject/discipline benchmark documents on sustainability. 

b. Review government targets and discipline-specific guidance. 

c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic. 

d. Review your university strategy relating to sustainability and education. For example, Middlesex University signed up to the UN Accord. 

e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert). 

 

2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision.  

a. Engage in critical reflective analysis of the current programme as a whole and of individual modules.   

b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness. 

c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert). 

d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified. 

e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme.  

 

 3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such. 

a. Create revised programme aims and graduate outcomes that reflect the SDGs. The Reimagined Degree Map and Global Responsibility Competency Compass can support this activity. 

b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules.  

c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is: 

  1. “Apply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).” 

d. Align assessment criteria and rubrics to the revised ILOs.  

e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials.  

 

For module-wide alignment: 

1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme. 

a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics.  

b. Determine any specific guidelines, standards, and regulations for this theme within the discipline. 

 

2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps.  

a. Engage in critical reflective analysis of current modules, as both individual module instructors and leaders, and as a team.  

b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs. 

c. Review feedback from current students on the clarity of the modules links to the SDGs. 

d. Review feedback from external examiners on the sustainability content of the module. 

 

3. Look ahead.  

a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated.  

b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options.  

 

Appendix:

A. Outcome I.2 (programme level mapping)  

 

B. Outcome II.5 (module level mapping) – same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs. 

 

 C. II.6.b – Specific activities 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Mike Murray BSc (Hons) MSc PhD AMICE SFHEA (Senior Teaching Fellow in Construction Management, Department of Civil & Environmental Engineering, University of Strathclyde). 

Topic: Links between education for sustainable development (ESD) and intercultural competence. 

Tool type: Teaching. 

Engineering disciplines: Civil; Any. 

Keywords: AHEP; Sustainability; Student support; Local community; Higher education; Assessment; Pedagogy; Education for sustainable development; Internationalisation; Global reach; Global responsibility; EDI. 
 
Sustainability competency: Self-awareness; Collaboration; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 4 (Quality education); SDG 16 (Peace, justice, and strong institutions). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational level: Beginner. 

 

Learning and teaching notes: 

This resource describes a coursework aligned to three key pedagogical approaches of ESD. (1) It positions the students as autonomous learners (learner-centred); (2) who are engaged in action and reflect on their experiences (action-oriented); and (3) empowers and challenges learners to alter their worldviews (transformative learning). Specifically, it requires students to engage in collaborative peer learning (Einfalt, Alford, and Theobald 2022; UNESCO 2021). The coursework is an innovative Assessment for Learning” (AfL) (Sambell, McDowell, and Montgomery, 2013) internationalisation at home (Universities UK, 2021) group and individual assessment for first-year civil & environmental engineers enrolled on two programmes (BEng (Hons) / MEng Civil Engineering & BEng (Hons) / MEng Civil & Environmental Engineering). However, the coursework could easily be adapted to any other engineering discipline by shifting the theme of the example subjects. With a modification on the subjects, there is potential to consider engineering components / artifacts / structures, such as naval vessels / aeroplanes / cars, and a wide number of products and components that have particular significance to a country (i.e., Swiss Army Knife).

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

Rationale: 

There have been several calls to educate the global engineer through imbedding people and planet issues in the engineering curriculum (Bourn and Neal, 2008; Grandin and Hirleman 2009). Students should be accepting of this practice given that prospective freshers are ‘positively attracted by the possibility of learning alongside people from the rest of the world’ (Higher Education Policy Unit, 2015:4). Correspondingly, ‘international students often report that an important reason in their decision to study abroad is a desire to learn about the host country and to meet people from other cultures’ (Scudamore, 2013:14). Michel (2010:358) defines this ‘cultural mobility’ as ‘sharing views (or life) with people from other cultures, for better understanding that the world is not based on a unique, linear thought’.  

 

Coursework brief summary extracted from the complete brief:

Civil Engineering is an expansive industry with projects across many subdisciplines (i.e. Bridges, Buildings, Coastal & Marine, Environmental, Geotechnical, Highways, Power including Renewables. In a group students are required to consult with an international mentor and investigate civil engineering (buildings & structures) in the mentor’s home country. Each student should select a different example. These can be historical projects, current projects or projects planned for the future, particularly those projects that are addressing the climate emergency. Students will then complete two tasks: 

 

Time frame and structure: 

1. Opening lecture covering:

a. Reasoning for coursework with reference to transnational engineering employers and examples of international engineering projects and work across national boundaries. 

b. Links between engineering, people, and planet through the example of biomimicry in civil engineering design (Hayes, Desha, & Baumeister, 2020) or nature-based solutions in the context of civil engineering technology (Cassina and Matthews ,2021). 

c. Existence of non-governmental organisations (NGOs) such as RedR UK (2023) Water Aid (2023) and Bridges to Prosperity (2023). 

d. The use of corporate social responsibility (CSR) to address problematic issues such as human rights abuses (Human Rights Watch, 2006) and bribery and corruption (Stansbury and Stansbury) in global engineering projects.  

 

2. Assign students to groups:

a. Identify international mentors. After checking the module registration list, identify international students and invite them to become a mentor to their peers.  Seek not to be coercive and explain that it is a voluntary role and to say no will have no impact on their studies. In our experience, less than a handful have turned down this opportunity. The peer international students are then used as foundation members to build each group of four first-year students. Additional international student mentors can be sourced from outside the module to assist each group. 

b. Establish team contracts and group work processes using the Carnegie Mellon Group Working Evaluation document

 

3. Allow for group work time throughout the module to complete the tasks (full description can be found in the complete brief). 

 

Assessment criteria: 

The coursework constitutes a 20% weighting of a 10-Credit elective module- Engineering & Society. The submission has two assessed components: Task 1) a group international poster with annotated sketches of buildings & structures (10% weighting); and Task 2) A short individual reflective writing report (10% weighting) that seeks to ascertain the students experience of engaging in a collaborative peer activity (process), and their views on their poster (product). Vogel et al, (2023, 45) note that the use of posters is ‘well-suited to demonstrating a range of sustainability learning outcomes’. Whilst introducing reflective writing in a first-year engineering course has its challenges, it is recognised that  reflective practice is an appropriate task for ESD- ‘The teaching approaches most associated with developing transformative sustainability values stimulate critical reflection and self-reflection’ (Vogel et al, 2023, 6). 

Each task has its own assessment criteria and process. Assessment details can be found in the complete coursework brief.  

 

Teaching reflection: 

The coursework has been undertaken by nine cohorts of first-year undergraduate civil engineers (N=738) over seven academic sessions between 2015-2024. To date this has involved (N=147) mentors, representing sixty nationalities. Between 2015-2024 the international mentors have been first-year peers (N=67); senior year undergraduate & post-graduate students undertaking studies in the department (N=58) and visiting ERASMUS & International students (N =22) enrolled on programmes within the department.  

Whilst the aim for the original coursework aligns with ESD (‘ESD is also an education in values, aiming to transform students’ worldviews, and build their capacity to alter wider society’ -Vogel et al ,2023:21) the reflective reports indicate that the students’ IC gain was at a perfunctory level. Whilst there were references to ‘a sense of belonging, ‘pride in representing my country’, ‘developing friendships’, ‘international mentors’ enthusiasm’ this narrative indicates a more generic learning gain that is known to help students acquire dispositions to stay and to succeed at university (Harding and Thompson, 2011). The coursework brief fell short of addressing the call ‘to transform engineering education curricula and learning approaches to meet the challenges of the SDGs’ (UNESCO,2021:125). Indeed, as a provocateur pedagogy, ‘ESD recognises that education in its current form is unsustainable and requires radical change’ (Vogel et al ,2023, 4).  

Given the above it is clear that the coursework requirement for peer collaboration and reflective practice aligns to three of the eight key competencies (collaboration, self-awareness, critical thinking) for sustainability (UNESCO, 2017:10). Scudamore (2013:26) notes the importance of these competencies when she refers to engaging home and international students in dialogue- ‘the inevitable misunderstandings, which demand patience and tolerance to overcome, form an essential part of the learning process for all involved’. Moreover, Beagon et al (2023) have acknowledged the importance of interpersonal competencies to prepare engineering graduates for the challenges of the SDG’s. Thus, the revised coursework brief prompts students to journey ‘through the mirror’ and to reflect on how gaining IC can assist their knowledge of, and actions towards the SDG’s. 

 

References: 

Beagon, U., Kövesi, K., Tabas, B., Nørgaard, B., Lehtinen, R., Bowe, B., Gillet, C & Claus Spliid, C.M .(2023). Preparing engineering students for the challenges of the SDGs: what competences are required? European Journal of Engineering Education, 48(1): 1-23 

Bourn, D and Neal, I. (2008). The Global Engineer: Incorporating Global Skills within the UK Higher Education of Engineers. Engineers against Poverty and Institute of Education. 

Einfalt, J., Alford, J & Theobald, M.(2022). Making talk work: using a dialogic approach to develop intercultural competence with students at an Australian university, Intercultural Education, 33(32):211-229 (Grandin and Hirleman 2009). 

Harding, J and  Thompson, J. (2011). Dispositions to stay and to succeed, Higher Education Academy, Final Report 

Higher Education Policy Unit .(2015). What do prospective students think about international students 

Human Rights Watch. (2006). Building Towers, Cheating Workers: Exploitation of Migrant Construction Workers in the United Arab Emirates  

Michel, J. (2010). Mobility of engineers; the European experience, In UNESCO, Engineering: Issues, Challenges and Opportunities for Development, pp 358-360 

Sambell, K, McDowell, L and Montgomery, C.(2013). Assessment for Learning in Higher Education. London: Routledge. 

Scudamore, R. (2013). Engaging home and international students: A guide for new lecturers, Advance HE 

Stansbury, C. and Stansbury, N. (2007) Anti-Corruption Training Manual: Infrastructure, Construction and Engineering Sectors, International Version, Transparency International UK. Online.  

UNESCO. (2021). Engineering for Sustainable Development, delivering on the sustainable development goals,  

Universities UK. (2021). Internationalisation at home – developing global citizens without travel: Showcasing Impactful Programmes, Benefits and Good Practice,   

Vogel, M., Parker, L., Porter, J., O’Hara, M., Tebbs, E., Gard, R., He, X and  Gallimore,J.B .(2023).  Education for Sustainable  Development: a review  of the literature 2015-2022, Advance HE 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Dr Jonathan Truslove MEng PhD and Emma Crichton CEng MICE (Engineers Without Borders UK). 

Topic: Assessing sustainability competencies in engineering education. 

Type: Knowledge. 

Relevant disciplines: Any. 

Keywords: Assessment; Design challenges; Global responsibility; Learning outcomes; Sustainability; AHEP; Higher education; Pedagogy. 

Sustainability competency: Integrated problem-solving, Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 

Reimagined Degree Map Intervention: Authentic assessment; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It may also be of interest for students practising lifelong learning to articulate and explore how their learning translates into competency development as they embark on their careers. 

 

Premise: 

Today we know that how we engineer is changing – and this change is happening at a quicker pace than in previous decades. The decisions engineers make throughout their careers shape the world we all inhabit. Consequently, the education of engineers has a profound impact on society. Ensuring our degrees are up to date is of pressing importance to prepare all future practitioners and professionals. Arguably, it is especially important for engineers to act sustainably, ethically and equitably. 

How do engineers understand their roles when sustainability becomes a key driver in the context of their work? What does sustainability look like in learning journeys, and how can it be incorporated into assessments? This article does not advocate for simply adding ‘sustainability’ to degrees; rather, it encourages the connection between sustainability competencies and engineering assessments. 

 

Developing 21st-century engineers 

Choosing to become an engineer is a great way to be useful to society. Studying an engineering degree can develop what people can do (skills), what they know (knowledge) and how they think (mindset), as well as open up a diverse range of career opportunities. 

The path to becoming an engineer can start at university (though there are other routes in). Weaving in a focus on globally responsible engineering throughout a degree course is about embracing the need to develop a broader set of competencies in engineers and expand the types of projects they practise on during their degree to reflect the problems they may encounter during their career. 

This doesn’t mean that engineering degrees as they are aren’t valuable or useful. It’s about strengthening the building blocks of degrees to ensure that 21st-century engineers have space to play their role in addressing 21st-century societal challenges. These building blocks are what learning outcomes are prioritised, what pedagogies are used, the types of projects students work on, who they work with and the way we assess learning. All of these elements can be aggregated to develop competence in sustainable engineering practice. 

 

What are sustainability competency frameworks saying? 

There are many frameworks exploring what are the competencies most needed today (such as UNESCO Education for Sustainable Development competencies, EU GreenComp, Inner Development Goals). Many frameworks are calling for similar things that allow us to shift focus, attention and energy onto how to truly develop a person over the three to five plus years of experience they might gain at university.  

By designing education to meet learning outcomes, you build and evidence a range of competencies, including developing the mindsets of learners. Practically, it is the use of different competency frameworks, and the associated updates to learning outcomes, and how we deliver education and assessment that really matters. The table below, in the second column, synthesises various competency frameworks to clearly articulate what it means a learner can then do. Rather than argue different frameworks, focusing on what a student can do as a result is really key.  

Figure 1. Competencies for sustainable development in Advance HE and QAA (2021) and UNESCO Education for Sustainable Development (2017). 

 

By reading through this table, you can see that this is more than just about ‘sustainability’ – these are useful things for a person to be able to do. Ask yourself, what if we don’t develop these in our graduates? Will they be better or worse off? 

Graduates can then build on this learning they have had at university to continue to develop as engineers working in practice. The Global Responsibility Competency Compass for example points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. It is made up of 12 competencies and is organised around the four guiding principles of global responsibility – Responsible, Purposeful, Inclusive and Regenerative.  

 

What needs to shift in engineering education? 

The shifts required to the building blocks of an engineering degree are:  

  1. To adapt and repurpose learning outcomes. 
  2. To integrate more real-world complexity within project briefs. 
  3. To be excellent at active pedagogies and mindset development. 
  4. To ensure authentic assessment. 
  5. To maximise cross-disciplinary experience and expertise.  

All of the above need to be designed with mechanisms that work at scale. Let’s spotlight two of these shifts, ‘to adapt and repurpose learning outcomes’ and ‘to integrate authentic assessment’ so we can see how sustainability competence relates. 

 

Adapt and repurpose learning outcomes. 

We can build on what is already working well within a degree to bring about positive changes. Many degrees exhibit strengths in their learning outcomes such as, developing the ability to understand a concept or a problem and apply that understanding through a disciplinary lens focused on simple/complicated problems. However, it is crucial to maintain a balance between addressing straightforward problems and tackling more complex ones that encourage learners to be curious and inquisitive.  

For example, a simple problem (where the problem and solution are known) may involve ‘calculating the output of a solar panel in a community’. A complex problem (where the problem and solution are unknown) may involve ‘how to improve a community’s livelihood and environmental systems, which may involve exploring the interconnectedness, challenges and opportunities that may exist in the system. 

Enhancing the learning experience by allowing students to investigate and examine a context for ideas to emerge is more reflective of real-world practice. Success is not solely measured by learners accurately completing a set of problem sets; rather, it lies in their ability to apply concepts in a way that creates a better, more sustainable system. 

See how this rebalancing is represented in the visual below: 

Figure 2. ​​​​Rebalancing learning within degrees to be relevant to the future we face. Source: Engineers Without Borders UK. 

 

Keeping up to date and meeting accreditation standards is another important consideration. Relating the intended learning outcomes to the latest language associated with accreditation requirements, such as AHEP4 (UK), ABET (US) or ECSA (SA), doesn’t mean you have to just add more in. You can adapt what you’ve already got for a new purpose and context. For instance, the Engineering for One Planet framework’s 93 (46 Core and 46 Advanced) sustainability-focused learning outcomes that hundreds of academics, engineering professionals, and other key stakeholders have identified as necessary for preparing all graduating engineers — regardless of subdiscipline — with the skills, knowledge, and understanding to protect and improve our planet and our lives. These outcomes have also been mapped to AHEP4. 

 

Integrate authentic assessment: 

It is important that intended learning outcomes and assessment methods are aligned so that they reinforce each other and lead to the desired competency development. An important distinction exists between assessment of learning and assessment as or for learning: 

  1. Assessment OF learning e.g. traditional methods of assessment of student learning against learning outcomes and standards that typically measure students’ knowledge-based learning.
  2. Assessment AS/FOR learning e.g. reflective and performance-based (e.g. self-assessments, peer assessments and feedback from educators using reflective journals or portfolios) where the learning journey is part of the assessment process that captures learners’ insights and critical thinking, and empowers learners to identify possibilities for improvement.  

Assessment should incorporate a mix of methods when evaluating aspects like sustainability, to bring in authenticity which strengthens the integrity of the assessment process and mirrors how engineers work in practice. For example, University College London and Kings College London both recognise that critical evaluation, interpretation, analysis, and judgement are all key skills which will become more and more important, and making assessment rubrics more accessible for students and educators. Authentic assessment can mirror professional practices, such as having learners assessed within design reviews, or asking students to develop a portfolio across modules.  

 

Engineers Without Borders UK | Assessing competencies through design challenges: 

Below is an example of what Engineers Without Borders UK has done to translate competencies into assessment through our educational offerings. The Engineering for People Design Challenge (embedded in-curriculum focuses on placing the community context at the heart of working through real-world project-based learning experiences) and Reshaping Engineering (a co-curricular voluntary design month to explore how to make the engineering sector more globally responsible). The competencies in the Global Responsibility Competency Compass are aligned and evidenced through the learning outcomes and assessment process in both challenges.  

Please note – the Global Responsibility Competency Compass points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. 

See below an example of the logic behind translating competencies acquired by participants to assessment during the design challenges.  

Figure 3. Example of the logic behind translating the Global Responsibility Competency Compass to assessment during the design challenges. Source: Engineers Without Borders UK.  

 

    1. The Competencies developed through the educational offering are orientated around the Global Responsibility Competency Compass to align with the learning journey from undergraduate to practising globally responsible individuals in learners’ future careers.
    2. We then align learning outcomes to the competency and purpose of the design challenge using simple and concise language.

  a. Useful resources that were used to help frame, align and iterate the learning outcomes and marking criteria are shared at the end of this article.

    1. The Marking Criteria draws on the assessment methods previously mentioned under ‘Assessment OF’ and ‘Assessment AS/FOR’ while aligning to the context of intended learning i.e. design focussed, individual journals reflecting on the learning journey, and collaborating in teams.
    2. We frame and align key action words from Competency to learning outcome to marking criteria using Bloom’s taxonomy (in Figure 2) to scale appropriately, the context of learning and what the intended outcome of learning/area of assessment would be.  

 

Conclusions: 

How your students think matters. How they engage in critical conversations matters. What they value matters. How we educate engineers matters.  

These may feel like daunting shifts to make but developing people to navigate our future is important for them, and us. Sustainability competencies are actually about competencies that are useful – the label ‘sustainability’ may or may not help but it’s the underlying concepts that matters most. The interventions that we make to instil these competencies in the learning journeys of future engineers are required – so degrees can be continuously improved and will be valuable over the long term. Making assessment mirror real practice helps with life-long learning. That’s useful in general, not just about sustainability. This is a major opportunity to attract more people into engineering, keep them and enable them to be part of addressing urgent 21st century challenges. 

  

Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 

2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course) 

 

Useful resources: 

There are some excellent resources out there that help us understand and articulate what sustainability competencies and learning outcomes look like, and how to embed them into teaching, learning and assessment. Some of them were used in the example above. Here are some resources that we have found useful in translating the competencies in the Compass into learning outcomes in our educational offerings: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

To view a plain text version of this resource, click here to download the PDF.

Authors: Professor Emanuela Tilley, (UCL); Associate Professor Kate Roach (UCL); Associate Professor Fiona Truscott (UCL). 

Topic: Sustainability must-haves in engineering project briefs. 

Type: Guidance. 

Relevant disciplines: Any. 

Keywords: PBL; Assessment; Project brief; Learning outcomes; Pedagogy; Communication; Future generations; Decision-making; Design; Ethics; Sustainability; AHEP; Higher education.
 
Sustainability competency: Integrated problem-solving; Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All. 
 
Reimagined Degree Map Intervention: Adapt learning outcomes; Active pedagogies and mindsets; More real-world complexity; Cross-disciplinarity; Authentic assessment.

 

Supporting resources: 

 

Premise: 

Projects, and thus project-based learning, offer valuable opportunities for integrating sustainability education into engineering curricula by promoting active, experiential learning through critical and creative thinking within problem-solving endeavours and addressing complex real-world challenges. Engaging in projects can have a lasting impact on students’ understanding and retention of knowledge. By working on projects related to sustainability, students are likely to internalise key concepts and develop a commitment to incorporating sustainable practices into their future engineering endeavours. 

 

Building a brief:

Project briefs are a powerful tool for integrating sustainability into engineering education through project-based learning. They set the tone, define the scope, and provide the parameters for students to consider sustainability in their engineering projects, ensuring that future engineers develop the knowledge, skills, and mindset needed to address the complex challenges of sustainability. 

To ensure sustainability has a central and/or clear role within an engineering project, consider the following as you develop the brief: 

1. Sustainability as part of goals, objectives, and requirements. By explicitly including sustainability objectives in the project brief, educators communicate the importance of considering environmental, social, and economic factors in the engineering design and implementation process. This sets the stage for students to integrate sustainability principles into their project work. 

 

2. Context: Briefs should always include the context of the project so that students understand the importance of place and people to an engineered solution. Below are aspects of the context to consider and provide:

 

3. Stakeholders: Sustainability is intertwined with the interests and needs of various stakeholders. Project briefs can include considerations for stakeholder engagement, prompting students to identify and address the concerns of different groups affected by the project. This reinforces the importance of community involvement and social responsibility in engineering projects. Below are aspects of the stakeholders to consider and provide: 

 

4. Ethical decision-making: Including ethical considerations related to sustainability in the project brief guides students in making ethical decisions throughout the project lifecycle. The Ethics Toolkit can provide guidance in how to embed ethical considerations such as: 

 

5. Knowns and unknowns: Considering both knowns and unknowns is essential for defining the project scope. Knowing what is already understood and what remains uncertain allows students to set realistic and achievable project goals. Below are aspects of considering the knowns and unknowns aspects of a project brief to consider and provide:

 

6. Engineering design process and skills development: The Project Brief should support how the educator wants to guide students through the engineering design cycle, equipping them with the skills, knowledge, and mindset needed for successful problem-solving. Below are aspects of the engineering design process and skills development to consider and provide: 

a. Research – investigate,  

b. Creative thinking – divergent and convergent thinking in different parts of the process of engineering design,

c. Critical thinking – innovation model analysis or other critical thinking tools,

d. Decision making – steps taken to move the project forward, justifying the decision making via evidence,

e. Communication, collaboration, negotiation, presentation,  

f. Anticipatory thinking – responsible innovation model AREA, asking in the concept stages (which ideas could go wrong because of a double use, or perhaps thinking of what could go wrong?),

g. Systems thinking.  

 

7. Solution and impact: Students will need to demonstrate that they have met the brief and can demonstrate that they understand the impact of their chosen solution. Here it would need to be clear what the students need to produce and how long it is expected to take them. Other considerations when designing the project brief to include are: 

 

 

Important considerations for embedding sustainability into projects: 

1. Competences or content? 

 

 2. Was any content added or adapted? 

– What form of content, seminars, readings, lectures, tutorials, student activity 

 

3. Competencies  

UNESCO has identified eight competencies that encompass the behaviours, attitudes, values and knowledge which facilitate safeguarding the future. These together with the SDGs provide a way of identifying activities and learning that can be embedded in different disciplinary curricula and courses.  For more information on assessing competences, see this guidance article.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Jing Zhao (University of West of England). 

Topic: Investigating the decarbonisation transition. 

Type: Teaching. 

Relevant disciplines: Civil; Structural; Chemical; Mechanical; Electrical; Computing. 

Keywords: Decarbonisation, Housing, Built environment; Net zero, Carbon emissions; Energy efficiency; Sustainable energy; Local community; Curriculum; Higher education; Sustainability; Assessment. 
 
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 7 (Affordable and clean energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 11 (Sustainable cities and communities). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindsets; Authentic assessment.

Educational level: Beginner. 

 

Learning and teaching notes: 

The purpose of this exercise is to encourage students to think in a socio-technical perspective of delivering extreme low carbon housing (e.g. Passivhaus), in order to support the occupants in adapting to new technologies and low-carbon lifestyle, shifting the paradigm from building isolated energy efficient homes to forming low-carbon communities.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources: 

  

Terminology: 

Before beginning the activity, teachers and learners will want to become familiar with the following concepts. 

 

Activity overview:  

Students will role-play the post occupancy stage of inhabiting a Passivhaus home by playing different characters with different priorities (and personalities). Students will need to learn what new technologies and features are included in Passivhaus and what difficulties/problems the residents might encounter, and at the same time familiarise themselves with contemporary research on energy behaviour, performance gap, rebound effect, as well as broader issues in decarbonisation transition such as social justice and low carbon community building. Through two community meetings, the community manager needs to resolve the residents’ issues, support the residents in learning and adapting their behaviours, and devising an engagement plan to allow the residents to form a self-governed low-carbon community. 

 

Step one: Preparation prior to class: 

Provide a list of reading materials on ‘performance gap’, ‘rebound effect’, ‘adaptive comfort’, energy behaviour, usability and control literature, as well as on Passivhaus and examples of low-carbon features and technologies involved to get a sense of what difficulties residents might encounter.  

To prepare for the role-play activity, assign students in advance to take on different roles (randomly or purposefully), or let them self-assign based on their interests. They should try to get a sense of their character’s values, lifestyle, priorities, abilities. Where no information is available, students can imagine the experiences and perspectives of the residents. Students assigned to be community managers or building associations will prepare for the role-play by learning about the Passivhaus system and prepare ways to support occupants’ learning and behaviour adaptation. The goal is to come up with an engagement plan, facilitate the residents to form their own community knowledge base and peer support. (Considering 1. Who are you engaging (types of residents and their characteristics); 2. How are you engaging (level of engagement, types of communication; 3. When are you engaging (frequency of engagement) 

 

Step two: In class, starting by giving prompts for discussions: 

Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. 

 

  1. Discuss what support the residents might need in post occupancy stage? Who should provide (/pay for) the support? For how long? Any examples or best practice that they might know? Does support needs to be tailored to specific groups of people? (see extra prompts at the end for potential difficulties)
  2. Discuss what the risks are involved in residents not being sufficiently supported to adapt their behaviour when living in a low-carbon house or Passivhaus? (reflect on literature)
  3. Discuss what are the barriers to domestic behaviour change? What are the barriers to support the residents in changing behaviour and to build low-carbon community? 

 

Step three: Class 1 Role Play  

Prior to the Role Play, consider the following prompts: 

Consider the variety of residents and scenarios:

Their varying demographics, physical and mental abilities, lifestyle and priorities. The following characters are examples. Students can make up their own characters. Students can choose scenarios of  

1) social housing or; 

2) private owner-occupier  

Social housing tenants will likely have a more stretched budget, higher unemployment rate and a bigger proportion of disabled or inactive population. They will have different priorities, knowledge and occupancy patterns than private owner-occupier, and will be further disadvantaged during decarbonisation transition (Zhao, 2023). They will need different strategies and motivations to be engaged. The characters of residents could be chosen from a variety of sources (e.g. RIBA Brief generator), or based on students’ own experiences. Each character needs to introduce themselves in a succinct manner. 

 

Other stakeholders involved include: 

They are role-specific characters that don’t necessarily need a backstory. They are there to listen, take notes, give advice and come up with an engagement plan. 

 

Consider the post occupancy in different stages: 

  1. Prior to move-in 
  2. Move-in day 
  3. The initial month 
  4. Change of season  
  5. Quarterly energy audit meeting 

 

Consider the difficulties the residents might encounter: 

 

Consider the different engagement levels of the residents: 

 

The role-play consists of two community meetings over two classes. The first meeting is held at two weeks after move-in date. The second meeting at 6 months of occupancy. The meeting should include a variety of residents on one side, and the ‘chair’ of the meeting on the other. (Consider the accessibility and inclusivity of the meetings as when and where those will be held). In the first meeting, residents will get to know each other, ask questions about house-related problems occurred in the first two weeks, voice concerns. Community managers/council members will chair the meeting, take notes and make plans for support. The teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the ‘chair’ of the meeting. The ‘chair’ of the meeting will open the meeting with the purpose of the meeting – to support the residents and facilitate a self-governed low carbon community. They then ask the residents to feedback on their experience and difficulties. At the end of the first meeting, the group of students will need to co-design an engagement plan, including setting agendas for the second meeting in a 6-month interval (but in reality will happen in the second class) and share the plan with the residents and the class. The teacher and class will comment on the plan. The group will revise the plan after class so it’s ready for the second meeting. 

 

Step four: Homework tasks: Revising the plan 

The students will use the time before the second class to revise the plan and prepare for challenges, problems occurred over the 6-months period. 

Optional wild cards could be used as unpredictable events occur between the first and second meeting. Such events include: 

 

Step five: Class 2 Role play 

The second meeting in the second class will either be chaired by community managers/council members, or be chaired by a few residents, monitored by community managers/council members. The second meeting begins the same way. The students playing residents should research/imagine problems occurred during the 6 months period (refer to literature), and what elements of the engagement plan devised at the end of the first meeting worked and what hasn’t worked. The ‘chair’ of the meeting will take notes, ask questions or try to steer the conversations. At the end of the second meeting, the ‘chair’ of the meeting will reflect on the support and engagement plan, revise it and make a longer-term plan for the community to self-govern and grow. At the end of this class, the whole class could then engage in a discussion about the outcome of the meetings. Teachers could focus on an analysis of how the process went, a discussion about broader themes of social justice, community building, comfort, lifestyle and value system. Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the meeting. 

 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Mr. Neil Rogers (Independent Scholar), Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University) 

Topic: Designing a flood warning system to communicate risk. 

Tool type: Teaching. 

Engineering disciplines: Electronic; Energy; Mechanical. 

Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief. 

Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities). 

Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational level: Intermediate / Advanced. 

 

Learning and teaching notes: 

This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.

The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.

Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways: 

 

Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4) 

In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification. 

 

Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5) 

This project allows teachers the option to stop at multiple points for questions and/or activities as desired.  

 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

 

Overview:  

A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation. 

 

Time frame & structure:
This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.

It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem. 

To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article:
‘Mean or Green: Which values can promote stable pro-environmental behaviour?’ 

 

Context and Stakeholders: 

Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered. 

 

Pathway 1 

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
  5. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.    
  6. Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change? 

 

Design Process​:

To satisfy the learning outcomes identified above the following activities are suggested. 

 

Assessment activity 1 – Physical artefact: 

Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
 

a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level. 

b) It will integrate to appropriate Operational Amplifier circuitry. 

c) The circuitry will control an output device or devices. 

d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build). 

 

Assessment activity 2 – Technical specification: 

The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements. 

The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references). 

 

Pathway 2

This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.

You are required to consider environmental and sustainable factors when presenting a solution. 

After a visit to the premises:  

  1. Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  2. Discussion: What is your initial reaction to the causes of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
  3. Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
  4. Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case.  Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.      

 

Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.

Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town. 

 

Design Process: 

Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m. 

 

Assessment activity – Technical report:       

A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report: 

The report shall be no more than 3000 words (plus illustrations and references)  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Dr. Jemma L. Rowlandson (University of Bristol). 

Topic: Achieving carbon-neutral aviation by 2050.  

Tool type: Teaching. 

Relevant disciplines: Chemical; Aerospace; Mechanical; Environmental; Energy.  

Keywords: Design and innovation; Conflicts of interest; Ethics; Regulatory compliance; Stakeholder engagement; Environmental impact; AHEP; Sustainability; Higher education; Pedagogy; Assessment. 
 
Sustainability competency: Systems thinking; Anticipatory; Critical thinking; Integrated problem-solving; Strategic; Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.

Educational aim: Apply interdisciplinary engineering knowledge to a real-world sustainability challenge in aviation, foster ethical reasoning and decision-making with regards to environmental impact, and develop abilities to collaborate and communicate with a diverse range of stakeholders. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

This case study provides students an opportunity to explore the role of hydrogen fuel in the aviation industry. Considerable investments have been made in researching and developing hydrogen as a potential clean and sustainable energy source, particularly for hydrogen-powered aircraft. Despite the potential for hydrogen to be a green and clean fuel there are lingering questions over the long-term sustainability of hydrogen and whether technological advancements can progress rapidly enough to significantly reduce global carbon dioxide emissions. The debate around this issue is rich with diverse perspectives and a variety of interests to consider. Through this case study, students will apply their engineering expertise to navigate this complex problem and examine the competing interests involved.  

This case is presented in parts, each focusing on a different sustainability issue, and with most parts incorporating technical content. Parts may be used in isolation, or may be used to build up the complexity of the case throughout a series of lessons.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources:  

 

Learning and teaching resources: 

Hydrogen fundamentals resources: 

We recommend encouraging the use of sources from a variety of stakeholders. Encourage students to find their own, but some examples are included below: 

 

Pre-Session Work: 

Students should be provided with an overview of the properties of hydrogen gas and the principles underlying the hydrogen economy: production, storage and transmission, and application. There are several free and available sources for this purpose (refer to the Hydrogen Fundamentals Resources above). 

 

Introduction 

At Airbus, we believe hydrogen is one of the most promising decarbonisation technologies for aviation. This is why we consider hydrogen to be an important technology pathway to achieve our ambition of bringing a low-carbon commercial aircraft to market by 2035.” – Airbus, 2024 

As indicated in the industry quote above, hydrogen is a growing area of research interest for aviation companies to decarbonise their fleet. In this case study, you are put in the role of working as an engineering consultant and your customer is a multinational aerospace corporation. They are keen to meet their government issued targets of reducing carbon emissions to reach net zero by 2050 and your consultancy team has been tasked with assessing the feasibility of powering a zero-emission aircraft using hydrogen. The key areas your customer is interested in are: 

 

Part one: The aviation landscape 

Air travel connects the world, enabling affordable and reliable mass transportation between continents. Despite massive advances in technology and infrastructure to produce more efficient aircraft and reduce passenger fuel consumption, carbon emissions have doubled since 2019 and are equivalent to 2.5 % of global CO2 emissions.  

 

 

Your customer is interested in the feasibility of hydrogen for aviation fuel. However, there is a debate within the management team over the sustainability of hydrogen. As the lead engineering consultant, you must guide your customer in making an ethical and sustainable decision.  

Hydrogen is a potential energy carrier which has a high energy content, making it a promising fuel for aviation. Green hydrogen is produced from water and is therefore potentially very clean. However, globally most hydrogen is currently made from fossil fuels with an associated carbon footprint. Naturally occurring as a gas, the low volumetric density makes it difficult to transport and add complications with storage and transportation. 

 

 

Part two: Hydrogen production 

Hydrogen is naturally abundant but is often found combined with other elements in various forms such as hydrocarbons like methane (CH4) and water (H2O). Methods have been developed to extract hydrogen from these compounds. It is important to remember that hydrogen is an energy carrier and not an energy source; it must be generated from other primary energy sources (such as wind and solar) converting and storing energy in the form of hydrogen.  

 

 

The ideal scenario is to produce green hydrogen via electrolysis where water (H2O) is split using electricity into hydrogen (H2) and oxygen (O2). This makes green hydrogen potentially completely green and clean if the process uses electricity from renewable sources. The overall chemical reaction is shown below: 

However, the use of water—a critical resource—as a feedstock for green hydrogen, especially in aviation, raises significant ethical concerns. Your customer’s management team is divided on the potential impact of this practice on global water scarcity, which has been exacerbated by climate change. You have been tasked with assessing the feasibility of using green hydrogen in aviation for your client. Your customer has chosen their London to New York route (3,500 nmi), one of their most popular, as a test-case. 

 

 

Despite its potential for green production, globally the majority of hydrogen is currently produced from fossil fuels – termed grey hydrogen. One of your team members has proposed using grey hydrogen as an interim solution to bridge the transition to green hydrogen, in order for the company to start developing the required hydrogen-related infrastructure at airports. They argue that carbon capture and storage technology could be used to reduce carbon emissions from grey hydrogen while still achieving the goal of decarbonisation. Hydrogen from fossil fuels with an additional carbon capture step is known as blue hydrogen. 

However, this suggestion has sparked a heated debate within the management team. While acknowledging the potential to address the immediate concerns of generating enough hydrogen to establish the necessary infrastructure and procedures, many team members argued that it would be a contradictory approach. They highlighted the inherent contradiction of utilising fossil fuels, the primary driver of climate change, to achieve decarbonisation. They emphasised the importance of remaining consistent with the ultimate goal of transitioning away from fossil fuels altogether and reducing overall carbon emissions. Your expertise is now sought to weigh these options and advise the board on the best course of action. 

 

 

Part three: Hydrogen storage 

Despite an impressive gravimetric energy density (the energy stored per unit mass of fuel) hydrogen has the lowest gas density and the second-lowest boiling point of all known chemical fuels. These unique properties pose challenges for storage and transportation, particularly in the constrained spaces of an aircraft.  

 

 

As the lead engineering consultant, you have been tasked with providing expert advice on viable hydrogen storage options for aviation. Your customer has again chosen their London to New York route (3,500 nmi) as a test-case because it is one of their most popular, transatlantic routes. They want to know if hydrogen storage can be effectively managed for this route as it could set a precedent for wider adoption for their other long-haul flights. The plane journey from London to New York is estimated to require around 15,000 kg of hydrogen (or use the quantity estimated previously estimated in Part 2 – see Appendix for example).  

 

 

Part four: Emissions and environmental impact 

In Part four, we delve deeper into the environmental implications of using hydrogen as a fuel in aviation with a focus on emissions and their impacts across the lifecycle of a hydrogen plane. Aircraft can be powered using either direct combustion of hydrogen in gas turbines or by reacting hydrogen in a fuel cell to produce electricity that drives a propeller. As the lead engineering consultant, your customer has asked you to choose between hydrogen combustion in gas turbines or the reaction of hydrogen in fuel cells. The management team is divided on the environmental impacts of both methods, with some emphasising the technological readiness and efficiency of combustion and others advocating for the cleaner process of fuel cell reaction.  

 

 

Both combustion of hydrogen in an engine and reaction of hydrogen in a fuel cell will produce water as a by-product. The management team are concerned over the effect of using hydrogen on the formation of contrails. Contrails are clouds of water vapour produced by aircraft that have a potential contribution to global warming but the extent of their impact is uncertain.  

 

 

So far we have considered each aspect of the hydrogen debate in isolation. However, it is important to consider the overall environmental impact of these stages as a whole. Choices made at each stage of the hydrogen cycle – generation, storage, usage – will collectively impact the overall environmental impact and sustainability of using hydrogen as an aviation fuel and demonstrates how interconnected our decisions can be.  

 

 

Part five: Hydrogen aviation stakeholders 

Hydrogen aviation is an area with multiple stakeholders with conflicting priorities. Understanding the perspectives of these key players is important when considering the feasibility of hydrogen in the aviation sector.   

 

 

Your consultancy firm is hosting a debate for the aviation industry in order to help them make a decision around hydrogen-based technologies. You have invited representatives from consumer groups, the UK government, Environmental NGOs, airlines, and aircraft manufacturers.  

 

 

Stakeholder Key priorities and considerations
Airline & Aerospace Manufacturer 
  • Cost efficiency (fuel, labour, fleet maintenance) – recovering from pandemic. 
  • Passenger experience (commercial & freight). 
  • Develop & maintain global supply chains. 
  • Safety, compliance and operational reliability. 
  • Financial responsibility to employees and investors. 
  • Need government assurances before making big capital investments. 
UK Government 
  • Achieve net zero targets by 2050 
  • Promote economic growth and job creation (still recovering from pandemic). 
  • Fund research and innovation to put their country’s technology ahead. 
  • Fund renewable infrastructure to encourage industry investment. 
Environmental NGOs 
  • Long-term employment for aviation sector. 
  • Demand a sustainable future for aviation to ensure this – right now, not in 50 years. 
  • Standards and targets for industry and government and accountability if not met. 
  • Some NGOs support drastic cuts to flying. 
  • Want to raise public awareness over sustainability of flying. 
Consumer 
  • Environmentally aware (understand the need to reduce carbon emissions). 
  • Also benefit greatly from flying (tourism, commercial shipping, etc.). 
  • Safety and reliability of aircraft & processes. 
  • Cost effectiveness – want affordable service

Appendix: Example calculations 

There are multiple methods for approaching these calculations. The steps shown below are just one example for illustrative purposes.  

 

Part two: Hydrogen production 

Challenge: Estimate the volume of water required for a hydrogen-powered aircraft.   

Assumptions around the hydrogen production process, aircraft, and fuel requirement can be given to students or researched as a separate task. In this example we assume: 

 

Example estimation: 

1. Estimate the energy requirement for a mid-size jet 

No current hydrogen-fuelled aircraft exists, so we can use a kerosene-fuelled analogue. Existing aircraft that meet the requirements include the Boeing 767 or 747. The energy requirement is then: 

 

2. Estimate the hydrogen requirement 

Assuming a hydrogen plane has the same fuel requirement:

 

3. Estimate the volume of water required 

Assuming all hydrogen is produced from the electrolysis of water: 

Electrolysis reaction:

For this reaction, we know one mole of water produces one mole of hydrogen. We need to calculate the moles for 20,000 kg of hydrogen: 

 

 

 

With a 1:1 molar ratio, we can then calculate the mass of water: 

This assumes an electrolyser efficiency of 100%. Typical efficiency values are under 80%, which would yield: 

 

Challenge: Is it feasible to power the UK aviation fleet with water? 

 

The total energy requirement for UK aviation can be given to students or set as a research task.  

Estimation can follow a similar procedure to the above. 

Multiple methods for validating and assessing the feasibility of this quantity of water. For example, the UK daily water consumption is 14 billion litres. The water requirement estimated above is < 1 % of this total daily water consumption, a finding supported by FlyZero.  

 

Part three: Hydrogen storage 

Challenge: Is it feasible to store 20,000 kg of hydrogen in an aircraft? 

There are multiple methods of determining the feasibility of storage volume. As example is given below. 

 

1. Determining the storage volume 

The storage volume is dependent on the storage method used. Density values associated with different storage techniques can be research or given to students (included in Table 2). The storage volume required can be calculated from the mass of hydrogen and density of storage method, example in Table 2.  

Table 2: Energy densities of various hydrogen storage methods 

 

2. Determining available aircraft volume 

A straightforward method is to compare the available volume on an aircraft with the hydrogen storage volume required. Aircraft volumes can be given or researched by students. Examples: 

This assumes hydrogen tanks are integrated into an existing aircraft design. Liquid hydrogen can feasibly fit into an existing design, though actual volume will be larger due to space/constraint requirements and additional infrastructure (pipes, fittings, etc) for the tanks. Tank size can be compared to conventional kerosene tanks and a discussion encouraged over where in the plane hydrogen tanks would need to be (conventional liquid fuel storage is in the wings of aircraft, this is not possible for liquid storage tanks due to their shape and infrastructure storage is inside the fuselage). Another straightforward method for storage feasibility is modelling the hydrogen volume as a simple cylinder and comparing to the dimensions of a suitable aircraft.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Dr Irene Josa (UCL) 

Topic: Embodied carbon in the built environment. 

Type: Teaching. 

Relevant disciplines: Civil engineering; Environmental engineering; Construction management. 

Keywords: Embodied carbon; Resilient construction practices; Climate change adaptation; Ethics; Teaching or embedding sustainability; AHEP; Higher education; Pedagogy; Environmental impact assessment; Environmental risk; Assessment. 
 
Sustainability competency: Integrated problem-solving; Systems thinking; Critical thinking; Collaboration; Anticipatory.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation and infrastructure); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.

Educational aim: To foster a deep understanding of the challenges and opportunities in balancing environmental sustainability and profitability/safety in construction projects. To develop critical thinking and decision-making skills in addressing social, economic, and environmental considerations. To encourage students to propose innovative and comprehensive solutions for sustainable urban development. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

Before engaging with the case study, learners should be familiar with the process of calculating embodied carbon and conducting a cost-benefit analysis. The case study is presented in three parts. In Part one, an ambitious urban revitalisation project is under development, and a project manager needs to find a balance between financial considerations and the urgent need for sustainable, low-embodied carbon construction. In Part two, the project being developed is located in a coastal area prone to climate change-related disasters. The team needs to ensure that the project is durable in the face of disasters and, at the same time, upholds sustainability principles. Lastly, in Part three, stakeholders involved in the two previous projects come together to identify potential synergies. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources 

 

Learning and teaching resources: 

Environmental impact assessment: 

Social impact assessment: 

Economic impact assessment: 

Systems thinking and holistic analysis approaches (PESTLE, SWOT): 

Real-world cases to explore:

 

Part one: 

In the heart of an urban revitalisation project, the company CityScape Builders is embarking on a transformational journey to convert a neglected area into a vibrant urban centre which will be named ReviveRise District. This urban centre will mostly be formed by tall buildings. 

Avery, the project manager at CityScape Builders, is under immense pressure to meet tight budget constraints and deadlines. Avery understands the project’s economic implications and the importance of delivering within the stipulated financial limits. However, the conflict arises when Rohan, a renowned environmental advocate and consultant, insists on prioritising sustainable construction practices to reduce the project’s embodied carbon. Rohan envisions a future where construction doesn’t come at the cost of the environment. 

On the other side of the situation is Yuki, the CFO of CityScape Builders, who is concerned about the project’s bottom line. Yuki is wary of any actions that could escalate costs and understands that using low-embodied carbon materials often comes with a higher price tag.  

In light of this situation, Avery proposes exploring different options of construction methods and materials that could be used in the design of their skyscrapers. Avery needs to do this quickly to avoid any delay, and therefore consider just the most important carbon-emitting aspects of the different options.  

 

Optional STOP for questions and activities 

 

Part two:

CityScape Builders is now embarking on a new challenge, ResilientCoast, a construction project located in a coastal area that is susceptible to climate change-related disasters. This region is economically disadvantaged and lacks the financial resources often found in more developed areas.  

Micha, the resilience project manager at CityScape Builders, is tasked with ensuring the project’s durability in the face of disasters and the impacts of climate change. Micha’s primary concern is to create a resilient structure that can withstand extreme weather events but is equally dedicated to sustainability goals. To navigate this complex situation, Micha seeks guidance from Dr. Ravi, a climate scientist with expertise in coastal resiliency. Dr. Ravi is committed to finding innovative and sustainable solutions that simultaneously address the climate change impacts and reduce embodied carbon in construction. 

In this scenario, Bao, the local community leader, also plays a crucial role. Bao advocates for jobs and economic development in the area, even though Bao is acutely aware of the inherent safety risks. Bao, too, understands that balancing these conflicting interests is a substantial challenge. 

In this situation, Micha wonders how to construct safely in a vulnerable location while maintaining sustainability goals.  

 

Optional STOP for questions and activities 

 

Part three: 

Robin and Samir are two independent sustainability consultants that are supporting the projects in ReviveRise District and ResilientCoast respectively. They are concerned that sustainability is just being assessed by embodied carbon and cost sustainability, and they believe that sustainability is a much broader concept than just those two indicators. Robin is the independent environmental consultant working with ReviveRise District officials and is responsible for assessing the broader environmental impacts of the construction project. Robin’s analysis spans beyond embodied carbon, considering local job creation, transportation effects, pollution, biodiversity, and other aspects of the project. 

Samir, on the other hand, is a municipal board member of ResilientCoast. Samir’s role involves advocating for the local community while striving to ensure that sustainability efforts do not compromise the safety and resilience of the area. Samir’s responsibilities are more comprehensive than just economic considerations; they encompass the entire well-being of the community in the face of climate change. 

Robin and Samir recognise the need for cross-city collaboration and information sharing, and they want to collaborate to ensure that the sustainability efforts of both projects do not create unintended burdens for their communities. They acknowledge that a comprehensive approach is necessary for analysing broader impacts, and to ensure both the success of the construction projects and the greater good of both communities. They believe in working collectively to find solutions that are not only sustainable but also beneficial to all stakeholders involved. 

 

Optional STOP for questions and activities 

 

The above questions and activities call for the involvement of cross-disciplinary teams, requiring expertise not only in engineering but also in planning, policy, and related fields. Ideally, in the classroom setting, students with diverse knowledge across these disciplines can be grouped together to enhance collaboration and address the tasks proposed. In cases where forming such groups is not feasible, the educator can assign specific roles such as engineer, planner, policymaker, etc., to individual students, ensuring a balanced representation of skills and perspectives. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Mark J. Heslop (University of Strathclyde). 

Topic: ESD in Chemical Engineering projects. 

Tool type: Guidance. 

Relevant disciplines: Chemical. 

Keywords: Problem-based learning; Education for sustainable development; Circularity; Circular economy; Assessment; AHEP; Sustainability; Higher education; Design; Data; Pedagogy. 
 
Sustainability competency: Systems-thinking; Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 2 (Zero hunger); SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 12 (Responsible consumption and production); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Authentic assessment; More real-world complexity.

Who is this article for? This article should be read by Chemical Engineering educators in higher education who are seeking to integrate sustainability in their project modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

The design project (DP) is considered to be the major focus of the CE curriculum, where students work in groups to design a complete chemical process – feeds, products process routes, energy requirements, financial aspects and emissions.  It is considered challenging for various reasons including the following: the requirement to recall and combine knowledge covered previously in taught classes (some of which may have been forgotten), dealing with a huge corpus of data (unavailability, uncertainty, some being in conflict and some being superfluous) and all the design decisions that need to be made from many options.  This is a major contrast with standard taught modules where all the data required is normally provided in advance.  Just making decisions is not enough – they need to be timely and justified otherwise the project may be rushed and may not complete by the deadline.  This is why the DP is valued by employers.  Furthermore, if Education for Sustainable Development (ESD) is embedded in the design project, it is more likely that students will take forward sustainability into the workplace. Figure 1 illustrates Chemical processes and the design project.   

 

1. Subject (CE) and DP pictorial representations:

Part (a) is a generic representation of a chemical process and shows the input-output nature of chemical processes.  A chemical process takes a feed and converts it to useful products (the process shown has two equipment units and four streams). Part (b) is a representation of the design project, where the specification (or brief) is provided to groups at the start (DSpec) and the final submission (or solution) is the information in part (a).  Part (c) shows that specifications can be product-based (the top two) or feed-based (the bottom two).  The dashed lines indicate specifications where the flowrate and composition of the feed/product is subject to design choice – a typical factor that will extend the design procedure and require more decision-making. 

 

 2. Inclusion of sustainability in the project topic and communication with students:

This is fairly straightforward in CE design projects, because of the circular economy and the associated waste minimisation.  So, from Figure 1, a feed-based (rather than product-based) specification can be employed.  Topics that have been used at Strathclyde in recent years have been the utilisation of coffee grounds, food waste and (in 2024) green and garden waste. It is helpful that such topics can be linked to many of the UN SDGs. Furthermore, waste products are often complex with many components, and one of the characteristics of chemical engineering is the various separation techniques. These two factors should be communicated to students to improve engagement.   

 

3. Inclusion of sustainability as an ESD activity to be carried out by groups:

One of the complicating factors about the UN SDGs is that there are so many, meaning that there is the possibility of a chemical process having both positive and negative impacts on different SDGs. This means that groups really need to consider all of the SDGs.  This might be conveniently demonstrated as per Table 1.  Certainly, it would be hoped that there are more ticks in column 2 than in column 3.  Column 4 corresponds to minimal change, and column 5 where there is not enough information to determine any impact. 

 

Table 1: Sustainability rating form for design project submissions   

As an example, consider a design project which is based on better utilisation of green waste.  Let us say that this results in less greenhouse gas emissions, as well as there being less need to plant and harvest plants.  This will result in positive outcomes for SDG12 and SDG13.  There are also positive effects because more land can be used for crops, and there will be higher plant coverage during the year.  It could be argued then that there are minor positive effects om SDG2 and SDG3.  The subsequent SDG profile in Table 1 shows two major impacts and two minor impacts – this might be typical for DPs.  

 

4. Assessment of sustainability in the design project:

Table 2 shows the typical sections in a DP submission.  For convenience these are shown as having equal 20-mark contributions.  One way of determining marks is to divide these sections into a number of dimensions, for example: use of the literature, technical knowledge, creativity/innovation and style/layout.  Sustainability could then be included as a fifth dimension.  It is then a case of determining the sustainability dimension for each of the marking sections.  It could be argued that sustainability is particularly important at the start of the project (when feeds and amounts are being decided) and at the end (when the final process is being assessed).  This explains the larger weightings in Table 2. Coherence refers to how well the submission reads in terms of order and consistency and is thus independent of sustainability.  The weightings are subject to debate, but they do at least give the potential for consistent (and traceable) grading between different assessors.        

 

Table 2: Design project assessment now including ESD   

References: 

Byrne, E.P. (2023) “The evolving engineer; professional accreditation sustainability criteria and societal imperatives and norms”, Education for Chemical Engineers 43, pp. 23–30  

Feijoo, G., Moreira, M.T. (2020) “Fostering environmental awareness towards responsible food consumption and reduced food waste in chemical engineering students”, Education for Chemical Engineers 33, pp. 27–35  

IChemE (2021), “Accreditation of chemical engineering programmes: a guide for education providers and assessors” 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Author: Cigdem Sengul, Ph.D. FHEA (Computer Science, Brunel University). 

Topic: Embedding SDGs into undergraduate computing projects using problem-based learning and teamwork. 

Tool type: Guidance. 

Relevant disciplines: Computing; Computer science; Information technology; Software engineering.  

Keywords: Sustainable Development Goals; Problem-based learning; Teamwork; Design thinking; Sustainability; AHEP; Pedagogy; Higher education; Communication; Course design; Assessment; STEM; Curriculum design. 
 
Sustainability competency: Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All 17; see specific examples below for SDG 2 (Zero Hunger); SDG 13 (Climate Action). 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment.

Who is this article for? This article should be read by educators at all levels in Higher Education who wish to embed sustainable development goals into computing projects. 

Supporting resources 

 

Premise:  

Education for Sustainable Development (ESD) is defined by UNESCO (2021) as:  “the process of equipping students with the knowledge and understanding, skills and attributes needed to work and live in a way that safeguards environmental, social and economic wellbeing, in the present and for future generations.” All disciplines have something to offer ESD, and all can contribute to a sustainable future. This guide presents how to embed the Sustainable Development Goals (SDGs) into undergraduate computing projects, using problem-based learning and teamwork as the main pedagogical tools (Mishra & Mishra, 2020).  

 

Embedding Sustainable Development Goals (SDGs) into computing group projects: 

Typically, the aim of the undergraduate Computing Group Project is to: 

This type of project provides students with an opportunity to integrate various skills, including design, software development, project management, and effective communication.  

 

In this project setting, the students can be asked to select a project theme based on the SDGs. The module team then can support student learning in three key ways: 

1. Lectures, labs, and regular formative assessments can build on lab activities to walk the project groups through a sustainability journey that starts from a project pitch, continues with design, implementation, and project progress reporting, and ends with delivering a final demo.

2. Blending large classroom teaching with small group teaching, where each group is assigned a tutor, to ensure timely support and feedback on formative assessments.

3. A summative assessment based on a well-structured project portfolio template, guiding students to present and reflect on their individual contribution to the group effort. This portfolio may form the only graded element of their work, giving the students the opportunity to learn from their mistakes in formative assessments and present their best work at the end of the module.  

 

Mapping the learning outcomes to the eight UNESCO key competencies for sustainability (Advance HE, 2021), the students will have the opportunity to experience the following: 

 

More specifically, sustainable development can be embedded following a lecture-lab-formative assessment-summative assessment path: 

1. Introduction lecture: Introduce the SDGs and give real-life examples of software that contribute to SDGs (examples include: for SDG 2 – Zero Hunger, the World Food Programme’s Hunger Map; SDG 13 – Climate Action, Climate Mind ). The students then can be instructed to do their own research on SDGs. 

2. Apply design thinking to project ideation: In a lecture, students are introduced to design thinking and the double-diamond of design to use a diverge-converge strategy to first “design the right thing” and second “design things right.” In a practical session, with teaching team support, the students can meet their groups for a brainstorming activity. It is essential to inform students about setting ground rules for discussion, ensuring all voices are heard. Encourage students to apply design thinking to decide which SDG-based problem they would like to work on to develop a software solution. Here, giving students an example of this process based on a selected SDG will be useful. 

3. Formative assessment – project pitch deliverable: The next step is to channel students’ output of the design thinking practical to a formative assessment. Students can mould their discussion into a project pitch for their tutors. Their presentation should explain how their project works towards one or more of the 17 SDGs. 

4. Summative assessment – a dedicated section in project portfolio: Finally, dedicating a section in a project portfolio template on ideation ensures students reflect further on the SDGs. In the portfolio, students can be asked to reflect on how individual ideas were discussed and feedback from different group members was captured. They should also reflect on how they ensured the chosen problem fits one or more SDGs, describe the selection process of the final software solution, and what alternative solutions for the chosen SDG they have discussed, elaborating on the reasons for the final choice. 

 

Conclusion: 

Computing projects provide an excellent opportunity to align teaching, learning, and assessment activities to meet key Sustainable Development competencies and learning outcomes. The projects can provide transformational experiences for students to hear alternative viewpoints, reflect on experiences, and address real-world challenges. 

 

References: 

Advance HE. (2021) Education for sustainable development guidance. (Accessed: 02 January 2024). 

Lewrick, M., Link, P., Leifer, L.J. & Langensand, N. (2018). The design thinking playbook: mindful digital transformation of teams, products, services, businesses, and ecosystems. New Jersey: John Wiley & Sons, Inc, Hoboken. 

Mishra, D. and Mishra, A. (2020) ‘Sustainability Inclusion in Informatics Curriculum Development’, Sustainability, 12(14), p. 5769.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 
To view a plain text version of this resource, click here to download the PDF.

Let us know what you think of our website