Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Universities’ and businesses’ shared role in regional development, Knowledge exchange, Graduate employability and recruitment

Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)

Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure

Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.

 

The opportunity

Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.

Seed funded taster projects

In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.

Knowledge Transfer Partnership (KTP) Projects

KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.

The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.

The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.

First of a kind (FOAK) projects

The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.

The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.

The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.

The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.

The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.

Additional benefits to University of Huddersfield

In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.

 

Figure 1. Head-span showing span-wires and span-wire clamp.

 

Figure 2. Old (left) and new (right) span-wire clamps.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning

Authors: Dr Becky Selwyn (University of Bristol), David Pullinger (RINA) and Dr Irene Renaud-Assemat (University of New South Wales)

Keywords: Authentic Learning

Abstract: The academic approach to writing isn’t one that is often appropriate in industry – yet at university it is usually engineering academics who teach undergraduate engineers how to write. This is a problem frequently highlighted by industry. By working in partnership with industry to set an authentic writing challenge, we hoped to provide a sense of real-world purpose and give students a valuable formative opportunity to work on their writing skills for an industrial audience.

 

Aims of the activity

This case study aimed to address the discrepancy between industry expectations of student writing skills and the writing-related learning opportunities provided to students over the course of a typical degree programme at the University of Bristol.

The academics involved in this project had previously addressed poor technical writing skills among undergraduate (UG) students by providing scaffolded opportunities to practice and receive feedback on written laboratory reports in early years (e.g. [1] and [2]). However, informal conversations with an industry partner highlighted the need for students to also improve their writing skills for industrial audiences (e.g. clients or colleagues external to the immediate specialist team).

Existing written assignments are assessed mainly on their technical content, with a nominal portion of the mark awarded for writing skills. This project removed the focus from the technical work and placed it firmly on how well the recommendation is written for a specific audience, encouraging students to focus on developing their writing skills. The activity provided participants with a set of real client data to synthesise while producing a recommendation to be presented to the board of a fictional company.

Design of the activity

The activity was designed as follows:

This was an optional activity for students, and 11 2nd year UG students took part from Mechanical, Mechanical and Electrical, and Engineering Design programmes.

Outcomes

Students were surveyed at the start and end of the activity to investigate their motivation for taking part and their experience of the activity. Before taking part, students reported two main expectations: to improve their writing skills in the context of the industrial requirements, and to support their career aspirations. This latter aim was stated either in relation to networking with the industrial partner or in relation to adding the activity to their CV.

Feedback following completion of the activity was consistently positive. Students enjoyed the real-world application and experiencing a task that was representative of tasks the industrial partner undertakes, and also appreciated the networking opportunity provided by the partnership with industry.

Reflections and future work

Students were asked what they would change about the activity next time, and two themes emerged: a request to provide more examples or guidance on the style of writing required, and embedding the activity within the compulsory units in the programme. This latter theme ties in with the ongoing work within the department to improve the way we teach and assess writing skills throughout the programme.

From an academic perspective, the workload associated with developing and running the activity (3-4 hours) was relatively small compared to the positive experience reported by the participants. Although there were only a small number of participants, the activity could be scaled up relatively easily – either by continuing to use the information package provided by a single industrial partner, or by enlisting more partners to contribute similar tasks and allowing students to complete one or more of the tasks.

Industrial partner perspective

From an industrial perspective the time commitment associated with the activity was small (3-4 hours) and was outweighed by the benefits of being able to trial techniques to improve results-oriented writing. The difficulty that students experienced in distilling relatively simple information into a concise evidence-based decision was similar to the difficulties experienced by many established professionals in industry. The typical undergraduate writing style is to tell the story from beginning to middle to conclusion leading to tendencies for writers to be verbose and indirect. In industry the style of reporting often requires the approach to be flipped whereby the conclusion is the sole focus of the writing, this requires very short, unambiguous and direct writing. The approach to writing these different types of document is altogether different and requires practise to improve the quality of the author’s reports. Giving undergraduates more opportunities to write in different styles would improve their preparedness for working in an industrial role and also be a great benefit to graduate employers by way of having more highly skilled employees.

References

[1] Selwyn, R., & Renaud-Assemat, I. (2020). Developing technical report writing skills in first and second year engineering students: a case study using self-reflection. Higher Education Pedagogies5(1), 19-29. https://doi.org/10.1080/23752696.2019.1710550

[2] Selwyn, B., Renaud-Assemat, I., Lazar, I., & Ross, J. (2018). Improving student writing skills using a scaffolded approach. In Proceedings of the 7th International Symposium for Engineering Education (ISEE 2018) University College London.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Research, Collaborating with industry for teaching and learning, Graduate employability and recruitment

Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)

Keywords: Transformational Change, Industry-Education Partnerships, Educational Research, Scholarship

Abstract: The ‘Transforming Tomorrow’ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to ‘hit the ground running’ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.

 

Introduction

WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Department’s experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.

The ‘Transforming Tomorrow’ Project is about taking a holistic view of the Department’s educational provision in order to understand the effectiveness of the provision from students’ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we  better meet the needs of industry. This paper reports the first part of the Project.

Context

For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and  online learning; five key themes were identified:

  1. The need to adopt  a design approach to curriculum development
  2. The quality of the student experience
  3.  Student engagement
  4. The challenges and benefits of blended learning
  5. Student and academic perceptions of online learning

Each of these themes have in common the fact that the virtual learning approaches analysed and  discussed were developed over a significant period of time.   

Method and Findings

A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on students’ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown. 

The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least,  engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.

 

Figure 1: First Year Engineering Students’ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)

 

In looking at the above table one thing that immediately drew colleagues’ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested  a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.

For the academic staff, a survey conducted at the same time sought to determine colleagues’ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questions…

 

 

 

This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future).  With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.

Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st Century Industry

Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.

The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics:  

1. Teaching to Meet the Challenges of Industry

2. Student-Centred Active Learning

3. Growing independent learners

4. Levelling the Playing Field

5. Re-Designing what we do

6. Engineering  an environment for learning

Conclusion

In conclusion, society is entering what has been termed ‘the new normal’; for WMG, there is nothing ‘normal’ about what we do. We are entering a ‘Transformational Time’; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt  the ‘new normal’. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge. 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Research, Knowledge exchange

Authors: Dr Matteo Ceriotti (University of Glasgow), Niven Payne (Fujitsu UK), Giulia Viavattene (University of Glasgow), Ellen Devereux (Fujitsu UK), Dr David Snelling (Fujitsu UK) and Matthew Nuckley (Fujitsu UK)

Keywords: Space, Debris Removal, Sustainability, Optimisation

Abstract: A partnership between the University of Glasgow, Fujitsu UK, Astroscale and Amazon Web Services was established in response to a UK Space Agency call on Active Debris Removal mission design. This is the process of de-orbiting space debris objects from low Earth orbit with a dedicated spacecraft. The consortium brought together different but complementary expertise and tools to develop an algorithm (using machine learning and quantum-based computing) to design multiple-debris removal missions, able to select feasible sequences of debris objects among millions of permutations, in a fraction of the time of previous methods, and of better performance in terms of time and propellant required.

 

Overview

Space and its services have become part of everyone’s daily life, quietly. Things like mapping, geolocation, telecommunication services and weather forecast all depend on space assets. The continuous and increasing exploration and exploitation of space heavily depends on sustainability: defunct satellites and other spacecraft and launcher parts that became part of space debris population, or “junk”, increasing the threat of collision for current and future missions. There are 34,000 objects larger than 10 cm, and 130 million smaller than 1 cm, including non-operational satellites, upper stage rocket bodies, satellite parts, etc. Most of these objects are in the low Earth orbit region (below 1000 km), which is where most satellites operate.

Design of new satellites for demise prevents the creation of further debris. Active debris removal (ADR) aims dispose of debris objects that are currently in orbit. ADR actions require a “chaser” spacecraft to grapple a “non-cooperative” target, and transfer it to an orbit low enough that it will eventually de-orbit and burn in the atmosphere in a relatively short amount of time.

The idea

Many ADR missions would be required to make a substantial contribution in diminishing the debris population. The business challenge was to investigate how we could make space debris removal missions more commercially viable. This project investigated the feasibility, viability and design of removal and disposal of multiple debris objects using a single chaser spacecraft. The mission scenario involves a spacecraft that transfers to the orbit of one or more objects, captures it (or them), and then transfers to a lower orbit for release and disposal. At low altitude, the atmospheric drag will quickly cause the object to rapidly fall and burn in the atmosphere. In the meantime, the chaser spacecraft will transfer to another object (or set of objects) and continue the mission.

 

The problem

With million pieces of space junk, there are multiple trillions of permutations for ADR missions between these objects, that would need to be investigated, to efficiently remove even only a few of them. Since orbital transfers have no analytical closed-form solutions, an optimisation strategy must be used to find a solution to trajectory design problems, which is generally computationally demanding.

Our solution

The aim of this project was to make space debris removal missions more commercially viable, through a new solution that allows fast mission planning. First, an Artificial Neural Network (ANN) is trained to predict the cost of orbital transfer to and disposal of a range of debris objects quickly. Then, this information is used to plan a mission of four captures from candidate possible debris targets using Fujitsu’s quantum-inspired optimisation technology, called Digital Annealer (DA), by formulating the problem as a quadratic unconstrained binary optimisation. We used Astroscale’s mission planning data and expertise, and run the algorithms on the Amazon Web Services (AWS) Sagemaker platform. For technical details on our approach, the reader is referred to the publications below.

Outcomes

In a test-scenario, we showed that our solution produced a 25% faster mission, using 18% less propellant when compared to an expert’s attempt to plan the mission using the same assumptions; this was found 170,000 times faster than current methods based on an expert’s work.

Partnership

The project involved the partnership of four institutions, with areas of contributions described in the following diagram:

We believe the key to the success of the partnership was the different, but complementary areas of expertise, tools offered, and contribution of each partner into the project. It may be easier to rely on existing network of contacts, often with similar areas of expertise. However, this project shows that the additional effort of creating a new partnership can have great benefits, that overcome the initial difficulties.

Project set up

An initial contact between Fujitsu and UofG defined the original idea of the project, combining the existing expertise on discrete optimisation (Fujitsu) and multi-body space missions (UofG). The team was strengthened by expertise in active space debris removal (Astroscale) and cloud computing (AWS). The project proposal was funded by the United Kingdom Space Agency (UKSA), for a duration of four months, from September 2020 to January 2021.

Due to the on-going global pandemic, the project was run entirely online, with weekly meetings on Microsoft Teams. Fujitsu, as team lead, was responsible for planning and scheduling of tasks, as well as integration of code and reporting.

Lessons learned and reflections

Reactivity in preparing a project proposal was fundamental for the project: The very first contact between the partners was made at the end of July 2020, the proposal was submitted in mid-August and the project officially kicked-off in September.

Given the short timeframe, it was important to conceive a project proposal that fit the scope of the funder, but also matches with available expertise and personnel. It was also critical to frame the business challenge in the proposal.

From the point of view of the academic team, and again given the short window between notification of successful application and start of the project, these factors were crucial for the success of the project:

A PhD student in the research group was the best candidate for the project: at the cost of taking a leave-of-absence from the PhD studentship, the project constituted a unique experience with industrial collaboration, enriched their CV through a ground-breaking project, added a conference and a journal paper to their track record, and eventually opened new areas of investigation for the rest of the PhD studentship.

It would have been probably unthinkable – or at not very credible – to deliver a project with new partners remotely without any in-person meeting before the pandemic; however, this turned out to be an enabler for this project, allowing to maximise time on actual development and save on travel costs.

Further information

G. Viavattene, E. Devereux, D. Snelling, N. Payne, S. Wokes, M. Ceriotti, Design of multiple space debris removal missions using machine learning, Acta Astronautica, 193 (2022) 277-286. DOI: 10.1016/j.actaastro.2021.12.051

D. Snelling, E. Devereux, N. Payne, M. Nuckley, G. Viavattene, M. Ceriotti, S. Wokes, G. Di Mauro, H. Brettle, Innovation in planning space debris removal missions using artificial intelligence and quantum-inspired computing, 8th European Conference on Space Debris, ESA/ESOC, Darmstadt, Germany (Virtual Conference), 2021.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Research, Graduate employability and recruitment

Authors: Alex Prince (Sheffield Hallam University) and Prof Wayne Cranton (Sheffield Hallam University)

Keywords: Innovation, SMEs

Abstract: The Sheffield innovation Programme led by Sheffield Hallam with the Growth Hub and the University of Sheffield, delivers bespoke R&D, consultancy and workshops, driving innovation in regional SMEs. In total, since 2016, our experts from across the University have supported over 400 projects with regional businesses, enabling them to grow, diversify and meet changing customer needs. Many projects lead to further collaborations such as KTPs and create new products, processes and market opportunities.

 

Background

The Sheffield Innovation Programme (SIP) was set up in 2016 to support small and medium sized enterprises (SMEs) from across the South Yorkshire region to access academic expertise, facilities and resources at Sheffield Hallam University and the University of Sheffield, to stimulate innovation and growth and to increase business competitiveness. The focus of this paper is on activities delivered by Sheffield Hallam University.

Sheffield Hallam University leads the programme, and with the £3.1m second phase of the programme also introducing two Innovation Advisors working for the Growth Hub. The programme is jointly funded by; the European Regional Development Fund (ERDF), the universities, South Yorkshire Mayoral Combined Authority and the Higher Education Innovation Fund (HEIF), providing support at zero-cost to businesses. It runs until June 2023.

Activities

The programme has now reached a milestone of 400 projects with regional SMEs, enabling them to grow, diversify and meet changing customer needs. To date over 150 academics have worked with companies. Of these 76 staff who are based in Sheffield Hallam’s engineering research centres have worked with 85 companies. 

SIP supports time for academics to undertake work with clients. It uses funding to enable delivery of R&D consultancy services to the businesses, helping to establish new products or services, resolve problems or advise on appropriate routes forwards.

Outputs

The main output is ‘business assist’ interventions- a minimum of 12 hours of engagement.  These are delivered through bespoke R&D-based consultancy and workshops. The average intervention is approx. 7 days, recognising the potential time required to work with a client meaningfully.

Sheffield Hallam has implemented a light-touch internal approval process for clients where support may take more than 10 days of time. Such investment needs to demonstrate significant added value- for the client in terms of market opportunity or jobs created, or potentially for us also in terms of joint funding proposal development.

SIP has now resulted in 8 successful KTP applications for Sheffield Hallam with more in the pipeline, plus other Innovate UK and commercial consultancy activities, plus considerable reputational benefit regionally.

SIP, Innovation and Engineering expertise

SIP has developed a proven model for collaborating with SMEs, buying out the time of engineers and other academic experts so they can work with companies.

The core areas of academic support are the expertise within the Materials Engineering Research Institute (MERI), the National Centre of Excellence for Food Engineering (NCEFE), and the Sport Engineering Research Group (SERG) and Design Futures (Product and Packaging).

In a region with a very low level of innovation and investment in R&D, the project provides an important entry point to the University’s expertise and a platform for longer term projects and creates opportunities for early career researchers, graduate interns and KTP associates.  Project delivery connects our engineering expertise with specialisms across the University resulting in collaborations with designers, biosciences and materials, and supports targeted engagement with sectors for example glass and ceramics and the food industry.

Examples: 

  1. Thermotex Engineering a family-run business which operates in the field of thermodynamics and specialises in manufacturing thermal insulation. The company required physical evidence of how a fabric performed in order to make a bid for a major project based in Arctic Russia. We undertook accelerated weathering testing on the durability of a fabric material when it was exposed to cycles of freezing and thawing, UVB radiation and high temperature / relative humidity. ‘This solution provided us with indicative product testing for unusual characteristics, access to laboratory equipment, and performance of specific tests,’ said Paige Niehues, the Commercial and Technical Executive at Thermotex Engineering. https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/case-studies/accelerated-weathering-testing
  2. Sheffield-based SME Safety Fabrications Ltd manufactures fall protection and building access solutions. This includes roof top anchoring systems that allow roped access (e.g., abseiling) at height.  The company wanted to develop a new davit arm and socket system that could be used on tall structures to improve rope access for building maintenance. Their unique product idea avoided permanent obstruction on roof tops and allowed for easy installation and removal.  MERI worked with Safety Fabrications Ltd to design different davit arm configurations which would satisfy the complex needs of the BS specification. “Working with engineering specialists within the university allowed us to theoretically explore a range of options prior to manufacture & physical testing.” John Boyle, Managing Director at Safety Fabrications Limited https://sip.ac.uk/portfolio/safetyfabrications/
  3. Equitrek provides an excellent example of cross disciplinary working and progression of relationships with a company. In summary our design expertise enabled the company to manufacture new horse boxes targeting entry into the American market and has led to longer term KTPs.  The KTP has enabled Equi-Trek to enhance all aspects of their new product development processes, including ergonomics, spatial design, technical analysis and manufacturing.   https://www.shu.ac.uk/news/all-articles/latest-news/hallam-knowledge-transfer-partnership-local-firm-outstanding
  4. Sheffield Hallam’s National Centre of Excellence for Food Engineering helping local business Dext Heat Recovery, who worked with restaurant chains including Nando’s and Frankie and Benny’s, to develop a heat exchanger to work in industrial kitchens – reducing energy costs and environmental impact. https://www.shu.ac.uk/national-centre-of-excellence-for-food-engineering/our-impact/all-projects/dext-heat-recovery
  5. Guildhawk employs thousands of translators across the world for hundreds of clients . A project with SIP led to a KTP. At the SHU Innovation Conference 2021. Jurga Zilinskiene MBE, the CEO, told delegates in her keynote address that the KTP helped create an extraordinary SaaS platform that for the first time will help businesses of all sizes to manage people in a fast, easy and secure way.  The partnership resulted in the launch of new software products, Guildhawk Aided, Text Perfect and Guildhawk Voice avatars. https://www.fenews.co.uk/education/clean-data-for-ai-at-the-heart-of-industry-4-0-technology-revolution-says-guildhawk-ceo-coder/

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange

Authors: Dr Tom Allen (Manchester Metropolitan University), Prof Andy Alderson (Sheffield Hallam University) and Dr Stefan Mohr (HEAD)

Keywords: Sport, Tennis, Material, Auxetic, Mechanics

Abstract: The case study is interesting as it combines the engaging topics of smart materials and sports engineering, and showcases the release of a sports product. The work is underpinned by academic papers, include a teaching focus one detailing how materials have influenced tennis rackets dating back to the origins of the game. Effect of materials and design on the bending stiffness of tennis rackets: https://doi.org/10.1088/1361-6404/ac1146. Review of auxetic materials for sports applications: Expanding options in comfort and protection: https://doi.org/10.3390/app8060941.

 

This case study is about the application of auxetic materials to sports equipment. Particularly, it is about the development of the first ever tennis racket to feature auxetic fibre-polymer composites [1]. In our work, we aim to combine the exciting fields of sport and advanced materials to engage people with science, technology, engineering, and maths (STEM). Indeed, our work is multi-disciplinary. Dr Mohr is the R&D Manager for PreDevelopement at HEAD and brings expertise in tennis racket engineering, Dr Allen and Professor Alderson are academics and bring respective expertise in sports engineering and smart materials.

Dr Allen has been researching the mechanics of sports equipment for many years, with a focus on tennis rackets [2]. One project involved characterising the properties of over 500 diverse rackets dating back to the origins of the game in the 1870s to the present day. The rackets were from various collections, including the Wimbledon Lawn Tennis Museum in London, and HEAD in Kennelbach Austria, where Dr Mohr works. The museum houses particularly old and rare rackets, whereas the collection at HEAD has a broad range of more modern designs. Initial work involved developing techniques for efficiently characterising many rackets [3]. Subsequent publications describe how a shift in construction materials – from wood to fibre-polymer composites – around the 1970s and 1980s led to lighter and stiffer rackets, with shorter handles and larger heads [4], [5]. Indeed, the application of new materials has driven the development of tennis rackets, and further advances are likely to come from developments in materials and manufacturing techniques.

Professor Alderson has been researching smart materials and structures for many years, with a focus on auxetic materials [6]. Auxetic materials have a negative Poisson’s ratio, which means that they fatten when stretched and become thinner when compressed. A negative Poisson’s ratio can enhance other properties, including vibration damping. Dr Allen and Professor Alderson have been working together to apply auxetic materials to sports equipment [7]. Dr Allen discussed this work on auxetic materials with Dr Mohr, and this led to the collaboration between the three parties that resulted in the new racket design [1].

Auxetic fibre-polymer composites were particularly appealing to Dr Mohr for application in tennis rackets, as they can be made using conventional fibres and resins, by simply arranging the fibres in specific orientations [8]. Following a visit to HEAD, where he was able to see the prototyping facilities, Professor Alderson developed various auxetic fibre-polymer composites, using the materials already being used by HEAD to make rackets. HEAD then developed prototype rackets incorporating these auxetic fibre-polymer composites at their research and development facility in Kennelbach. The racket designs were further developed and refined through testing, both in the laboratory and on the tennis court with players providing feedback.  

The first tennis racket with auxetic fibre composites was released in late 2021, in the form of the HEAD Prestige (Figure 1a). The Prestige was followed by the release of a new racket silo (collection) in early 2022 in the form of the Boom (Figure 1b). Drs Mohr and Allen and Professor Alderson are now exploring options for further applying auxetic materials to tennis rackets. Dr Allen’s teaching case study on the historical development of the tennis racket [4] has been enriched by including the story behind the development of the new auxetic fibre-polymer composite rackets [1]. He also includes discussion of emerging topics in the case study that could be applied to tennis rackets, such as more automated manufacturing techniques like additive manufacturing, and more environmentally friendly materials, like natural fibres and resins [5]. We hope that the new tennis rackets will raise awareness of auxetic materials amongst the public, and the case study will help inspire others to use topics like sports engineering and advanced materials to support their STEM teaching and public engagement.  

 

Figure 1 Examples of HEAD rackets featuring auxetic fibre-polymer composites, a) Prestige Pro and b) Boom Prom.

 

References

[1]         HEAD Sports, “Auxetic – The Science Behind the Sensational Feel,” 2021. https://www.head.com/en_GB/tennis/all-about-tennis/auxetic-the-science-behind-the-sensational-feel (accessed Feb. 05, 2022).

[2]         T. Allen, S. Choppin, and D. Knudson, “A review of tennis racket performance parameters,” Sport. Eng., vol. 19, no. 1, Mar. 2016, doi: 10.1007/s12283-014-0167-x.

[3]         L. Taraborrelli et al., “Recommendations for estimating the moments of inertia of a tennis racket,” Sport. Eng., vol. 22, no. 1, 2019, doi: 10.1007/s12283-019-0303-8.

[4]         L. Taraborrelli, S. Choppin, S. Haake, S. Mohr, and T. Allen, “Effect of materials and design on the bending stiffness of tennis rackets,” Eur. J. Phys., vol. 42, no. 6, 2021, doi: 10.1088/1361-6404/ac1146.

[5]         L. Taraborrelli et al., “Materials Have Driven the Historical Development of the Tennis Racket,” Appl. Sci., vol. 9, no. 20, Oct. 2019, doi: 10.3390/app9204352.

[6]         K. E. Evans and A. Alderson, “Auxetic materials: Functional materials and structures from lateral thinking!,” Adv. Mater., vol. 12, no. 9, 2000, doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.

[7]         O. Duncan et al., “Review of auxetic materials for sports applications: Expanding options in comfort and protection,” Applied Sciences (Switzerland), vol. 8, no. 6. 2018, doi: 10.3390/app8060941.

[8]         K. L. Alderson, V. R. Simkins, V. L. Coenen, P. J. Davies, A. Alderson, and K. E. Evans, “How to make auxetic fibre reinforced composites,” Phys. Status Solidi Basic Res., vol. 242, no. 3, 2005, doi: 10.1002/pssb.200460371.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Collaborating with industry for teaching and learning, Research

Author: Prof Sa’ad Sam Medhat (IKE Institute)

Keywords: Innovation Benchmarking, Innovation Portfolios, Innovation-driven Leadership, ISO 56002, Industrial Collaboration, Growth

Abstract: The Institute of Innovation and Knowledge Exchange works closely with business and industry as well as with universities (e.g. City of Birmingham, Plymouth, Westminster). The case study will feature the application of the Investor in Innovations Standard (Aligned to the ISO 56002 Innovation Management System) within the Research, Innovation, Enterprise and Employability (RIEE) Directorate of Birmingham City University (BCU). The Case Study will look at six key areas: 1. Strategy and Alignment; 2. Organisational Readiness; 3. Core Capabilities and Technologies; 4. Industry Foresight; 5. Customer Awareness; and 6. Impact and Value.

 

Introduction

This case study draws upon the work and outcomes of the Investor in Innovations (I3) ISO56002 Standard programme Birmingham City University’s (BCU) Research, Innovation, Enterprise and Employability (RIEE) department undertook with IKE Institute to benchmark their existing innovation capabilities, identify gaps and provide an action plan for future improvement in innovation and knowledge exchange (KE).

The validation and benchmarking work conducted with BCU RIEE used a six category standard framework (see fig. 1): strategy and alignment, organisational readiness, core capabilities, technologies and IP, industry foresight, customer awareness and impact and value.

 

Fig. 1 Investor in Innovations ISO56002 Standard Framework

 

Aim

The aim of the case study was to examine each of these categories to assess how knowledge exchange methodologies, practices, tools and techniques were being used to support the university’s innovation ambitions, and ultimately, to drive up value and impact.

Innovation and knowledge exchange are inextricably linked (see fig. 2). Innovation needs knowledge exchange to fuel every stage of its process, from listening and discovery, through design and experimentation to implementation and measurement. Conversely, knowledge exchange needs innovation to create a focus for engagement. Innovation gives knowledge exchange its creative, entrepreneurial spirit. The two are required to work in unison if an organisation is to achieve higher levels of innovation maturity.

 

Fig. 2 The link between the innovation process and knowledge exchange

 

Enabling innovation and knowledge exchange to work concurrently was shown to be a central theme within RIEE, exemplified, particularly, through their STEAMhouse project (see fig. 3). A collaborative innovation campus which provides product and service innovation and knowledge exchange to business.

 

Fig 3. BCU RIEE’s STEAMhouse project

 

Strategy and alignment

The critical aspect of this category was to examine BCU’s Innovation Strategy and how well aligned this was to the overall 2025 Strategy for the university. An underpinning element of the innovation strategy, was reviewing, supporting and improving their innovation ecosystem partners (both business and industry and academic), widening and growing their STEAM (Science, Technology, Engineering, Art and Mathematics) communities of practice, and supporting direct knowledge exchange through the roll-out of commercialisation policies, training, capital and digital infrastructure to support more students and entrepreneurs.

Organisational readiness

This category assessed BCU’s innovation culture, creative capabilities and the structures, processes and governance in place to support innovation developments. When examined through the knowledge exchange lens, these areas translated into BCU’s ability to use KE to spark discussion, curiosity and inspire creativity accelerating the build up of a virtuous growth mindset. BCU have engaged with over 2,500 businesses, and formally assisted 1,425 to start, grow or innovate since 2017/18. BCU demonstrated their ability to leverage this landscape to create powerful sub-networks within their wider ecosystem for greater knowledge exchange, thus, generating a force multiplier at every stage of their innovation process. Internally, dissemination of innovation wins and promotion of ideas sharing has ramped up the institution’s innovation knowledge base and underpinned a sustainable innovation pipeline of activities.

Core capabilities, technologies and IP

For an institution like BCU, this category focused on building capacity in expertise and resource. Rapid access to external knowledge sources within RIEE’s ecosystem helped to reflect different perspectives from SMEs, larger businesses, other academic stakeholders and industrial representatives from associations and learned societies. Development of 100 innovation ambassadors within RIEE has brought greater access to the ambassadors’ own communities of practice and collaborative networks. The use of crowdsourcing mechanisms such as innovation challenges, have helped build momentum around specific product, service or societal problems. Use of collaborative knowledge STEAM tools such as STEAM Sprints, have enabled greater creative problem solving and refinement of selected ideas.

Industry foresight

At the heart of this category is knowledge exchange. Through analysis and synthesis, information becomes intelligence supporting innovation directions. Within RIEE, long-established and engrained partnerships with external stakeholders and engagement on industry forums have been utilised to acquire sectoral knowledge and key market intelligence informing and shaping the exploration and exploitation of new scientific, technological and engineering discoveries. The university’s representation on key regional advisory boards positioned them as thought leaders and led to sculpting regional strategies and plans.

Customer awareness

BCU’s Public and Community Engagement Strategy forms the basis for mechanisms to drive productive knowledge exchange. This category focused on understanding the needs of the customer and involving them in the innovation development process. RIEE demonstrated its ability to use collaborative networks and customer ecosystems to identify challenges. They harnessed co-creation practices and funding – e.g. Proof of Concept Support Fund for Staff – to then deliver innovative solutions.

Effective knowledge exchange requires coherent, relevant and accurate data. Through  BCU’s CRM, segmentation and narrow-casting has been achieved. This targeting of specific information through BCU’s online platforms and social media channels has encouraged 13,591 connections with businesses and proliferated greater knowledge exchange with over 2,500 engaged relationships.

Impact and value

This category’s focus ensured that a structured approach to implementation was adopted to maximise commercial success, and measurement of the innovation process meets organisational objectives. In this context, BCU’s community engagement and knowledge exchange through multiple pathways helped to underpin continual improvement of RIEE’s innovation process. The positive impact of knowledge exchange for RIEE has been defined by the development of STEAMhouse project – phase 2, and the creation of BCU Enterprises, to further drive the impact of RIEE, including research, experimentation, exploitation, and commercialisation of product IP and service know-how in STEAM disciplines.

Outcomes

Gaps were identified across all six of the I3 Standard framework categories. The key improvements in KE included:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Graduate employability and recruitment

Author: James Ford (University College London)

Keywords: Civil Engineering Design, Timber Design, Industry, Collaboration

Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.

 

Background

Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.

The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.

The Brief

Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.

 

Figure 1. Image from the project brief indicating the potential building envelopes for the roof design

 

Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.

Requirements

Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.

The chosen design was developed to include:

Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.

Figure 2. Connection detail drawing by group 9

 

Delivery

Course material was delivered over 4 sessions with a final session for presentations:

Session 1: Project introduction and scheme designing

Session 2: Timber design

Session 3: Construction and constructability

Session 4: Fire Engineering and sustainability

Session 5: Student Presentations

Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.

These sessions built on learning from previous modules and projects.

Learning / Skills Development

The project aimed to develop skills and learning in the following areas:

Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.

Benefits of Collaborating

The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.

 

Figure 3. Development of design concepts by group 12

 

The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).

Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.

Reflections and Feedback

Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.

Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.

 

Figure 4. Winning design summary diagram by group 12

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website