Author: Dr Salma .M.S. Al Arefi (University of Leeds)
Keywords: Science and Social Capitals, Sense of Belonging, Intersectionality, Student Success
Abstract: Being in a marginalised position due to feeling of otherness because of one’s gender as well as intersecting identity can create psychological hidden barriers. Coupled with science and social capitals such variables are key determines of student’s self-concept of engineering self-efficacy, competencies, and abilities. The impact of being othered may not only be limited to interest for participation in engineering but could extend beyond and significantly affect student engagement, success, and affiliation with engineering. This could impact students’ sense of belonging to their degree programme, university, and discipline, leading to adverse impacts ranging from low engagement to low attainment, or discontinuations. Such experiences can be greatly exacerbated for students with intersecting identities (‘double, triple, jeopardy’), e.g., a female student who identifies as a first-generation, working-class, disabled, commuter, carer, neurodiverse or mature student. This report presents work on progress on a student-centred interventional case study on exploring the impact of the intersectional lived experiences of underrepresented, disadvantaged and minoritised student groups in engineering beyond obvious gender and pre-university qualifications characteristics.
1. Problem Statement
Initiatives on closing the technical skills gap remain limited to access to either engineering education or the workplace. Identifying and supporting students facing barriers to continuation can be key to enhancing student success in a way that bridges the gap between the ignition of interest and transition to the engineering industry. Early but sustained engagement throughout the life cycle of an engineering student is however vital to cultivate students’ sense of belonging to their modules, degree programmes and the wider industry. That would in turn support the formation of their engineering identity.
Gendered identity, as well as pre-university qualifications, are yet perceived to exert the strongest force for marginalisation and underrepresentation in engineering education and the workplace. The impact intersecting identities can have in relation to ignition of interest, participation, as well as the formation of engineering identity, also need consideration. Along with gender, characteristics such as race, class, age, or language can have an added impact on already minoritized individuals (the ‘double, triple, quadrant…. jeopardy’), whereby the experience of exclusion and otherness can be exacerbated by overlapping marginalised identities. Coupled with the self-concept of own science capital, efficacies, and competencies [1-2], the formation of engineering identity could be expressed as a direct function of a sense of inclusion or otherwise exclusion [3]. Within this context, such an inherent feeling of connectedness describes the extent to which the lived experience of individuals is acknowledged valued and included [4], which is a healthy fertilizer for the formation of engineering identity. Perceived threats to one’s belonging due to a feeling of exclusion or rejection could on the contrary negatively impact one’s perception of self-efficacy and hence affiliation with engineering.
2. Project Aims
The role of effect in learning to foster a sense of belonging and enhance a coherent sense of self and form the engineering identity has attracted growing pedagogical research interest. In academia, a sense of belonging has been shown to excrete the largest force on one’s intent to participate in engineering and to be the key sustainable vehicle for successful progressions. Because engineering learning activities are pursued in complex social interactions, acknowledging, and understanding the role of belonging in academic success is key to fostering an inclusive culture that encourages and recognises contributions from all. It is hoped that the project outcomes can advise on understanding to support underrepresented, marginalised and minoritised students overcome self-perceived psychological barriers to their degree programme, university, or engineering workplace. The intersectional lens of the project is aimed to uncover key culprits that impact engineering identity formation for traditionally underrepresented, disadvantaged and minoritised students beyond obvious gender and pre-university education characteristics.
Outcomes will role model fostering an inclusive culture where engineering students from all backgrounds feel that they belong in an effort to support engineering higher education institutions to adhere to the changes introduced by the Engineering Council to the U.K. Standards for Professional Engineering Competency and Commitment around recognising inclusivity and diversity. This should be applicable to other STEM-related disciplines.
3. Decolonial partnership
The project centres on students’ voices through a decolonial participation approach that acknowledges participants as co-researchers and enables them to take an active role in the co-creation of the project deliverables. Participation will be incentivised through recognition (authorship, certifications) as well as financial incentives. The use of evidence-based active listening to enable students to share their lived experiences of belonging through storytelling and story sharing is hoped to create a safe space to empower and acknowledge student voices so that every student feel that they matter to their degree programme, university, and discipline. That in turn would cultivate authentic learner identity and a sense of belonging.
4. Outcomes and future work
The findings are hoped to advise on a sustainable support approach whereby early and sustained engagement (throughout the student lifecycle from access to continuation, attainment, and progression) are prioritised to facilitate the transition of students into and from Engineering. Co-created artefacts from the project will be used to support access and continuation by providing examples of lived experiences for prospective students to associate with. Fostering a sense of belonging is hoped to have a direct impact on learner engagement, success, and attainment as well as enhancing students’ ability to progress towards achieving their unique goals beyond their degree.
The second phase of the 2-year project will involve student recruitment and selection, interventional listening, storytelling-based approaches and co-creation of artefacts.
Acknowledgement
The work is carried out as part of the fellowship of the Leeds Institute for Teaching Excellence in partnership with Dr Kendi Guantai, from Leeds Business School, Marketing Division and Dr Nadine Cavigioli Lifelong Learning Centre at the University of Leeds.
References
H. M. Watt, “The role of motivation in gendered educational and occupational trajectories related to maths,” Educational Research and Evaluation, vol. 12, no. 4, pp. 305-322, 2006.
F. Pajares, Gender differences in mathematics self-efficacy beliefs. Cambridge University Press, 2005.
M. Ong, C. Wright, L. Espinosa, and G. Orfield, “Inside the double bind: A synthesis of empirical research on undergraduate and graduate women of color in science, technology, engineering, and mathematics,” Harvard Educational Review, vol. 81, no. 2, pp. 172-209, 2011.
T.L. Strayhorn, 2018. College students’ sense of belonging: A key to educational success for all students. Routledge.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Lisa Simmons (Manchester Metropolitan University), Dr Carl Diver (Manchester Metropolitan University), Dr Gary Dougill (Manchester Metropolitan University), Scott Pepper (GAMBICA), Paul Foden (NMCN) and Robin Phillips (Siemens Advanta Consulting).
Abstract: FutureMe is an event designed to enhance the aspirations, confidence and the graduate destinations of students. The series begins with an ‘industry week’- a unique collaboration between University and Industry – during which industry delivers keynote talks on: professional engineering, graduate skills, internationalisation, graduate destinations, and the flagship one day industry challenge. This event has been recognised by IET, and IMechE as good practice, in working collaboratively to show students what it is like to work as a professional engineer.
What is the case study about?
Assessment centre recruitment activities form an employment barrier to entry for students and can be challenging to prepare for. A large body of research suggests that motivation to begin and complete a degree in engineering; knowledge of the engineering field and its practitioners; along with students being able to identify themselves as “being an engineer” are all key drivers in student progression and graduate success. Through collaboration with industry partners, we have developed a range of events that not only give students much-needed preparation for the recruitment process but simultaneously allow them to explore their core identity and motivation.
This case study presents the development of the “FutureMe” event, which grew from a pragmatic approach to assessment centre preparation and into a self-sustaining, collaborative community between academia and industry.
What were its aims?
The core aims of the “FutureMe” activity are to:
Provide students with an immersive learning experience with industrial partners to enhance aspirations, confidence and understanding of graduate destinations
Provide industrial partners with the opportunity to work with students throughout their studies
Provide students with the opportunity to learn about how engineers work within a business
How did it come about?
Preparing students for the assessment centre recruitment process alongside studies can be challenging. These recruitment activities are difficult, adversarial, and often intimidating for students who have limited – if any – opportunities to gain experience before they face a real recruitment panel.
“FutureMe” was established in the first instance to provide an opportunity for students to work with industrial partners on a challenge that replicated activities that are often given to applicants in an assessment centre. A key element of the challenge was that it should allow for multi-disciplinary and cross academic level working, and should not be overly technical to a particular discipline, rather it should give students an experience of how engineers work within business and the many functions within an organisation.
As the event was set up it grew to include keynote talks on; professional engineering, graduate skills, internationalisation, graduate destinations, and the flagship one-day industry challenge. Figure 1 illustrates the January 2022 schedule of events. Figure 2 provides further detail on the running order for the industry challenge session(s).
Figure 1 Example schedule of events
Figure 2 Industry Challenge Running Order
How was it set up?
Industrial partners were approached to take part in the event – the industry challenge – via the Department of Engineering’s Industrial Advisory Board (IAB), GAMBICA, GM Chamber of Commerce and IET Enterprise partners.
Industrial partners were presented with
the rationale for the event
the running order of the challenge and requirements/commitments
learning requirements of the challenge
Interested parties then contacted the lead academic for a further meeting to discuss their challenge ideas and the event.
Figure 3 shows the process from initial email invites to industrial partners to the final challenge session
Figure 3 Step process showing how industrial partners develop a challenge to take part in the event
Who did it involve? (e.g., collaborating parties)
The rationale for the event was discussed for feedback with representatives from the Department of Engineering Industrial Advisory Board, GAMBICA and GM Chamber of Commerce.
All authors of this case study, worked collaboratively to develop the event, engage additional industrial partners, and feedback to the academic teams.
What were the outcomes?
FutureMe event has run in January 2021 and 2022.
In each event, there were 900 students invited, 50 supporting academics and 20+ industry representatives.
The event has led to additional opportunities for collaboration, for example, other employability events, and curriculum support in larger projects and guest lectures.
Are there any evidential outcomes?
Students were surveyed pre and post-event, on their understanding of their career readiness, their work experience, why they chose to take part in the event and what they gained from the event.
Reasons for taking part in the event were largely (75% of respondents) related to understanding how engineers work in industry and to learning more about graduate destinations for engineers.
Post-event students enjoyed the short period of time to complete the challenge, the breadth of access to industry representatives and learning about how engineers approach challenges in industry.
What lessons were learned, or what reflections can you provide? What might you do differently?
Challenge development is a collaborative exercise between academia and industry to develop content that meets the learning criteria
The event for 2023 will move to fully onsite
Students need to have the benefits of attending the event clearly stated to improve student engagement
There is an over-whelming amount of support from industry to support this event, such that there has been a need to develop new initiatives to provide further opportunities for collaboration
Feedback from Industry
The students who I spoke to excelled and performed better than several experienced engineers that I have been interviewing over the last few months.
I found the sessions very interesting, the discussions through the Q&A after the presentations were very good. It was great to be able to delve into more of the technology stack and see how they approach it. I also found it very interesting that the two groups chose different use cases/verticals for their research, and it tilted the result to slightly different outcomes. Really interesting to see that!
A brilliant process and a great opportunity for productive collaboration between MMU and industrialists in the interest of enhancing student employability. Without a doubt, the students were the stars of the show. Super job!
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Laura Fogg-Rogers (University of the West of England, Bristol).
Case-study team: Wendy Fowles-Sweet; Maryam Lamere; Prof. Lisa Brodie; Dr Venkat Bakthavatchaalam (University of the West of England, Bristol); Dr Abel Nyamapfene (University College London).
Keywords: Education for Sustainable Development; Climate Emergency; Net Zero; Sustainable Development Goals.
Abstract: The University of the West of England (UWE Bristol) has declared a Climate and Ecological Emergency, along with all regional councils in the West of England. In order to meet the regional goal of Net-Zero by 2030, sustainability education has now been embedded through all levels of the Engineering Curriculum. Current modules incorporate education for Sustainable Development Goals alongside citizen engagement challenges, where engineers find solutions to real-life problems. All undergraduate engineers also take part in immersive project weeks to develop problem-based learning around the Engineers without Borders international challenges.
Engineering Education for Sustainable Development
The environmental and health impacts of climate change and biodiversity loss are being felt around the world, from record high temperatures, drought, wildfires, extreme flooding, and human health issues (Ripple et al., 2020). The Intergovernmental Panel on Climate Change reports that urgent action is required to mitigate catastrophic impacts for billions of people globally (IPCC, 2022). The UK Government has pledged to reach net zero emissions by 2050, with a 78% drop in emissions by 2035 (UK Government, 2021). Following IPCC guidance, regional councils such as Bristol City Council and the West of England Combined Authority, have pledged to reach Net Zero at an earlier date of 2030 (Bristol City Council, 2019). In parallel, UWE Bristol has embedded this target within its strategic plan (UWE Bristol, 2019), and also leads the Environmental Association for Universities and Colleges (EAUC), an Alliance for Sustainability Leadership in Education (UWE Bristol, 2021b). All UWE Bristol programmes are expected to embed the UN Sustainable Development Goals (SDGs) within curricula (UN Department of Economic and Social Affairs, 2021), so that higher education degrees prepare graduates for working sustainably (Gough, 2021).
Bourn and Neal (2008) draw the link between global sustainability issues and engineering, with the potential to tackle complex sustainability challenges such as climate change, resource limitations, and extreme poverty. The SDGs are therefore particularly relevant to engineers, showing the connections between social, environmental, and economic actions needed to ensure humanitarian development, whilst also staying within planetary boundaries to support life on earth (Ramirez-Mendoza et al., 2020). The engineering sector is thus obligated to achieve global emissions targets, with the work of engineers being essential to enable the societal and technological change to reach net zero carbon emissions (Fogg-Rogers, L., Richardson, D., Bakthavatchaalam, V., Yeomans et al., 2021).
Systems thinking and solution-finding are critical engineering habits of mind (Lucas et al., 2014), and so introducing genuine sustainability problems provides a solid foregrounding for Education for Sustainable Development (ESD) in engineering. Indeed, consideration for the environment, health, safety, and social wellbeing are enshrined in the UK Specification for Professional Engineers (UK SPEC) (Engineering Council, 2021). ‘Real-world’ problems can therefore inspire and motivate learners (Loyens et al., 2015), while the use of group projects is considered to facilitate collaborative learning (Kokotsaki et al., 2016). This aligns with recommendations for creating sustainability-literate graduates published by the Higher Education Academy (HEA) and the UK Quality Assurance Agency for Higher Education (QAA and Advance HE, 2021) which emphasise the need for graduates to: (1) understand what the concept of environmental stewardship means for their discipline and their professional and personal lives; (2) think about issues of social justice, ethics and wellbeing, and how these relate to ecological and economic factors; and (3) develop a future-facing outlook by learning to think about the consequences of actions, and how systems and societies can be adapted to ensure sustainable futures (QAA & HEA, 2014). These competencies are difficult to teach, and instead need to developed by the learners themselves based on experience and reflection, through a student-centred, interdisciplinary, team-teaching design (Lamere et al., 2021).
The need for engineers to learn about the SDGs and a zero carbon future is therefore necessary and urgent, to ensure that graduates are equipped with the skills needed to address the complex challenges facing the 21st Century. Lamere et al., (2021)describe how the introduction of sustainability education within the engineering curriculum is typically initiated by individual academics (early adopters) introducing elements of sustainability content within their own course modules. Full curricula refresh in the UWE Bristol engineering curricula from 2018-2020 enabled a more programmatic approach, with inter-module connections being developed, alongside inter-year progression of topics and skills.
This case study explores how UWE Bristol achieved this curriculum change throughout all programmes and created inter-connected project weeks in partnership with regional stakeholders and industry.
Case Study Methods – Embedding education for sustainable development
The first stage of the curricula transformation was to assess current modules against UK SPEC professional requirements, alongside SDG relevant topics. A departmental-wide mixed methods survey was designed to assess which SDGs were already incorporated, and which teaching methods were being utilized. The survey was emailed out to all staff in 2020, with 27 module leaders responding to highlight pedagogy in 60 modules, covering the engineering topics of: Aerospace; Mechanical and Automotive; Electrical, Electronic, and Robotics; Maths and Statistics; and Engineering Competency.
Two sub-themes were identified: ‘Direct’ and ‘Indirect’ embedding of SDGs; direct being where the engineering designs explicitly reference the SDGs as providing social or environmental solutions, and indirect being where the SDGs are achieved through engineering education e.g. quality education and gender equality. Direct inclusion of the SDGs tended to focus on reducing energy consumption, and reducing weight and waste, such as through improving the efficiency of the machines/designs. Mitigating the impact of climate change through optimal use of energy was also mentioned. The usage of lifecycle analysis was implemented in several courses, especially for composite materials and their recycling. The full analysis of the spread of the SDGs and their incorporation within different degree programmes can seen in Figure 1.
Figure 1 Number of Engineering Modules in which SDGs are Embedded
Project-based learning for civic engagement in engineering
Following this mapping process, the modules were reorganized to produce a holistic development of knowledge and skills across programmes, starting from the first year to the final year of the degree programmes. This Integrated Learning Framework was approved by relevant Professional Bodies and has been rolled out annually since 2020, as new learners enter the refreshed degree programmes at UWE Bristol. The core modules covering SDG concepts explicitly are Engineering Practice 1 and 2 (at Level 1 and 2 of the undergraduate degree programme) and ‘Engineering for Society’ (at Level 3 of the undergraduate degree programme and Masters Level). These modules utilise civic engagement with real-world industry problems, and service learning through engagement with industry, schools, and community groups (Fogg-Rogers et al., 2017).
As well as the module redevelopment, a Project-Based Learning approach has been adopted at department level, with the introduction of dedicated Project Weeks to enable cross-curricula and collaborative working. The Project Weeks draw on the Engineering for People Design Challenge (Engineers without Borders, 2021), which present global scenarios to provide university students with “the opportunity to learn and practice the ethical, environmental, social and cultural aspects of engineering design”. Critically, the challenges encourage universities to develop partnerships with regional stakeholders and industry, to provide more context for real-world problems and to enable local service learning and community action (Fogg-Rogers et al., 2017).
A collaboration with the innovation company NewIcon enabled the development of a ‘design thinking’ booklet which guides students through the design cycle, in order to develop solutions for the Project Week scenarios (UWE Bristol, 2021a). Furthermore, a partnership with the initiative for Digital Engineering Technology and Innovation (DETI) has enabled students to take part in the Inspire outreach programme (Fogg-Rogers & Laggan, 2022), which brings together STEM Ambassadors and schools to learn about engineering through sustainability focussed activities. The DETI programme is delivered by the National Composites Centre, Centre for Modelling and Simulation, Digital Catapult, UWE Bristol, University of Bristol, and University of Bath, with further industry partners including Airbus, GKN Aerospace, Rolls-Royce, and Siemens (DETI, 2021). Industry speakers have contributed to lectures, and regional examples of current real-world problems have been incorporated into assignments and reports, touching on a wide range of sustainability and ethical issues.
Reflections and recommendations for future engineering sustainability education
Students have been surveyed through module feedback surveys, and the project-based learning approach is viewed very positively. Students commented that they enjoyed working on ‘real-world projects’ where they can make a difference locally or globally. However, findings from surveys indicate that students were more inclined towards sustainability topics that were relevant to their subject discipline. For instance, Aerospace Engineering students tended to prefer topics relevant to Aerospace Engineering. A survey of USA engineering students by Wilson (2019) also indicates a link between students’ study discipline and their predilection for certain sustainability topics. This suggests that for sustainability education to be effective, the content coverage should be aligned, or better still, integrated, with the topics that form part of the students’ disciplinary studies.
The integration of sustainable development throughout the curricula has been supported at institutional level, and this has been critical for the widescale roll out. An institution-wide Knowledge Exchange for Sustainability Education (KESE) was created to support staff by providing a platform of knowledge sharing. Within the department, Staff Away days were used to hold sustainability workshops for staff to discuss ESD and the topics of interest to students. In the initial phase of the mapping exercise, a lack of common understanding amongst staff about ESD in engineering was noted, including what it should include, and whether it is necessary for student engineers to learn about it. During the Integrated Learning Framework development, and possibly alongside growing global awareness of climate change, there has been more acceptance of ESD as an essential part of the engineering curriculum amongst staff and students. Another challenge has been the allocation of teaching workload for sustainability integration. In the initial phases, a small number of committed academics had to put in a lot of time, effort, and dedication to push through with ESD integration. There is now wider support by module leaders and tutors, who all feel capable of delivering some aspects of ESD, which eases the workload.
This case study outlines several methods for integrating ESD within engineering, alongside developing partnership working for regionally relevant real-world project-based learning. A recent study of UK higher education institutions suggests that only a handful of institutions have implemented ESD into their curricula in a systemic manner (Fiselier et al., 2018), which suggests many engineering institutions still need support in this area. However, we believe that the engineering profession has a crucial role to play in ESD alongside climate education and action, particularly to develop graduate engineers with the skills required to work upon 21st Century global challenges. To achieve net zero and a low carbon global economy, everything we make and use will need to be completely re-imagined and re-engineered, which will require close collaboration between academia, industry, and the community. We hope that other engineering educators feel empowered by this case study to act with the required urgency to speed up the global transition to carbon neutrality.
References
Bourn, D., & Neal, I. (2008). The Global Engineer Incorporating global skills within UK higher education of engineers.
Bristol City Council. (2019). Bristol City Council Mayor’s Climate Emergency Action Plan 2019.
DETI. (2021). Initiative for Digital Engineering Technology and Innovation. https://www.nccuk.com/deti/
Engineers without Borders. (2021). Engineering for People Design Challenge. https://www.ewb-uk.org/upskill/design-challenges/engineering-for-people-design-challenge/
Fiselier, E. S., Longhurst, J. W. S., & Gough, G. K. (2018). Exploring the current position of ESD in UK higher education institutions. International Journal of Sustainability in Higher Education, 19(2), 393–412. https://doi.org/10.1108/IJSHE-06-2017-0084
Fogg-Rogers, L., & Laggan, S. (2022). DETI Inspire Engagement Report.
Fogg-Rogers, L., Lewis, F., & Edmonds, J. (2017). Paired peer learning through engineering education outreach. European Journal of Engineering Education, 42(1). https://doi.org/10.1080/03043797.2016.1202906
Fogg-Rogers, L., Richardson, D., Bakthavatchaalam, V., Yeomans, L., Algosaibi, N., Lamere, M., & Fowles-Sweet, W. (2021). Educating engineers to contribute to a regional goal of net zero carbon emissions by 2030. Le Développement Durable Dans La Formation et Les Activités d’ingénieur. https://uwe-repository.worktribe.com/output/7581094
Gough, G. (2021). UWE Bristol SDGs Programme Mapping Portfolio.
IPCC. (2022). Impacts, Adaptation and Vulnerability – Summary for policymakers. In Intergovernmental Panel on Climate Change, WGII Sixth Assessment Report. https://doi.org/10.4324/9781315071961-11
Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools. https://doi.org/10.1177/1365480216659733
Lamere, M., Brodie, L., Nyamapfene, A., Fogg-Rogers, L., & Bakthavatchaalam, V. (2021). Mapping and Enhancing Sustainability Literacy and Competencies within an Undergraduate Engineering Curriculum Implementing sustainability education : A review of recent and current approaches. In The University of Western Australia (Ed.), Proceedings of AAEE 2021.
Loyens, S. M. M., Jones, S. H., Mikkers, J., & van Gog, T. (2015). Problem-based learning as a facilitator of conceptual change. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2015.03.002
Lucas, Bill., Hanson, Janet., & Claxton, Guy. (2014). Thinking Like an Engineer: Implications For The Education System. In Royal Academy of Engineering (Issue May). http://www.raeng.org.uk/publications/reports/thinking-like-an-engineer-implications-summary
QAA and Advance HE. (2021). Education for Sustainable Development. https://doi.org/10.21300/21.4.2020.2
Ramirez-Mendoza, R. A., Morales-Menendez, R., Melchor-Martinez, E. M., Iqbal, H. M. N., Parra-Arroyo, L., Vargas-Martínez, A., & Parra-Saldivar, R. (2020). Incorporating the sustainable development goals in engineering education. International Journal on Interactive Design and Manufacturing. https://doi.org/10.1007/s12008-020-00661-0
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2020). World Scientists’ Warning of a Climate Emergency. In BioScience. https://doi.org/10.1093/biosci/biz088
UK Government. (2021). UK enshrines new target in law to slash emissions by 78% by 2035. https://www.gov.uk/government/news/uk-enshrines-new-target-in-law-to-slash-emissions-by-78-by-2035
UN Department of Economic and Social Affairs. (2021). The 17 Sustainable Development Goals. https://sdgs.un.org/goals
UWE Bristol. (2019). Climate and Ecological Emergency Declaration. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/climate-and-ecological-emergency-declaration
UWE Bristol. (2021a). Engineering Solutions to Real World Problems. https://blogs.uwe.ac.uk/engineering/engineering-solutions-to-real-world-problems-uwe-project-week-2020/
UWE Bristol. (2021b). Sustainability Strategy, Leadership and Plans. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/strategy-leadership-and-plans Wilson, D. (2019). Exploring the Intersection between Engineering and Sustainability Education. In Sustainability (Vol. 11, Issue 11). https://doi.org/10.3390/su11113134
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Prof Robert Hairstans (New Model Institute for Technology and Engineering), Dr Mila Duncheva (Stora Enso), Dr Kenneth Leitch (Edinburgh Napier University), Dr Andrew Livingston (Edinburgh Napier University), Kirsty Connell-Skinner (Edinburgh Napier University) and Tabitha Binding (Timber Development UK)
Keywords: Timber, Built Environment, Collaboration, New Educational Model
Abstract: The New Model Institute for Technology and Engineering, Edinburgh Napier University and Timber Development UK are working with external stakeholders to enable an educational system that will provide comprehensive training in modern methods of timber construction. A Timber Technology Engineering and Design (TED) competency framework has been derived and a UK wide student design competition will run in the 1st quarter of 2022 as part of the process to curate the learner content and enable this alternative approach to upskilling. The EPC will gain an understanding of this alternative approach to creating an educational model by means of industry engagement. This new approach has been made possible via establishing a collaborative framework and leveraging available funding streams via the partners. This will be showcased as a methodology for others to apply to their own contexts as well as offer opportunity for knowledge and value exchange.
Introduction
Edinburgh Napier University (ENU), The New Model Institute for Technology and Engineering (NMITE) and Timber Development UK (TDUK) are working with external stakeholders to enable an educational system (Figure 1) that will provide comprehensive training in modern methods of timber construction. This case study presents an alternative approach to creating this Timber Technology Engineering and Design (TED) educational model by means of industry engagement and pilot learning experiences. This new approach has been made possible by establishing a collaborative framework and leveraging available funding streams via the partners.
Figure 1 – Approach to enabling Timber TED Educational System.
Project Aims
The aim of establishing Timber TED is to provide built environment students and professionals with a comprehensive suite of online credit bearing flexible training modules to upskill in modern timber construction techniques. To align the modules with industry need the learning content is to be underpinned by a competency framework identifying the evidence-based technical knowledge and meta skills needed to deliver construction better, faster and greener. The training modules are to be delivered in a blended manner with educational content hosted online and learners assessed by ‘learning by doing’ activities that stimulate critical thinking and prepare the students for work in practice (Jones, 2007).
Uniting industry education and training resources through one course, Timber TED will support learners and employers to harness the new knowledge and skills required to meet the increasing demand for modern timber construction approaches that meet increasingly stringent quality and environmental performance requirements.
The final product will be a recognised, accredited qualification with a bespoke digital assessment tool, suitable for further and higher education as well as employers delivering in-house training, by complementing and enhancing existing CPD, built environment degrees and apprenticeships.
The Need of a Collaborative Approach
ENU is the project lead for the Housing Construction & Infrastructure (HCI) Skills Gateway part of the Edinburgh & Southeast Scotland City Region Deal and is funded by the UK and Scottish Governments. Funding from this was secured to develop a competency framework for Timber TED given the regional need for upskilling towards net zero carbon housing delivery utilising low carbon construction approaches and augmented with addition funding via the VocTech Seed Fund 2021. With the built environment responsible for 39% of all global carbon emissions, meeting Scotland’s ambitious target of net zero by 2045 requires the adoption of new building approaches and technologies led by a modern, highly skilled construction workforce. Further to this ENU is partnering with NMITE to establish the Centre for Advanced Timber Technology (CATT) given the broader UK wide need. Notably England alone needs up to 345,000 new low carbon affordable homes annually to meet demand but is building less than a third of this (Miles and Whitehouse, 2013). The educational approach of NMITE is to apply a student-centric learning methodology with a curriculum fuelled by real-world challenges, meaning that the approach will be distinctive in the marketplace and will attract a different sort of engineering learner. This academic partnership was further triangulated with TDUK (merged organisation of TRADA and Timber Trades Federation) for UK wide industry engagement. The partnership approach resulted in the findings of the Timber TED competency framework and alternative pedagogical approach of NMITE informing the TDUK University Design Challenge 2022 project whereby inter-disciplinary design teams of 4–8 members, are invited to design an exemplary community building that produces more energy than it consumes – for Southside in Hereford. The TDUK University Design challenge would therefore pilot the approach prior to developing the full Timber TED educational programme facilitating the development of educational content via a webinar series of industry experts.
The Role of the Collaborators
The project delivery team of ENU, NMITE and TDUK are working collaboratively with a stakeholder group that represents the sector and includes Structural Timber Association, Swedish Wood, Construction Scotland Innovation Centre, Truss Rafter Association and TRADA. These stakeholders provide project guidance and are contributing in-kind support in the form of knowledge content, access to facilities and utilisation of software as appropriate.
Harlow Consultants were commission to develop the competency framework (Figure 1) via an industry working group selected to be representative of the timber supply chain from seed to building. This included for example engineered timber manufacturers, engineers, architects, offsite manufacturers and main contractors.
Figure 2 – Core and Cross-disciplinary high level competency requirements
The Southside Hereford: University Design Challenge (Figure 3) has a client group of two highly energised established community organisations Growing Local CIC and Belmont Wanderers CIC, and NMITE, all of whom share a common goal to improve the future health, well-being, life-chances and employment skillset of the people of South Wye and Hereford. Passivhaus Trust are also a project partner providing support towards the curation of the webinar series and use of their Passivhaus Planning software.
Figure 3 – TDUK, ENU, NMITE and Passivhaus Trust University Design Challenge
Outcomes, Lessons Learned and Available Outputs
The competency framework has been finalised and is currently being put forward for review by the professional institutions including but not limited to the ICE, IStructE, CIAT and CIOB. A series of pilot learning experiences have been trialled in advance of the UK wide design challenge to demonstrate the educational approach including a Passivhaus Ice Box challenge. The ice box challenge culminated in a public installation in Glasgow (Figure 4) presented by student teams acting as a visual demonstration highlighting the benefits of adopting a simple efficiency-first approach to buildings to reduce energy demands. The Timber TED competency framework has been used to inform the educational webinar series of the UK wide student design competition running in the 1st quarter of 2022. The webinar content collated will ultimately be used within the full Timber TED credit bearing educational programme for the upskilling of future built environment professionals.
Figure 4 – ICE box challenge situated in central Glasgow
The following are the key lessons learned:
Collaboration is key to maximising available resources enabling ambitious programmes of work for upskilling utilising alternative educational approaches to be realised.
Challenge based learning engages students and modern digital tools foster collaboration allowing multi-disciplinary teams to form consisting of students from different Universities.
Going forward the approach requires to be captured and aligned with learning outcomes for assessment and accreditation purposes such that it can become University credit bearing.
Jones, J. (2007) ‘Connected Learning in Co-operative Education’, International Journal of Teaching and Learning in Higher Education, 19(3), pp. 263–273.
Miles, J. and Whitehouse, N. (2013) Offsite Housing Review, Department of Business, Innovation & Skills. London
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
In developing the case studies and guidance articles for the EPC’s Engineering Ethics toolkit, the authors and advisory group took into account recent scholarship on best practices in teaching engineering ethics through case studies – examples of this can be found here. They also reviewed existing case study libraries in order to add to the growing body of material available on engineering ethics; examples of these can be found below:
Previously published cases of the Applied Ethics in Professional Practice Program (formerly known as the AEPP Case of the Month Club)
Many of the cases are based on real world situations and experiences of a consulting engineer. Ideas for other cases came from the program’s Board of Review, consisting of practicing engineers and throughout the US.
Examples include: The Leaning Tower: A Timely Dilemma; To Flush or Not to Flush: That’s the Question; and The Plagiarized Proposal.
Explore a variety of case studies and scenarios including: A Client Opts for a Less Secure System; Air Bags, Safety, and Social Experiments; and Anhydrous Ammonia Hose Failure.
All published opinions of the NSPE Board of Ethical Review. Cases are filterable e.g. by keyword and/or subject, and each case is broken down into several sections: Facts; Questions; NSPE code of ethics references; Discussion; and Conclusions.
Case examples include: Public Health, Safety, and Welfare—Drinking Water Quality; and Misrepresentation—Claiming Credit for Work of Former Employer.
This series of engineering ethics case studies were created after interviews of numerous engineers, with the cases anonymised and written in a way that highlights the ethical content from each interview. These cases are primarily targeted at engineering students and professionals for their continuing professional development.
The case studies can be sorted into categories including; Academic ethics, Bioengineering, Electrical engineering and Science/research ethics and so on.
Case examples include: To Ship or Not to Ship; Disclosure Dilemma; Unintended Effects; and Is the Customer Always Right?
Cases devised by researchers aiming to advance understanding of ethical issues in engineering and technology, in addition to material supporting their use e.g. a glossary of ethical concepts.
These cases are exercises for teaching ethics in engineering studies, especially at Bachelor’s and Master’s levels.
GEC Project – Scenario Index: “The Global Engineering Competency (GEC) project aims to help technical professionals learn to more effectively span cultural boundaries. At the heart of this project is a collection of 70+ global engineering work scenarios designed for instruction and assessment.”
These case studies were created in partnership with the Royal Academy of Engineering.
Authors: Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Sarah Jayne Hitt SFHEA (NMITE); Professor Thomas Lennerfors (Uppsala University); Claire Donovan (Royal Academy of Engineering); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Isobel Grimley (Engineering Professors’ Council).
Topic: Low earth orbit satellites for internet provision.
Ethical issues: Respect for environment, Public good, Future generations.
Professional situations: Communication, Management, Working cultures.
Educational level: Intermediate.
Educational aim: Practise ethical analysis. Ethical analysis is a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.
Learning and teaching notes:
This case is about an experienced engineer leading a team at a tech start-up. The company has been awarded a contract to produce an innovative satellite that will be used in an internet constellation. While the team was initially excited about their work, some members are now concerned about the impact of the internet constellation. While mainly focused on environmental ethics, effects on human communities are also raised in this case study.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, this section enables students to practise different types of analysis and to introduce aspects of environmental ethics. It highlights the challenges of making ethical decisions with global consequences, in scenarios where policy isn’t clear. Part two develops and complicates the concepts presented in Part one to provide for additional learning by focusing on the course of actions taken by an individual engineer based on the dilemma presented in Part one. The Challenge of Environmental Ethics linked below is recommended, though not required, for students engaging with this case. Additionally, throughout the case, there is the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
identify and define positions on an ethical issue;
learn fundamental concepts of environmental ethics;
practise applying moral theories such as consequentialism and justice;
consider short- and long-term consequences of engineering and technological development.
Teachers have the opportunity to:
integrate technical content on electrical or mechanical components of communications engineering;
address approaches to professional and / or interpersonal conflict;
introduce or reinforce life cycle analysis;
Informally evaluate critical thinking and analysis.
After years of working your way up the corporate ladder, you are now Head of Engineering for a tech start-up. The company has won a contract connected to a project creating a constellation of thousands of low Earth orbit satellites. This constellation has the potential to create a reliable system of internet access for areas of the world that are hard to reach by conventional infrastructure. Your company is one of those chosen to develop and build a low-cost, lightweight, efficient satellite that can be produced at scale. This is a huge accomplishment for you, as well as for your company.
Dilemma – Part one:
A conference that brings together various project partners is met by protesters whose message is that the internet constellation has several potential negative impacts for nature and human communities. Disparaging comments have been made about your company’s participation in the project on social media. Some members of your team seem quite rattled by the protests, and you convene at a coffee shop to discuss.
Optional STOP for questions and activities:
1. Discussion: Technical analysis – Undertake a technical activity in the areas of electronic and / or mechanical engineering related to internet constellations.
2. Activity: Position analysis – Divide students into three groups—constellation project managers; satellite engineers and protestors. Imagine how their positions are related to the internet constellation. What values might inform their positions? What knowledge might inform their position that the other groups do not have access to or understanding of?
3. Discussion: Environmental analysis – While nature cannot speak for itself, if it could, what might be its position on the internet constellation? What aspects of the natural world might be affected by this technology in both the short- and long-term? For example, are there any direct or indirect effects on the health of humans and the ecosystems around them? Should the natural world of space be treated the same way as the natural world on earth?
4. Discussion: Policy analysis – Who should make decisions about projects that affect nature on a global scale? What laws or regulations exist that govern internet constellations?
5. Discussion and Activity: Moral analysis – Use environmental ethics principles such as intrinsic value and anthropocentrism to debate the project. Beyond environmental concerns, how might other ethical approaches, such as consequentialism or justice, inform positions on the issue?
Dilemma – Part two:
You remind and explain to your team members that they, and the company, have a duty to the client. Everyone has been hired to deliver a specific project and been excited about overcoming the technical challenges to ensure the project’s success. The team agrees, but also expresses concern about aspects that aren’t in the project remit, such as how the satellite will be maintained and what will happen to it at the end of its life. They demand that you pause your work until an ethical review is conducted.
You report all of this to the CEO, who reacts with disappointment and unhappiness at your team’s actions. She argues that the only thing your company is doing is building the satellite: it’s not your responsibility what happens to it afterwards. She feels that it’s your job to get your team back in line and on task. How do you approach this situation?
Optional STOP for questions and activities:
1. Discussion and Activity: How do you respond to this situation? What responsibilities do you have to your team, your boss, and the client? How will you balance these? Are the team’s engineers right to be concerned about the impact of their satellite within the wider constellation, or is it beyond their scope? Role-play an interaction between you and the engineering team, or between you and your boss.
2. Activity: Life cycle analysis – Research life cycles of satellites and their environmental impact.
3. Discussion and Activity: Debate if, and how, we have obligations to future generations. Is it possible to have a moral contract with a person that may never be born? How do we know that people in the future, will value the same things we do now? Both creating the internet constellation and preventing its implementation seem to potentially benefit future generations. How do we balance these ‘goods’ and make a decision on how to proceed? Who gets to decide?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Dawn Bonfield MBE (Aston University);Professor Sarah Hitt SFHEA (NMITE); Dr Darian Meacham (Maastricht University); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Matthew Studley (University of the West of England, Bristol); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).
Topic: Data centres’ impact on sustainable water resources.
Professional situations: Law or policy, Communication, Integrity.
Educational level: Intermediate.
Educational aim: Practise ethical judgement. Ethical Judgment is the activity of thinking about whether something has a moral attribute. Judgments involve reaching moral decisions and providing the rationale for those decisions.
Learning and teaching notes:
This case involves a situation where environmental damage may be occurring despite the mechanism causing this damage being permissible by law. The engineer at this centre of the case is to represent the company that is responsible for the potential damage, at a council meeting. It requires the engineer to weigh up various harms and goods, and make a decision that could seriously impact their own job or career. There is also a section at the end of this case study that contains technical information providing further details about the water cooling of ICT equipment.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.
Students have the opportunity to:
apply their ethical judgement to a case study relating to environmental sustainability;
judge the societal impact of a technical solution to a complex problem;
identify and analyse objective and subjective risk;
consider the concept of consensus;
communicate the risks and judgements to technical and non-technical audiences.
Teachers have the opportunity to:
introduce environmental ethics concepts related to water;
highlight the components and processes of risk analysis;
integrate technical content related to heat transfer and flow;
informally evaluate students’ critical thinking and communication skills.
The company Data Storage Solutions (DSS) has built a large data centre on land that was historically used for agriculture and owned by a farming operation. DSS was incorporated as a subsidiary of the farming company so that it could retain the water rights that were attached to the property. This ensured access to the large amount of water needed to cool their servers. This centre manages data from a variety of sources including the local hospital and university.
When the property was used as a farm, the farming operation never used its full allocation of water. Now, the data centre always uses the maximum amount legally allotted to it. For the rainy half of the year, this isn’t a problem. However, in more arid months, the nearby river almost runs dry, resulting in large volumes of fish dying. Other farmers in the area have complained that the water level in their wells has dropped, making irrigation much more expensive and challenging.
Dilemma – Part one:
You are a civil engineer working for DSS and have been requested by your boss to represent the company at a forthcoming local council meeting where the issue will be discussed. Your employer is sending you to justify the company’s actions and defend them against accusations of causing an environmental hazard in the local area which is reducing the water table for farmers and affecting local biodiversity. Your boss has told you that DSS has a right to the water and that it does not intend to change its behaviour. This meeting promises to be a contentious one as the local Green party and farmers’ union have indicated that they will be challenging the company’s water usage. How will you prepare for the meeting?
Optional STOP for questions and activities:
1. Discussion: Personal values – What is your initial position on the issue? Do you see anything wrong with DSS’s water use? Why, or why not?
2. Discussion: Professional responsibilities – What ethical principles and codes of conduct are relevant to this situation?
3. Activity: Define and identify the relevant data you should compile to take to the meeting. What information do you need in order to be prepared?
4. Activity: Stakeholder mapping – Who are all the characters in the scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully? Examples include:
Data Storage Solutions
Farmers’ union
Local Green party
Local council
Member of the public
Stakeholders who use DSS’s data storage services (such as the local hospital and schools)
Non-human stakeholders – for example, the fish, birds and insects.
5. Activity: Undertake a technical activity such as civil and / or electronic engineering related to the measurement of stream flow and calculating data centre cooling needs.
Dilemma – Part two:
As you prepare for the meeting, you reflect on several competing issues. For instance, you are an employee of DSS and have a responsibility to represent its interests, but can see that the company’s actions are environmentally harmful. You appreciate that the data centre is vital for the local community, including the safe running of schools and hospitals, and that its operation requires sufficient water for cooling. Your boss has told you that you must not admit responsibility for any environmental damage or biodiversity loss. You also happen to know that a new green battery plant is planning to open nearby that will create more data demand and has the potential to further increase DSS’s water use. You know that obtaining water from other sources will be costly to DSS and may not be practically possible, let alone commercially viable. What course of action will you pursue?
Optional STOP for questions and activities:
1. Activity: Debate what course of action you should take. Should you take the company line despite knowing about the environmental impacts? Should you risk your reputation or career? What responsibilities do you have to fellow employees, the community, and the environment?
2. Activity: Risk analysis – What are the short- and long- term burdens and benefits of each course of action? Should environmental concerns outweigh others? Is there a difference between the environment locally and globally?
3. Activity and discussion: Read Sandra Postel’s case for a Water Ethic, and consider New Zealand’s recent legislation that gives a rainforest the same rights as a human. With this in mind, does the stream have a right to thrive? Do the fish have a right to a sustainable environment? Are humans ultimately at risk here, or just the environment? Does that answer change your decision? Why?
4. Activity: Prepare a statement for the council meeting. What will you argue?
You could take the company line and refuse to consider any compromise. After all, you have the legal right to the water.
You could take the environmentalists’ side and go against your boss, admitting that the company is aware of the environmental damage, but that they refuse to do anything about it.
You could work up a proposal for obtaining the water from a different source, or alternative technical solutions, despite not having the backing of your boss.
Are there other alternatives available to you?
5. Activity: The students should interrogate the pros and cons of each possible course of action including the ethical, the practical, the cost, the local relationship and the reputational damage implications. They should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options.The students may wish to consider this from other perspectives, such as:
What actions are available to individuals at each level of hierarchy in DSS – for example, a junior engineer compared to a senior manager?
What would the best outcome be if the business or cost considerations were of no consequence?
What course of action would be taken if different perspectives were taken as the priority – for example, if the environmental perspective were the main priority what action would be taken, compared with action taken if the cost to the local economy were the main priority?
What are the wider implications of data storage on the environment and how can these be mitigated?
What could be other direct and indirect benefits of data centres, other than being a place to house data – for example, is there an opportunity for the waste heat from DSS to become a benefit? (Use theThe city where the internet warms people’s homes article.)
What are the possible solutions open to you?
Are there any short-term solutions versus longer-term solutions?
7. Activity: Allow students to reflect on how this case study has enabled them to see the situation from different angles, and whether this has helped them to understand the ethical concerns and come to an acceptable conclusion.
Annex – Accompanying technical information:
ICT equipment generates heat and so most devices must have a mechanism to manage their temperature. Drawing cool air over hot metal transfers heat energy to that air, which is then pushed out into the environment. This works because the computer temperature is usually higher than the surrounding air. There are several different mechanisms for data centre cooling, but the general approach involves chillers reducing air temperature by cooling water – typically to 7–10 °C, which is then used as a heat transfer mechanism. Some data centres use cooling towers where external air travels across a wet media so that the water evaporates. Fans expel the hot, wet air and the cooled water is recirculated. Other data centres use adiabatic economisers – where water is sprayed directly into the air flow, or onto a heat exchange surface, thereby cooling the air entering the data centre. With both techniques the evaporation results in water loss. A small 1 MW data centre using one of these types of traditional cooling can use around 25.5 million litres of water per year. Data centre water efficiency deserves greater attention. Annual reports show water consumption for cooling directly paid for by the operator, so there is an economic incentive to increase efficiency. As the total energy share of cooling has fallen with improving PUEs (Power Usage Effectiveness metric), the focus has been on electricity consumption, and so water has been a low priority for the industry. However, the largest contributor to the water footprint of a data centre is electricity generation. Where data centres own and operate the entire facility, there is more flexibility for exploring alternative sources of water, and different techniques for keeping ICT equipment cool.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).
Topic: Trade-offs in the energy transition.
Engineering disciplines: Chemical engineering, Electrical engineering, Energy.
Ethical issues: Sustainability, Honesty, Respect for the environment, Public good.
Professional situations: Communication, Bribery, Working cultures.
Educational level: Intermediate.
Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to consider, and respond to, a problem in a fair and responsible way.
Learning and teaching notes:
This case requires an engineer with strong convictions about sustainable energy to make a decision about whether or not to take a lucrative contract from the oil industry. Situated in Algeria, the engineer must weigh perspectives on environmental ethics that may differ from those informed by a different cultural background, as well as navigate unfamiliar workplace expectations. The engineer’s own financial wellbeing is also at stake, which may complicate decision-making. As a result, this case has several layers of relations and potential value-conflicts. These include values that underlie assumptions held about the environment and its connection to human life and services.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired. To prepare for activities related to environmental ethics, teachers may want to read, or assign students to pre-read the following academic articles: ‘Environmental ethics: An overview’ or ‘Mean or Green: Which values can promote stable pro-environmental behavior?’
Learners have the opportunity to:
analyse value assumptions related to environmental ethics;
consider whether decisions made by an engineer are ethically acceptable or unacceptable;
undertake cost-benefit and value trade-off analysis in the context of an ethical dilemma;
practise argument and reasoning related to an ethical dilemma;
use heuristics to help ethical decision-making.
Teachers have the opportunity to:
introduce concepts related to values in environmental ethics;
informally evaluate students’ argument and reasoning skills;
integrate technical content in the areas of chemical and / or electrical engineering related to energy trade-offs;
highlight heuristics as tools for ethical decision-making;
address cultural and professional norms in different countries.
You are an electrical engineer who had a three-year contract with a charity in Algeria to install solar systems on remote houses and farms that were not yet connected to the grid. The charity’s project came to an end and you have set up your own company to continue the work. It has been difficult raising money from investors to fund the project and the fledgling business is in debt. It is doubtful that your company will survive for much longer without a high-profit project.
During your time in Algeria, you have made many local and regional contacts in the energy industry. Through one of these contacts, you learn of an energy company operating a large oil field in the region that is looking to convert to solar energy to power its injection pumping, monitoring, and control systems. In doing so, the oil field will eliminate its dependency on coal-fired electricity, increasing production while boosting the company’s environmental credentials. It also hopes to make use of a governmental tax credit for businesses that make such solar conversions.
Optional STOP for questions and activities:
1. Discussion: What is your initial reaction to using solar energy for oil and gas production? What might your initial reaction reveal to you about your own perspectives and values?
2. Discussion and activity: List the potential benefits and risks to implementing this technology. Are these benefits and risks the same no matter which country they are implemented in?
3. Activity: Research the trend for using solar energy in oil and gas production. Which companies are promoting it and which countries are using this technology?
4. Discussion and activity related to optional pre-readings: Consider how your perspective is related to the following environmental values, and pair/share or debate with a peer.
Anthropocentrism versus Biocentrism – are humans above or a part of the environment?
Intrinsic versus Instrumental – is nature inherently valuable or only valuable because of the use humans can make of it?
Holism versus Individualism – are certain elements of the environment more valuable than others, or does every part of the ecosystem have equal value?
Egoism versus Altruism – do we care about the environment as a result of what we gain from it, or regardless of human benefits?
Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change?
Dilemma – Part one:
The following week you receive a phone call in your home office. It is a representative of the energy company named Sami. He asks you to bid for the solar installation contract for the oilfield. At first you are reluctant, it doesn’t seem right to use solar power to extract fuel that will contribute to the ongoing climate emergency. You explain your hesitation, saying “I got into the solar business because I believe we have a responsibility to future generations to develop sustainable energy.” Sami laughs and says “While you’re busy helping people who don’t exist yet, I’m trying to provide energy to the people who need it now. Surely we have a responsibility to them too?”
Sami then quotes a figure that the company is willing to pay you for the project work. You are taken aback at how large it is – the profit made on this contract would be enough to pay off your debts and give your business financial security moving forward. Still, you hesitate, telling Sami you need some time to think it over. He agrees and persuades you to attend dinner with him and his family later that week.
Optional STOP for questions and activities:
1. Discussion: Have you done anything wrong by accepting Sami’s dinner invitation?
2. Discussion: Environmental ethics deals with assumptions that are often unstated, such as the obligation to future generations. Like Sami, some people find that our obligation is greater to people who exist at this moment, not to those that don’t yet exist. Do you agree or disagree with this position? Why? Can we maintain an obligation to future generations while simultaneously saying that this must be weighed against the obligations in the here and now?
3. Activity: Both cost-benefit and value trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences. [use the Mapping actors and processes article to help with this activity].
4. Activity: Using reasoning and evidence, create arguments for choosing one of the possible courses of action.
5. Activity: Undertake technical calculations in the areas of chemical and / or electrical engineering related to carbon offset and solar installations.
Dilemma – Part two:
When you arrive at Sami’s house for dinner you are surprised to find you aren’t the only guest. Leila, a finance manager at the oil company is also present. During the meal, she suggests they are considering investing in your business. “After all,” she points out, “many of our employees and their families could really use solar at their homes. We have even decided to subsidise the installation as a benefit to them.”
You are impressed by the oil company’s commitment to their workers and this would also guarantee you an income stream for 3-5 years. Of course, to guarantee the investment in your company, you will have to agree to undertake the oil field installation. You comment to Leila and Sami that it feels strange to be having these formal discussions over a family meal. “This is how we do business here,” says Sami. “You become part of our family too.”
Optional STOP for questions and activities:
1. Discussion: Do you accept the contract to complete the installation? Do you accept the investment in your company? Why, or why not?
2. Discussion: Is this bribery? Why, or why not?
3. Activity: Role-play the conversation between Sami, Leila, and the engineer.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Johnny Rich (Engineering Professors’ Council); Dr Matthew Studley (University of the West of England, Bristol); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).
Professional situations: Communication, Honesty, Transparency, Informed consent.
Educational level: Intermediate.
Educational aim: Practise ethical analysis. Ethical analysis is a process whereby ethical issues are defined and affected parties and consequences are identified so that relevant moral principles can be applied to a situation in order to determine possible courses of action.
Learning and teaching notes:
This case involves a software engineer who has discovered a potential data breach in a smart home community. The engineer must decide whether or not to report the breach, and then whether to alert and advise the residents. In doing so, considerations of the relevant legal, ethical, and professional responsibilities need to be weighed. The case also addresses communication in cases of uncertainty as well as macro-ethical concerns related to ubiquitous and interconnected digital technology.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired
Learners will have the opportunity to:
analyse the ethical dimensions of an engineering situation;
identify professional responsibilities of engineers in an ethical dilemma;
determine and defend a course of action in response to an ethical dilemma;
practise professional communication;
debate possible solutions to an ethical dilemma.
Teachers will have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and/or professional conflict;
integrate technical content on software and/or cybersecurity;
informally evaluate students’ critical thinking and communication skills.
Smart homes have been called “the road to independent living”. They have the potential to increase the autonomy and safety of older people and people with disabilities. In a smart home, the internet of things (IoT) is coupled with advanced sensors, chatbots and digital assistants. This combination enables residents to be connected with both family members and health and local services, so that if there there are problems, there can be a quick response.
Ferndale is a community of smart homes. It has been developed at considerable cost and investment as a pilot project to demonstrate the potential for better and more affordable care of older people and people with disabilities. The residents have a range of capabilities and all are over the age of 70. Most live alone in their home. Some residents are supported to live independently through: reminders to take their medication; prompts to complete health and fitness exercises; help completing online shopping orders and by detecting falls and trips throughout the house. The continuous assessment of habits, diet and routines allows the technology to build models that may help to predict any future negative health outcomes. These include detecting the onset of dementia or issues related to dietary deficiencies. The functionality of many smart home features depends on a reliable and secure internet connection.
Dilemma – Part one:
You are the software engineer responsible for the integrity of Ferndale’s system. During a routine inspection you discover several indicators suggesting a data breach may have occurred via some of the smart appliances, many of which have cameras and are voice-activated. Through the IoT, these appliances are also connected to Amazon Ring home security products – these ultimately link to Amazon, including supplying financial information and details about purchases.
Optional STOP for questions and activities:
1. Activity: Technical analysis – Before the ethical questions can be considered, the students might consider a number of immediate technical questions that will help inform the discussion on ethical issues. A sample data set or similar technical problem could be used for this analysis.For example:
Is it possible to ascertain whether a breach has actually happened and data has been accessed?
What data may have been compromised?
Is a breach of this kind preventable, and could it be better prevented in the future?
Has the security been subject to a hack or is the data not secure?
Has the problem now been rectified, and all data secured?
2. Activity: Identify legal and ethical issues. The students should reflect on what might be the immediate ethical concerns of this situation. This could be done in small groups or a larger classroom discussion.
Possible prompts:
Is there a risk that the breach comprised the residents’ personal details, financial information or even allowed remote and secret control of cameras? What else could have been compromised and what are the risks of these compromises? Are certain types of data more risky when breached than others? Why?
What are the legal implications if there has been a breach? Do you, as a software engineer, have any duty to the residents at this point?
At the stage where the breach and its potential implications are unknown, should you tell the community and, if so, what should you say? Some residents aren’t always able to understand the technology or how it works, so they may be unlikely to recognise the implications of situations like this. Should you worry that it might cause them distress or create distrust in the integrity of the whole system if the possible data breach is revealed?
At the stage where the breach and its potential implications are unknown, is there anyone else you should inform? What should you tell them? Are there any risks you may be able to mitigate immediately? How?
Who owns the data collected on a person living in a smart home? What should happen to it after that person dies?
3. Activity: Determine the wider ethical context. Students should consider what wider moral issues are raised by this situation. This could be done in small groups or a larger classroom discussion.
Possible prompts:
When engineered products or systems go wrong, what is our responsibility to tell the people affected?
What is our right to privacy? Can, or should, it be traded away or sacrificed for another good? Who gets to decide?
Are smart homes a good thing if their technology is always going to present privacy risks? Should the technology be limited in some way?
The homes in this case are inhabited by senior citizens with disabilities. Do we owe a different level of care to these people than others? Why? Should engineers working on software for these homes employ a duty of care in a different way than they would in software for homes for young able-bodied professionals? Why? Should a duty of care be delivered by people who have the capacity to care in the emotional sense?
Should individuals have the ability to determine their own level of risk and choose what functionality to accept based on this risk? Should technology enable these kinds of choices?
Should engineers be held responsible for unsafe systems? If not, who is responsible?
Dilemma – Part two:
You send an email to Ferndale’s manager about the potential breach, emphasising that the implications are possibly quite serious. She replies immediately, asking that you do not reveal anything to anyone until you are absolutely certain about what has happened. You email back that it may take some time to determine if the software security has been compromised and if so, what the extent of the breach has been. She replies explaining that she doesn’t want to cause a panic if there is nothing to actually worry about and says “What you don’t know won’t hurt you.” How do you respond?
Optional STOP for questions and activities:
1. Discussion: Professional values – What guidance is given by codes of ethics such as the Royal Academy of Engineering/Engineering Council’s Statement of Ethical Principles or the Association for Computing Machinery Code of Ethics?
2. Activity: Map possible courses of action. The students should think about the possible actions they might take. They can be prompted to articulate different approaches that could be adopted, such as the following, but also develop their own alternative responses.
Do nothing. Tell no one. Try to improve the security to avoid future breaches.
Shut down the smart home technology until any, and all, risks can be mitigated.
Explain the situation fully to the residents, detailing subsequent risks for the future and steps they should take to mitigate the risks themselves.
Offer a partial explanation of the situation, the solutions proposed (or carried out) and reassure them that everything is in order.
3. Activity: Hold a debate on which is the best approach and why. The students should interrogate the pros and cons of each possible course of action including the ethical, technical, and financial implications. They should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options.
4. Activity: Role-play a conversation between the engineer and the manager, or a conversation between the engineer and a resident.
5. Discussion: consider the following questions:
What is the role of robotics and artificial intelligence in caring for people in the future?
Is there a limit to what data should be shared and is it justified to use other people’s data for profit?
Could people like Ferndale’s residents be exploited through access to their data? How?
What more could be achieved through the use of data and connectivity to care for older or ill people, in their homes or hospitals, and what additional safeguards should be put in place?
6. Activity: Change perspectives. Imagine that you are the child of one of Ferndale’s residents and that you get word of the potential data security breach. What would you hope the managers and engineers would do?
7. Activity: Write a proposal on how the system might be improved to stop this happening in the future or to mitigate unavoidable risks. To inform the proposal, the students should also explore the guidance of what might be best practice in this area. For example, in this instance, they may decide on a series of steps.
Use human care providers to inform and explain to residents (or their families) about digital security.
Deploy a more rigorous security protocol as well as a programme of regular testing and updates to minimise the risk of the situation occurring again.
Shut down systems where the risks outweigh the potential benefits.
Instigate a reporting procedure and a chain of command for decision-making in the future.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Thomas Lennerfors (Uppsala University); Nina Fowler (Uppsala University); Johnny Rich (Engineering Professors’ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).
Topic: Alternative food production.
Engineering disciplines: Energy; Chemical engineering.
Ethical issues: Sustainability; Social responsibility.
Professional situations: Public health and safety; Personal/professional reputation; Falsifying or misconstruing data / finances; Communication.
Educational level: Advanced.
Educational aim: Practise ethical reasoning. Ethical reasoning applies critical analysis to specific events in order to evaluate, and respond, to problems in a fair and responsible way.
Learning and teaching notes:
This case involves an engineer navigating multiple demands on a work project. The engineer must evaluate trade-offs between social needs, technical specifications, financial limitations, environmental needs, legal requirements, and safety. Some of these factors have obvious ethical dimensions, and others are more ambiguous. The engineer must also navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
determine if an engineering situation / technological development has ethical dimensions and identify what these are;
identify where tensions might arise between professionals;
practise stakeholder mapping;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations / technological development;
address approaches in order to resolve interpersonal and/or professional conflict;
integrate human and animal consumption industry codes and/or specifications;
integrate technical aspects of biochemical engineering;
informally evaluate students’ critical thinking and communication skills.
Power-to-X (P2X) describes a number of pathways for the transformation of electricity to alternative forms. This can be utilised for storing energy for later use, in order to balance periods of excesses and deficits resulting from the use of renewable energy technologies. It can also be used in applications that do not use electricity, such as through the transformation of electricity to hydrogen or other gases for industrial use.
One area that has seen significant development in recent years is power-to-food (PtF). This pathway results in CO2 being transformed, through chemical or biological processes powered by renewable energy, into food. One such process uses electrolysis and the Calvin cycle to create hydrocarbons from CO2, water and bacteria. The end result is a microbial protein, a substance that could be used in animal feed. Ultimately, the technology could produce a meat alternative suitable for human consumption, further reducing the carbon emissions produced by intensive animal farming.
Optional STOP for questions and activities:
1. Activity: Identify the potential harms and risks of this technology, both objective and subjective. For example, could the shift of food production from soil to chemical industries concentrate power in the hands of a few? What public perceptions or cultural values might impact the acceptance or uptake of the technology?
2. Discussion: Wider context – What social, technological, economic, environmental, political, or legal factors might need to be considered in order to implement this technology?
3. Activity: Research companies that are currently developing P2X technologies. Which industries and governments are promoting P2X? How successful have early projects been? What obstacles exist in upscaling?
4. Activity: Undertake a technical activity in the area of biochemical engineering related to the storing and transforming of renewable energy.
Dilemma – Part one:
You are the Chief Technical Officer at a company that has developed PtF technology that can convert CO2 to edible fatty acids (or triglycerides). The potential of CO2 capture is attractive to many stakeholders, but the combination of carbon reduction tied in with food production has generated positive media interest. The company also intends to establish its PtF facility near a major carbon polluter, that will reduce transport costs. However, some nearby residents are concerned about having a new industrial facility in their area, and have raised additional concerns about creating unsafe food.
As part of the process to commercialise this technology, you have been tasked with completing an ethical assessment. This includes an analysis of the technology’s short and long-term effects in a commercial application.
2. Discussion: What cultural values might impact the ethical assessment? Does trust play a role in our ethical and consumption decisions? What internal logics / business goals might steer, or influence, the acceptance of various ethical considerations?
3. Discussion: Which areas of the ethical assessment might stakeholders be most interested in, or concerned about, and why?
4. Discussion: Does the choice of location for PtF facilities influence the ethical assessment? What problems could this PtF technology solve?
5. Discussion: What competing values or motivations might come into conflict in this scenario? What codes, standards, or authoritative bodies might be relevant to this? What is the role of ethics in technology development?
6. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.
7. Activity: Research the introduction of novel foods throughout history and / or engineering innovations in food production.
8. Activity: Write up the ethical assessment of the business case, and include findings from the previous questions and research.
Dilemma – Part two:
You deliver your ethical assessment to your manager. Shortly afterwards you are asked to edit the report to remove or downplay some ethical issues you have raised. The company leadership is worried that potential investors in an upcoming financing round may be dissuaded from investing in the company if you do not edit these sections.
Optional STOP for questions and activities:
1. Discussion: Professional and ethical responsibilities – What are the ethical implications of editing or not editing the report? What consequences could this type of editing have? Think about stakeholders such as the company, potential investors and society.
2. Discussion: Wider considerations of business ethics – How would you recognise an ethical organisation? What are its characteristics? What is the role of ethics in business?
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.