“A new report from the National Engineering Policy Centre about resource efficiency and demand reduction for critical materials to support the UKâs existing Net Zero Strategy.
This report provides an overview of the underutilised policy options for achieving reductions in demands for critical materials and dependency on imports of scarce materials.
It presents a range of policy and engineering interventions around three main areas of demand-side resource management. These include: infrastructure and technology planning, design and design skills and circular economy.
The report concludes with 25 recommendations for policymakers which will help the UK cut its critical material footprint. Lead recommendations from the report call for: an integrated materials strategy, a National Materials Data Hub, infrastructure planning for material sustainability, and a new target to halve the UK’s material footprint.
The report also makes specific recommendations for targeted action, such as committing to the ban on single-use vapes, and improving repair and recycling of electronics to reduce e-waste.
Without intervention, the UK risks not achieving its Net Zero strategy and exposure to future economic uncertainty.” â The Royal Academy of Engineering
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
“Engineers are uniquely equipped to help achieve the UNâs 17 Sustainable Development Goals.
The United Nationsâ 17 Sustainable Development Goals (SDGs) represent a holistic approach to global progress, demanding a united effort to eradicate poverty and inequality alongside advancements in health, education, and sustainable economic growth. Recognizing the interconnectedness of these challenges, the SDGs emphasize tackling climate change and environmental degradation to ensure a viable future.
Engineering for One Planet (EOP) aligns with this vision by equipping future engineers with the necessary expertise to address these complex, interrelated issues. Through this focus, EOP directly contributes to achieving the UNâs ambitious agenda for a more sustainable future.” – Engineering for One Planet
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University),Professor Jarka Glassey (Director of Education, School of Engineering, Newcastle University).Â
Topic: How to integrate the SDGs using a practical framework. âŻÂ
Type: Guidance.âŻÂ
Relevant disciplines: Any.âŻÂ
Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy.Â
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UKâs Accreditation of Higher Education Programmes fourth edition (AHEP4):âŻThe Engineer and SocietyâŻ(acknowledging that engineering activity can have a significant societal impact) andâŻEngineering PracticeâŻ(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4âŻhereâŻand navigate to pages 30-31 and 35-37.âŻâŻÂ
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).âŻÂ
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for?⯠This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design. Â
Premise:Â
The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context.Â
b. Review government targets and discipline-specific guidance.Â
c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic.Â
e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert).Â
Â
2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision. Â
b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness.Â
c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert).Â
d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified.Â
e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme. Â
Â
 3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such.Â
b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules. Â
c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is:Â
âApply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).âÂ
e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials. Â
Â
For module-wide alignment:Â
1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme.Â
a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics. Â
b. Determine any specific guidelines, standards, and regulations for this theme within the discipline.Â
Â
2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps. Â
b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs.Â
c. Review feedback from current students on the clarity of the modules links to the SDGs.Â
d. Review feedback from external examiners on the sustainability content of the module.Â
3. Look ahead. Â
a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated. Â
b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options. Â
Â
Appendix:
A. Outcome I.2 (programme level mapping) Â
B. Outcome II.5 (module level mapping) â same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs.Â
Â
 C. II.6.b â Specific activitiesÂ
Activity 1: Best carried out at the start of the module and then repeated near the end of the module to compare students perception and learning. Split students into groups of 3-4, at the start of the module use the module template (attached as a resource) to clearly outline the ILOs. Then present the SDGs and ask students to spend no more than 5 min identifying the top 3 SDGs they believe the material delivered in the module will enable them to address. Justify the selection. Can either feed back or exchange ideas with the group to their right. Capture these SDGs for comparison of the repeat exercise towards the end of the module. How has the perception of the group changed following the delivery of the module and why?
Activity 2: Variation on the above activity â student groups to arrange the SDGs in a pyramid with the most relevant ones at the top, capture the picture and return to it later in module delivery
Activity 3:Â Suitable particularly for the earlier stages. Use https://go-goals.org/ to increase the general awareness of SDGs.
Activity 4: The coursework geared to the SDGs, with each student choosing a goal of their choice and developing a webmap to demonstrate the role of module-relevant data and analysis in tackling that goal.Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.Â
Author:Â Dr. Sarah Jayne Hitt Ph.D. SFHEAÂ (NMITE, Edinburgh Napier University).Â
Topic: Building sustainability awareness.Â
Tool type: Teaching.Â
Relevant disciplines: Any.Â
Keywords: Everyday ethics; Communication; Teaching or embedding sustainability; Knowledge exchange; SDGs; Risk analysis; Interdisciplinary; Social responsibility; AHEP; Sustainability; Higher education.Â
Sustainability competency: Systems thinking; Critical thinking; Self-awareness, Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UKâs Accreditation of Higher Education Programmes fourth edition (AHEP4):âŻThe Engineer and SocietyâŻ(acknowledging that engineering activity can have a significant societal impact) andâŻEngineering PracticeâŻ(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4âŻhereâŻand navigate to pages 30-31 and 35-37.âŻÂ
Related SDGs: Many SDGs could relate to this activity, depending on what students focus on. Teachers could choose to introduce the SDGs and dimensions of sustainability prior to the students doing the activity or the students could complete part one without this introduction, and follow on to further parts after an introduction to these topics.Â
Reimagined Degree Map Intervention: Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner / Intermediate.Â
Â
Learning and teaching notes:Â Â
This learning activity is designed to build studentsâ awareness of different dimensions of sustainability through reflection on their everyday activities.This activity is presented in two parts. If desired, a teacher can useâŻPart oneâŻin isolation, butâŻPart twoâŻdevelops and complicates the concepts presented inâŻPart oneâŻto provide for additional learning. Educators could incorporate shorter or longer versions of the activity as fits their needs and contexts. This activity could be presented without a focus on a specific area of engineering, or, students could be asked to do this around a particular discipline. Another powerful option would be to do the activity once at the beginning of term and then again at the end of term, asking students to reflect on how their perceptions have changed after learning more about sustainability.Â
This activity could be delivered as an in-class small group discussion, as an individual writing assignment, or a combination of both. Students could even make a short video or poster that captures their insights. Â
Learners have the opportunity to:Â
Develop awareness around personal connections to sustainability issues;Â
Engage in reflection;Â
Undertake informal research;Â
Practice communication in multiple modes.Â
Teachers have the opportunity to:Â
Introduce topics of sustainable development the UNSDGs, and dimensions of sustainability;Â
Evaluate critical thinking and/or written and/or verbal communication skills;Â
Introduce or contextualise issues around materials, manufacturing, supply chain, energy/water consumption, and end-of-life.Â
Choose 3 activities that you do every day. These could be things like: brushing your teeth, commuting, cooking a meal, messaging your friends and family, etc. For each activity, consider the following as they connect to this activity:Â
Materials and energy required to do the activity;Â
Manufacturing and transportation required to enable you to do it;Â
Water consumed and waste generated for all of the above.Â
To help you consider these elements, list the âstuffâ that is involved in doing each activityâfor example, in the case of brushing your teeth, this would include the toothbrush, the toothpaste, the container(s) the toothpaste comes in, the sink, the tap, and the water. Â
What are the âingredientsâ or materials that make up this stuff?Â
Where is this stuff made? If you donât know, can you find out? If you canât find out, why?Â
How did this stuff get to you? Can you uncover the âchain of custodyâ from where it was made to how it arrived in your possession? If not, what links in the chain are missing and what might that mean?Â
Where does it go when you are done with it, and whose responsibility is it? How circular is the waste disposal system related to this stuff? Â
Who besides you is involved in this process of supply, use, and disposal? This could include companies, government entities, and/or community and financial organisations. Â
Which engineering disciplines inform the creation, distribution, use, and disposal of this stuff? Â
Part two:Â
Teachers may want to preface this part of the activity through an introduction to the SDGs, or, they may want to allow students to investigate the SDGs as they are related to these everyday activities. Students could engage in the following:Â
Research and report on which SDG(s) are connected to this daily activity.Â
Compare and contrast how this daily activity is conducted in different countriesâhow do differences in policies and infrastructure affect how it is done, and how sustainable it is?Â
Suggest improvements to systems that would enable a more sustainable approach to this activity, from the perspective of design, manufacture, use, and disposal.Â
Debate the challenges, risks, and benefits to enacting these improvements.Â
Create a solution to an aspect of the activity that is not as sustainable as it could be. Â
Develop a campaign to influence a stakeholder to change a process in such a way that would make the activity more sustainable. Â
Acknowledgements: This activity is based on an Ethical Autobiography activity developed by Professor Sandy Woodson and other instructors of the âNature and Human Valuesâ module at the Colorado School of Mines.Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.Â
Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes.Â
Sustainability competency: Systems thinking; Anticipatory; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UKâs Accreditation of Higher Education Programmes fourth edition (AHEP4):âŻThe Engineer and SocietyâŻ(acknowledging that engineering activity can have a significant societal impact) andâŻEngineering PracticeâŻ(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4âŻhereâŻand navigate to pages 30-31 and 35-37.âŻÂ
Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production).Â
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering.Â
Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment.Â
Â
1. During research and problem definition:
Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005.Â
2. At design and conceptualisation:
Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset.Â
3.During creation and manufacturing:
The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation.Â
4. Deployment:
Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life.Â
5.Disposal:
Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal.Â
Â
Conclusion:Â
Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly. Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.Â
Sustainability competency: Collaboration; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UKâs Accreditation of Higher Education Programmes fourth edition (AHEP4):âŻThe Engineer and SocietyâŻ(acknowledging that engineering activity can have a significant societal impact) andâŻEngineering PracticeâŻ(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4âŻhereâŻand navigate to pages 30-31 and 35-37.âŻÂ
Related SDGs: All 17; see specific examples below for SDG 2 (Zero Hunger); SDG 13 (Climate Action).Â
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in Higher Education who wish to embed sustainable development goals into computing projects.Â
Education for Sustainable Development (ESD) is defined by UNESCO (2021) as: “the process of equipping students with the knowledge and understanding, skills and attributes needed to work and live in a way that safeguards environmental, social and economic wellbeing, in the present and for future generations.” All disciplines have something to offer ESD, and all can contribute to a sustainable future. This guide presents how to embed the Sustainable Development Goals (SDGs) into undergraduate computing projects, using problem-based learning and teamwork as the main pedagogical tools (Mishra & Mishra, 2020). Â
Embedding Sustainable Development Goals (SDGs) into computing group projects:Â
Typically, the aim of the undergraduate Computing Group Project is to:Â
start preparing students for a professional career in the computing industry.Â
familiarise the students with working in software development teams.Â
give them the experience of delivering a non-trivial software system. Â
This type of project provides students with an opportunity to integrate various skills, including design, software development, project management, and effective communication. Â
Â
In this project setting, the students can be asked to select a project theme based on the SDGs. The module team then can support student learning in three key ways:Â
1. Lectures, labs, and regular formative assessments can build on lab activities to walk the project groups through a sustainability journey that starts from a project pitch, continues with design, implementation, and project progress reporting, and ends with delivering a final demo.
2. Blending large classroom teaching with small group teaching, where each group is assigned a tutor, to ensure timely support and feedback on formative assessments.
3. A summative assessment based on a well-structured project portfolio template, guiding students to present and reflect on their individual contribution to the group effort. This portfolio may form the only graded element of their work, giving the students the opportunity to learn from their mistakes in formative assessments and present their best work at the end of the module. Â
Mapping the learning outcomes to the eight UNESCO key competencies for sustainability (Advance HE, 2021), the students will have the opportunity to experience the following:Â
Group work: The students plan, manage, and track a substantial group activity, understanding and applying the principles of professional and ethical behaviour in a group context. They ârecognise that a collective effort is not just a simple sum of each individualâs effort but is likely to be more complex and have multiple drivers that may be personal, political or communalâ (Advance HE, 2021, p. 24). Â
Open-ended problem: The groups take an open-ended problem, collect, and analyse relevant information and define the requirements. They will âidentify the tensions between the 17 SDGs and recognise their interconnectionsâ (Advance HE, 2021, p. 24) and work towards âcreating their visions for the futureâ (Advance HE, 2021, p. 25). Â
Non-trivial software development: The students will independently and systematically design, develop, and evaluate a piece of software that is data-driven and has non-trivial functionality. This way, they will âdevelop and implement innovative actions that further sustainable development at the local level and beyondâ (Advance HE, 2021, p. 27). Â
Alternative solutions: They will analyse complex systems and compare and evaluate alternative problem solutions according to given criteria, including from a technical perspective. Â
Communication: They will effectively present ideas and solutions, recognising the importance of âverbal and non-verbal communication skills and their role in group cohesionâ (Advance HE, 2021, p. 28). Â
More specifically, sustainable development can be embedded following a lecture-lab-formative assessment-summative assessment path:Â
1. Introduction lecture: Introduce the SDGs and give real-life examples of software that contribute to SDGs (examples include: for SDG 2 â Zero Hunger, the World Food Programmeâs Hunger Map; SDG 13 â Climate Action, Climate Mind ). The students then can be instructed to do their own research on SDGs.Â
2. Apply design thinking to project ideation: In a lecture, students are introduced to design thinking and the double-diamond of design to use a diverge-converge strategy to first “design the right thing” and second “design things right.â In a practical session, with teaching team support, the students can meet their groups for a brainstorming activity. It is essential to inform students about setting ground rules for discussion, ensuring all voices are heard. Encourage students to apply design thinking to decide which SDG-based problem they would like to work on to develop a software solution. Here, giving students an example of this process based on a selected SDG will be useful.Â
3. Formative assessment – project pitch deliverable: The next step is to channel studentsâ output of the design thinking practical to a formative assessment. Students can mould their discussion into a project pitch for their tutors. Their presentation should explain how their project works towards one or more of the 17 SDGs.Â
4. Summative assessment – a dedicated section in project portfolio: Finally, dedicating a section in a project portfolio template on ideation ensures students reflect further on the SDGs. In the portfolio, students can be asked to reflect on how individual ideas were discussed and feedback from different group members was captured. They should also reflect on how they ensured the chosen problem fits one or more SDGs, describe the selection process of the final software solution, and what alternative solutions for the chosen SDG they have discussed, elaborating on the reasons for the final choice.Â
Conclusion:Â
Computing projects provide an excellent opportunity to align teaching, learning, and assessment activities to meet key Sustainable Development competencies and learning outcomes. The projects can provide transformational experiences for students to hear alternative viewpoints, reflect on experiences, and address real-world challenges.Â
Lewrick, M., Link, P., Leifer, L.J. & Langensand, N. (2018). The design thinking playbook: mindful digital transformation of teams, products, services, businesses, and ecosystems. New Jersey: John Wiley & Sons, Inc, Hoboken.Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.Â
In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.
To view a page that only lists library links from a specific category type:
Listed below are links to resources that support educatorsâ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.
Engineering Futures – Sustainability in Engineering 2023 webinars (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.
In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.
Listed below are linksto tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.
Click to view our Collaboration resources pagewhere you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others.Â
Â
Integration tools
Listed below are links to tools designed to support educatorsâ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.
Listed below are links to resources that support educatorsâ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.
Engineering Futures – Sustainability in Engineering 2023 webinars (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.
Author: Dr Laura Fogg-Rogers (University of the West of England, Bristol).
Case-study team: Wendy Fowles-Sweet; Maryam Lamere; Prof. Lisa Brodie; Dr Venkat Bakthavatchaalam (University of the West of England, Bristol); Dr Abel Nyamapfene (University College London).
Keywords: Education for Sustainable Development; Climate Emergency; Net Zero; Sustainable Development Goals.
Abstract: The University of the West of England (UWE Bristol) has declared a Climate and Ecological Emergency, along with all regional councils in the West of England. In order to meet the regional goal of Net-Zero by 2030, sustainability education has now been embedded through all levels of the Engineering Curriculum. Current modules incorporate education for Sustainable Development Goals alongside citizen engagement challenges, where engineers find solutions to real-life problems. All undergraduate engineers also take part in immersive project weeks to develop problem-based learning around the Engineers without Borders international challenges.
Engineering Education for Sustainable Development
The environmental and health impacts of climate change and biodiversity loss are being felt around the world, from record high temperatures, drought, wildfires, extreme flooding, and human health issues (Ripple et al., 2020). The Intergovernmental Panel on Climate Change reports that urgent action is required to mitigate catastrophic impacts for billions of people globally (IPCC, 2022). The UK Government has pledged to reach net zero emissions by 2050, with a 78% drop in emissions by 2035 (UK Government, 2021). Following IPCC guidance, regional councils such as Bristol City Council and the West of England Combined Authority, have pledged to reach Net Zero at an earlier date of 2030 (Bristol City Council, 2019). In parallel, UWE Bristol has embedded this target within its strategic plan (UWE Bristol, 2019), and also leads the Environmental Association for Universities and Colleges (EAUC), an Alliance for Sustainability Leadership in Education (UWE Bristol, 2021b). All UWE Bristol programmes are expected to embed the UN Sustainable Development Goals (SDGs) within curricula (UN Department of Economic and Social Affairs, 2021), so that higher education degrees prepare graduates for working sustainably (Gough, 2021).
Bourn and Neal (2008) draw the link between global sustainability issues and engineering, with the potential to tackle complex sustainability challenges such as climate change, resource limitations, and extreme poverty. The SDGs are therefore particularly relevant to engineers, showing the connections between social, environmental, and economic actions needed to ensure humanitarian development, whilst also staying within planetary boundaries to support life on earth (Ramirez-Mendoza et al., 2020). The engineering sector is thus obligated to achieve global emissions targets, with the work of engineers being essential to enable the societal and technological change to reach net zero carbon emissions (Fogg-Rogers, L., Richardson, D., Bakthavatchaalam, V., Yeomans et al., 2021).
Systems thinking and solution-finding are critical engineering habits of mind (Lucas et al., 2014), and so introducing genuine sustainability problems provides a solid foregrounding for Education for Sustainable Development (ESD) in engineering. Indeed, consideration for the environment, health, safety, and social wellbeing are enshrined in the UK Specification for Professional Engineers (UK SPEC) (Engineering Council, 2021). âReal-worldâ problems can therefore inspire and motivate learners (Loyens et al., 2015), while the use of group projects is considered to facilitate collaborative learning (Kokotsaki et al., 2016). This aligns with recommendations for creating sustainability-literate graduates published by the Higher Education Academy (HEA) and the UK Quality Assurance Agency for Higher Education (QAA and Advance HE, 2021) which emphasise the need for graduates to: (1) understand what the concept of environmental stewardship means for their discipline and their professional and personal lives; (2) think about issues of social justice, ethics and wellbeing, and how these relate to ecological and economic factors; and (3) develop a future-facing outlook by learning to think about the consequences of actions, and how systems and societies can be adapted to ensure sustainable futures (QAA & HEA, 2014). These competencies are difficult to teach, and instead need to developed by the learners themselves based on experience and reflection, through a student-centred, interdisciplinary, team-teaching design (Lamere et al., 2021). Â
The need for engineers to learn about the SDGs and a zero carbon future is therefore necessary and urgent, to ensure that graduates are equipped with the skills needed to address the complex challenges facing the 21st Century. Lamere et al., (2021)describe how the introduction of sustainability education within the engineering curriculum is typically initiated by individual academics (early adopters) introducing elements of sustainability content within their own course modules. Full curricula refresh in the UWE Bristol engineering curricula from 2018-2020 enabled a more programmatic approach, with inter-module connections being developed, alongside inter-year progression of topics and skills.
This case study explores how UWE Bristol achieved this curriculum change throughout all programmes and created inter-connected project weeks in partnership with regional stakeholders and industry.Â
Case Study Methods – Embedding education for sustainable development
The first stage of the curricula transformation was to assess current modules against UK SPEC professional requirements, alongside SDG relevant topics. A departmental-wide mixed methods survey was designed to assess which SDGs were already incorporated, and which teaching methods were being utilized. The survey was emailed out to all staff in 2020, with 27 module leaders responding to highlight pedagogy in 60 modules, covering the engineering topics of: Aerospace; Mechanical and Automotive; Electrical, Electronic, and Robotics; Maths and Statistics; and Engineering Competency.
Two sub-themes were identified: âDirectâ and âIndirectâ embedding of SDGs; direct being where the engineering designs explicitly reference the SDGs as providing social or environmental solutions, and indirect being where the SDGs are achieved through engineering education e.g. quality education and gender equality. Direct inclusion of the SDGs tended to focus on reducing energy consumption, and reducing weight and waste, such as through improving the efficiency of the machines/designs. Mitigating the impact of climate change through optimal use of energy was also mentioned. The usage of lifecycle analysis was implemented in several courses, especially for composite materials and their recycling. The full analysis of the spread of the SDGs and their incorporation within different degree programmes can seen in Figure 1.
Figure 1 Number of Engineering Modules in which SDGs are Embedded
Project-based learning for civic engagement in engineering
Following this mapping process, the modules were reorganized to produce a holistic development of knowledge and skills across programmes, starting from the first year to the final year of the degree programmes. This Integrated Learning Framework was approved by relevant Professional Bodies and has been rolled out annually since 2020, as new learners enter the refreshed degree programmes at UWE Bristol. The core modules covering SDG concepts explicitly are Engineering Practice 1 and 2 (at Level 1 and 2 of the undergraduate degree programme) and âEngineering for Societyâ (at Level 3 of the undergraduate degree programme and Masters Level). These modules utilise civic engagement with real-world industry problems, and service learning through engagement with industry, schools, and community groups (Fogg-Rogers et al., 2017).
As well as the module redevelopment, a Project-Based Learning approach has been adopted at department level, with the introduction of dedicated Project Weeks to enable cross-curricula and collaborative working. The Project Weeks draw on the Engineering for People Design Challenge (Engineers without Borders, 2021), which present global scenarios to provide university students with âthe opportunity to learn and practice the ethical, environmental, social and cultural aspects of engineering designâ. Critically, the challenges encourage universities to develop partnerships with regional stakeholders and industry, to provide more context for real-world problems and to enable local service learning and community action (Fogg-Rogers et al., 2017).
A collaboration with the innovation company NewIcon enabled the development of a âdesign thinkingâ booklet which guides students through the design cycle, in order to develop solutions for the Project Week scenarios (UWE Bristol, 2021a). Furthermore, a partnership with the initiative for Digital Engineering Technology and Innovation (DETI) has enabled students to take part in the Inspire outreach programme (Fogg-Rogers & Laggan, 2022), which brings together STEM Ambassadors and schools to learn about engineering through sustainability focussed activities. The DETI programme is delivered by the National Composites Centre, Centre for Modelling and Simulation, Digital Catapult, UWE Bristol, University of Bristol, and University of Bath, with further industry partners including Airbus, GKN Aerospace, Rolls-Royce, and Siemens (DETI, 2021). Industry speakers have contributed to lectures, and regional examples of current real-world problems have been incorporated into assignments and reports, touching on a wide range of sustainability and ethical issues.
Reflections and recommendations for future engineering sustainability education
Students have been surveyed through module feedback surveys, and the project-based learning approach is viewed very positively. Students commented that they enjoyed working on âreal-world projectsâ where they can make a difference locally or globally. However, findings from surveys indicate that students were more inclined towards sustainability topics that were relevant to their subject discipline. For instance, Aerospace Engineering students tended to prefer topics relevant to Aerospace Engineering. A survey of USA engineering students by Wilson (2019) also indicates a link between studentsâ study discipline and their predilection for certain sustainability topics. This suggests that for sustainability education to be effective, the content coverage should be aligned, or better still, integrated, with the topics that form part of the studentsâ disciplinary studies.
The integration of sustainable development throughout the curricula has been supported at institutional level, and this has been critical for the widescale roll out. An institution-wide Knowledge Exchange for Sustainability Education (KESE) was created to support staff by providing a platform of knowledge sharing. Within the department, Staff Away days were used to hold sustainability workshops for staff to discuss ESD and the topics of interest to students. Â In the initial phase of the mapping exercise, a lack of common understanding amongst staff about ESD in engineering was noted, including what it should include, and whether it is necessary for student engineers to learn about it. During the Integrated Learning Framework development, and possibly alongside growing global awareness of climate change, there has been more acceptance of ESD as an essential part of the engineering curriculum amongst staff and students. Another challenge has been the allocation of teaching workload for sustainability integration. In the initial phases, a small number of committed academics had to put in a lot of time, effort, and dedication to push through with ESD integration. There is now wider support by module leaders and tutors, who all feel capable of delivering some aspects of ESD, which eases the workload.
This case study outlines several methods for integrating ESD within engineering, alongside developing partnership working for regionally relevant real-world project-based learning. A recent study of UK higher education institutions suggests that only a handful of institutions have implemented ESD into their curricula in a systemic manner (Fiselier et al., 2018), which suggests many engineering institutions still need support in this area. However, we believe that the engineering profession has a crucial role to play in ESD alongside climate education and action, particularly to develop graduate engineers with the skills required to work upon 21st Century global challenges. To achieve net zero and a low carbon global economy, everything we make and use will need to be completely re-imagined and re-engineered, which will require close collaboration between academia, industry, and the community. We hope that other engineering educators feel empowered by this case study to act with the required urgency to speed up the global transition to carbon neutrality.
References
Bourn, D., & Neal, I. (2008). The Global Engineer Incorporating global skills within UK higher education of engineers.
Bristol City Council. (2019). Bristol City Council Mayorâs Climate Emergency Action Plan 2019.
DETI. (2021). Initiative for Digital Engineering Technology and Innovation. https://www.nccuk.com/deti/
Engineers without Borders. (2021). Engineering for People Design Challenge. https://www.ewb-uk.org/upskill/design-challenges/engineering-for-people-design-challenge/
Fiselier, E. S., Longhurst, J. W. S., & Gough, G. K. (2018). Exploring the current position of ESD in UK higher education institutions. International Journal of Sustainability in Higher Education, 19(2), 393â412. https://doi.org/10.1108/IJSHE-06-2017-0084
Fogg-Rogers, L., & Laggan, S. (2022). DETI Inspire Engagement Report.
Fogg-Rogers, L., Lewis, F., & Edmonds, J. (2017). Paired peer learning through engineering education outreach. European Journal of Engineering Education, 42(1). https://doi.org/10.1080/03043797.2016.1202906
Gough, G. (2021). UWE Bristol SDGs Programme Mapping Portfolio.
IPCC. (2022). Impacts, Adaptation and Vulnerability – Summary for policymakers. In Intergovernmental Panel on Climate Change, WGII Sixth Assessment Report. https://doi.org/10.4324/9781315071961-11
Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools. https://doi.org/10.1177/1365480216659733
Lamere, M., Brodie, L., Nyamapfene, A., Fogg-Rogers, L., & Bakthavatchaalam, V. (2021). Mapping and Enhancing Sustainability Literacy and Competencies within an Undergraduate Engineering Curriculum Implementing sustainability educationâŻ: A review of recent and current approaches. In The University of Western Australia (Ed.), Proceedings of AAEE 2021.
Loyens, S. M. M., Jones, S. H., Mikkers, J., & van Gog, T. (2015). Problem-based learning as a facilitator of conceptual change. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2015.03.002
Lucas, Bill., Hanson, Janet., & Claxton, Guy. (2014). Thinking Like an Engineer: Implications For The Education System. In Royal Academy of Engineering (Issue May). http://www.raeng.org.uk/publications/reports/thinking-like-an-engineer-implications-summary
QAA and Advance HE. (2021). Education for Sustainable Development. https://doi.org/10.21300/21.4.2020.2
Ramirez-Mendoza, R. A., Morales-Menendez, R., Melchor-Martinez, E. M., Iqbal, H. M. N., Parra-Arroyo, L., Vargas-MartĂnez, A., & Parra-Saldivar, R. (2020). Incorporating the sustainable development goals in engineering education. International Journal on Interactive Design and Manufacturing. https://doi.org/10.1007/s12008-020-00661-0
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2020). World Scientistsâ Warning of a Climate Emergency. In BioScience. https://doi.org/10.1093/biosci/biz088
UK Government. (2021). UK enshrines new target in law to slash emissions by 78% by 2035. https://www.gov.uk/government/news/uk-enshrines-new-target-in-law-to-slash-emissions-by-78-by-2035
UN Department of Economic and Social Affairs. (2021). The 17 Sustainable Development Goals. https://sdgs.un.org/goals
UWE Bristol. (2019). Climate and Ecological Emergency Declaration. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/climate-and-ecological-emergency-declaration
UWE Bristol. (2021a). Engineering Solutions to Real World Problems. https://blogs.uwe.ac.uk/engineering/engineering-solutions-to-real-world-problems-uwe-project-week-2020/
UWE Bristol. (2021b). Sustainability Strategy, Leadership and Plans. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/strategy-leadership-and-plans Wilson, D. (2019). Exploring the Intersection between Engineering and Sustainability Education. In Sustainability (Vol. 11, Issue 11). https://doi.org/10.3390/su11113134
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.