In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on ourGet Involved page.
To view a page that only lists library links from a specific category type:
Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council).If you want to suggest a resource that has helped you, find out how on our Get Involved page.
The EPC’s Sustainability Toolkit is supported by the Royal Academy of Engineering and Siemens. This resource is designed to help engineering educators integrate sustainability-related content into teaching.
Contents
The toolkit currently includes the following, but it is a growing resource and we are currently working on further content.
Background: An article that introduces the Sustainability Toolkit. You will also be able to access a library of resources from Siemens on this page.
Knowledge tools: A suite of tools that users can access to improve their knowledge or find more information.
Guidance tools: A suite of tools that users can access to learn how to do something.
Teaching tools: A suite of tools that users can access to help them know what to integrate and implement.
Collaboration resources:A suite of resources that users can access to connect with and support others.
Get involved: A guide to how you can contribute to the Sustainability Toolkit and community.
Our contributors: We would like to thank everyone who has contributed to making the Toolkit such a useful and vital resource.
Receive notifications from the EPC: If you are not an EPC member but wish to subscribe to our mailing list, to receive notifications from the EPC, please submit your details.
Our supporters: We would like to thank the Royal Academy of Engineering and Siemens, who have both supported the Sustainability Toolkit since its inception.
Our supporters
These resources have been produced by the Engineering Professors’ Council in partnership with the Royal Academy of Engineering and Siemens.
Licensing
To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made.
Themes related to Sustainability in other EPC Toolkit resources
Please do take a look at the subset of resources from our other Toolkits that feature themes relating to sustainability.
This is just the beginning – we are already working on expanding this toolkit with future projects, including: developing more case studies, devising a system to make the case studies searchable by engineering discipline, sustainability issues and so on. For more information, see our Get involved page.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
The EPC has introduced a major new initiative to ensure the engineers of tomorrow can rise to the challenges of the climate emergency: The Sustainability Toolkit, produced with support from the Royal Academy of Engineering and Siemens. EPC President, Prof John Mitchell invites you to explore.
Professor John Mitchell, EPC President
In order to ensure that recent engineering graduates are prepared to meet the challenges of today, it is imperative that they develop a greater level of sustainability knowledge and expertise. Sustainability should become the core tenet of engineering education, training and professional practice – a view supported by research undertaken by UCL and the EPC also published by the Royal Academy of Engineering today.
A rising number of groups are advocating that engineering programmes prioritise sustainability in addition to technical knowledge in order to provide aspiring engineers with the tools and perspective they need to be successful. A plethora of areas at the policy level demonstrate this including: The Accreditation of Higher Education Programmes in engineering (AHEP, 4th edition) standards demonstrating the significance of engineering’s impact on the environment.
As part of our commitment to support EPC member institutions to integrate sustainability content in their engineering education, we’re pleased to unveil twelve guidance articles, 18 different teaching resources including five case studies, and a library of links to sustainability communities and networks that promote collaborative efforts.
The toolkit will operate as an open-access platform where users can also submit their resources for review and inclusion. Additionally, it directs users to supplementary materials curated by a team of experts.
We’d like to express our gratitude to the Sustainability Toolkit Steering Group, our Sustainability Toolkit Contributors, and our brilliant supporters, the Royal Academy of Engineering and Siemens for their unwavering assistance and backing. Chris Wise, steering group chair, has been amazing at leading by example – with his expertise and passion for embedding sustainability into the curriculum, he ensured this project reached this point seamlessly.
Sarah Jayne Hitt (Project Manager), Crystal Nwagboso (Project Manager, Research and Editorial Lead/Analyst), and Johnny Rich (Chief Executive) have also done a fantastic job of keeping everyone on course and generating excellent tools guided by the best standards.
I’m immensely proud of our collaboration with Siemens and the Royal Academy of Engineering on the new EPC Sustainability Toolkit. We’re not just shaping educational resources. We’re shaping the engineers who will shape our future.
We sincerely hope you will find these tools helpful in integrating sustainability into the classroom. Kindly let us know about your experience using them and stay tuned as we’ll be expanding the toolkit. Do get in touch or see the Toolkit for further details about submitting your own content.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
This call for contributions has now closed. However, if you wish to develop materials to contribute, become a reviewer, or suggest links to online resources that we can add to our growing database of engineering education resources for sustainability, please see our Get Involved page for updated guidance and contact details.
Background
Building capacities of educators and trainers is Priority Action Area 3 in UNESCO’s roadmap of Education for Sustainable Development. While many excellent resources explain the sustainability knowledge, skills, and mindsets essential for 21st century engineers, very few resources exist that support engineering educators to integrate these into their teaching in a comprehensive and effective way or indeed to upskill educators to be able to deliver this teaching.
To address this gap, a Sustainability Toolkitis being developed by the Engineering Professors’ Council with support from Siemens and the Royal Academy of Engineering. Its development is guided by a Steering Group comprised of academic, industry, and advocacy organisation experts.
If you have already registered an interest and we are expecting your submission, please do submit your contributions using this form by 3rd November 2023. If you wish to develop materials to contribute beyond this, we will be opening the next cycle in early 2024. However, if you wish to become a reviewer or suggest links to pages or online resources that we can add to our growing database of engineering education resources for sustainability, please contact us via sustainability@epc.ac.uk.
The Sustainability Steering Group seeks contributors to develop resources for inclusion in the toolkit. These resources will fit into two categories (Click on the arrows to expand the sections):
(1) Write guidance articles (Submit a guidance article)
The Sustainability Toolkit Steering Group seeks contributors to write guidance articles. These articles should connect the why (why must sustainability issues be central in engineering education?) to the how (how can this be done efficiently and effectively?).Through these tools, we aim to help upskill UK engineering educators so that they feel capable of and confident in integrating sustainability into their engineering teaching. Particularly, we invite guidance articles that explain the connection between engineering and sustainability. These may have the following foci:
1. An overview of why sustainability issues and the SDGs are entangled within engineering projects, products, and processes.
2. Explanations of the connections between sustainability issues and specific engineering disciplines such as Chemical, Mechanical, Electrical, Computing.
3. An explanation of how sustainability concerns are linked to different stages of the engineering process such as the design/concept stage, the manufacturing/production stage, the disposal/reuse stage, etc.
4. Explanations of the connections between sustainability in engineering and:
a. Legal, regulatory, policy, and/or political issues.
b. Ethical issues and/or engineering ethics.
c. Issues of equality, diversity, and inclusion.
5. An explanation of this new conception of engineering “from hubris to humility”.
6. Examples of how sustainability has been woven into a conventional subject.
Step 1: Read the guidance for submitting a guidance article
Guidance #1: Research Guidance #2: OverviewGuidance #3: PurposeGuidance #4: ContentGuidance #5: References and resourcesGuidance #6: Format
Research:
Before you begin, you may want to review guidance articles that form a part of the EPC’s Ethics Toolkit, since we hope that contributions to the Sustainability Toolkit will be fairly consistent in length, style, and tone.
Guidance articles are meant to be overviews that a reader with no prior knowledge of sustainability could refer to in order to develop a baseline understanding and learn where to look for additional information. They should be understandable to students as well—imagine that an educator might excerpt content from the article to provide their students context on a project or learning activity.
They should be approximately 500-1000 words and reference relevant open-source resources.
Overview:
The articles are meant to be able to stand on their own as a piece of guidance on a topic; they are also meant to work alongside other guidance articles so that taken together they form a sort of sustainability in engineering handbook.
Purpose:
Each article should inform, explain, and provide guidance on the topics. Put yourself in the perspective of an engineering educator who is new to sustainability.
Content:
The content of the article should be organised and well developed. That is, it should be presented in a logical way and thoroughly explained. Please click here for more details on the content that we’re seeking.
References and resources:
Where additional explanation could be given, it might point to other resources, and where information is presented from another source, it needs to be properly referenced.
Format
Guidance articles should follow this format:
Premise
Body of article, divided up into headed sections as necessary.
Does the article both make sense as a single piece of guidance as well as fit in with the rest of the articles to be developed?
Would someone new to sustainability understand the information presented and would it help them?
Do you need to expand on any ideas or reorganise them to make them clearer?
What additional resources or references have you included?
Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.
Step 3: Submitting your guidance article
Guidance articles should be submitted in Word file format (.doc / .docx). Any corresponding images should be submitted in either (.jpeg, .jpg or .png)
To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
You may download a PDF version of the guidelines (as outlined in Step 1) here.
Please submit your guidance article by clicking the following button:
(2) Develop teaching tools such as case studies, project briefs and technical tools (Submit a teaching tool)
The Sustainability Toolkit Steering Group seeks contributors to develop teaching tools such as case studies, project briefs and technical tools. These tools should explain pedagogies and teaching methods through resources (e.g. case studies, project briefs, and technical tools) that provide examples of the ways that sustainability issues can be embedded within technical problems and engineering practice. Through these tools, we aim to help upskill UK engineering educators so that they feel capable of and confident in integrating sustainability into their engineering teaching. Section Aprovides details about submitting a case study, Section Bprovides details about submitting a project brief, Section Cprovides details about submitting a technical tool.
SECTION A
Step 1: Read the guidance for submitting a case study
Guidance #1: Research Guidance #2: Overview Guidance #3: Authenticity Guidance #4: Complexity of issue Guidance #5: Activities and resourcesGuidance #6: Educational levelGuidance #7: Format
Research
You may develop the case in any way you see fit, but you should mimic the length, style, and tone of existing case studies found in the EPC’s Ethics Toolkit (scroll to the bottom of this page to view the subset of case studies from the EPC’s Ethics Toolkit which feature themes related to sustainability). While sustainability cases may not have the same learning outcomes as ethics cases, the format and approach should be similar. Remember that the audience for these case studies is educators seeking to embed sustainability within their engineering teaching.
The case study should be presented as a narrative about a sustainability issue in engineering. This issue should allow educators to address large-scale concerns (the SDGs and/or social, regulatory, economic, or environmental concerns) as well as small-scale concerns (individual issues such as personal choices, daily practice, relationships, etc.). Additionally, there should be enough emphasis on the engineering part of the case so that technical material could be introduced. Further ideas for case study topics could include approaches for maintaining / mending rather than new products, e.g. right to repair, up-to-date case studies from industry, understanding the sustainability implications within educational practice (e.g. 3D printing, cloud use, energy, whiteboards), etc.
Case studies are most effective when they feel like they are realistic, with characters that you can identify or empathise with, and with situations that do not feel fake or staged. Giving characters names and backgrounds, including emotional responses, and referencing real-life experiences help to increase authenticity.
Complexity of issue
Many cases are either overly complicated so that they become overwhelming, or so straightforward that they can be “solved” quickly. A good strategy is to try to develop multiple dimensions of a case, but not too many that it becomes unwieldy. Additionally, complexity can be added through different parts of the case so that instructors can choose a simpler or more complicated version depending on what they need in their educational context.
Activities and resources
You should provide a variety of suggestions for activities to engage learners as well as resources to both help educators prepare and to enhance students’ learning.
Educational level
When writing your case study, you should consider which level it is aimed at. A Beginner-level case is aimed at learners who have not had much experience in engaging with complex sustainability topics, and usually focuses on only one or two dimensions of a dilemma. An Advanced-level case is aimed at learners who have had previous practice in engaging with sustainability issues, and often addresses multiple levels of complexity. An Intermediate case is somewhere in between.
Format
The case study should follow the following format:
Learning and teaching notes: This is an overview of the case and its dilemma, and how it relates to AHEP’s themes.
Learning and teaching resources: You should provide a list of reliable, authoritative open-source online resources that relate to the case and its issue(s). These can be from a variety of sources, such as academic institutions, journals, news websites, business, and so on. We suggest a minimum of five sources that help to provide context to the case and its issues. You may want to flag up certain resources as suggested pre-reading for certain parts of the case, if you feel that this will enrich the learning experience.
Summary: This sets out the case’s initial situation and characters.
Issue – Part one: This elaborates on the case and provides a dilemma for the character.
Questions and activities: This is where you provide suggestions for discussions and activities related to the case and the dilemma.
Further issues: Some case studies are sufficiently complex at one dilemma, but if the case requires it you can provide further parts (up to a maximum of three).
Further questions and activities: After each part, you should provide further suggestions for discussions and activities related to the case and the issues.
If possible, suggest assessment opportunities for activities within the case, such as marking rubrics or example answers.
Step 2: Before you submit, review this checklist:
Is there a strong narrative to the case?
Can the topic be addressed at both a large and small scale?
Are there places where technical topics could be integrated?
Does the case have authentic characters and situations?
Is there a clear dilemma in the case?
Does the case provide enough complexity to challenge users, but not so much that people might avoid engaging with it?
Are there sufficient activities and resources suggested?
Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.
Step 3: Submitting your case study
To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
Case studies should be submitted in Word file format (.doc / .docx). Any corresponding images should be submitted in either (.jpeg, .jpg or .png)
You may download a PDF version of the guidelines (as outlined in Step 1) here.
Please submit your case study via the following button:
Step 1: Read the guidance for submitting a project brief
Guidance #1: Overview
Guidance for project briefs will be added in due course. Please check back soon. If you have any additional questions please contact s.hitt@epc.ac.uk or c.nwagboso@epc.ac.uk.
Step 2: Before you submit, review this checklist:
A checklist for project briefs will be added in due course. Please check back soon. If you have any additional questions please contact s.hitt@epc.ac.uk or c.nwagboso@epc.ac.uk.
Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.
Step 3: Submitting your project brief
To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
Project brief’s should be submitted in Word file format (.doc / .docx). Any corresponding images should be submitted in either (.jpeg, .jpg or .png)
Please submit your project brief via the following button:
Step 1: Read the guidance for submitting a technical tool
Guidance #1: Overview Guidance #2: Research
Overview:
An array of technical tools has been developed to support more sustainable engineering practices. These include:
Life cycle assessments or analysis (LCA) (e.g. single use plastics or health care packaging),
Life cycle inventory,
Embodied carbon calculators and assessments,
Sustainability assessment tools.
We are seeking examples of open-source technical tools that have been effectively integrated into engineering teaching explained through a lesson plan or guide for use.
Research:
The scientific and mathematical calculations that underpin engineering also offer an opportunity to integrate sustainability issues. Micro-insertion is a technique that introduces sustainability concerns into technical problems by providing context for what is already being taught. Most widely known as an approach for integrating ethics into engineering, we are seeking examples of micro-insertions of sustainability into common technical problems found in:
Chemical engineering,
Computing,
Mechanical engineering,
Civil engineering,
Electrical engineering,
General engineering modules
Step 2: Before you submit, review this checklist:
A checklist for technical tools will be added in due course. Please check back soon. If you have any additional questions please contact s.hitt@epc.ac.uk or c.nwagboso@epc.ac.uk.
Before you submit your contribution, have you registered as a contributor? If not, please register your interest here.
Step 3: Submitting your technical tool
To ensure that everyone can use and adapt the Toolkit resources in a way that best fits their teaching or purpose, this work will be licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence users are free to share and adapt this material, under terms that they must give appropriate credit and attribution to the original material and indicate if any changes are made.
Technical tools should be submitted in Word file format (.doc / .docx / .csv / .xlsx). Any corresponding images should be submitted in either (.jpeg, .jpg or .png)
You may download a PDF version of the guidelines (as outlined in Step 1) here.
Please submit your technical tool via the following button:
[Deadline extended] If you have already registered an interest and we are expecting your submission, we have extended the deadline to submit first drafts to 3rd November 2024. If you wish to develop materials to contribute beyond this, we will be opening the next cycle in early 2024. However, if you wish to become a reviewer or suggest links to pages or online resources that we can add to our growing database of engineering education resources for sustainability, please contact us via sustainability@epc.ac.uk.
Additional information:
In undertaking this work, contributors will become part of the growing community of educators who are helping to ensure that tomorrow’s engineering professionals sustainability skills, knowledge, and attributes that they need to provide a better future for us all. Contributors will be fully credited for their work on any relevant Toolkit materials, and will be acknowledged as authors should the resources be published in any form. Developing these resources will provide the chance to work with a dynamic, diverse and passionate group of people leading the way in expanding engineering teaching resources, and may help in professional development, such as preparing for promotion or fellowship. If contributors are not compensated by their employers for time spent on this type of activity, a small honorarium is available to encourage participation.
As part of the toolkit project, we are also developing tools for collaborating with our steering group, in-house. Stay tuned for further details.
Learn more about the Sustainability Toolkit:
Those interested in contributing to the Sustainability Toolkit should fill out this form and we will be in touch. [Update: For this cycle, this call has now closed. If you have already registered an interest and we are expecting your submission, please do submit your contributions by 3rd November 2023. If you wish to develop materials to contribute beyond this, we will be opening the next cycle in early 2024. However, if you wish to become a reviewer or suggest links to pages or online resources that we can add to our growing database of engineering education resources for sustainability, please contact us via sustainability@epc.ac.uk.]
Learn more about the members of the Sustainability Toolkit Steering Group, here.
Find out more about the Sustainability Toolkit development process in a blog post written by Siemens, here.
Ethical issues: Sustainability; Respect for the environment; Future generations; Societal impact; Corporate Social Responsibility.
Professional situations: EDI; Communication; Conflicts with leadership/management; Quality of work; Personal/professional reputation.
Educational level: Intermediate.
Educational aim: Practising Ethical Analysis: engaging in a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.
Learning and teaching notes:
This case involves an early-career consultant engineer working in the area of sustainable construction. She must negotiate between the values that she, her employer, and her client hold in order to balance sustainability goals and profit. The summary involves analysis of personal values and technical issues, and parts one and two bring in further complications that require the engineer to decide how much to compromise her own values.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
analyse the values that underlie professional and ethical stances;
gain knowledge about mass timber construction and its connection to sustainability goals;
articulate their own position about what they would do in a similar situation;
explore life cycle and Corporate Social Responsibility issues related to construction;
practise different types of professional communication.
Teachers have the opportunity to:
introduce technical content related to structural analysis and/or timber construction;
introduce or reinforce content related to leadership and global responsibility in engineering;
informally evaluate critical thinking and communication skills.
Learners and teachers might benefit from pre-reading the above resources about EDI and enacting global responsibility, as well as introductory material on construction with mass timber such as information from Transforming Timber or the “How to Build a Wood Skyscraper” video.
Summary:
Originally from rural Pakistan, Anika is a construction engineer who has recently finished her postgraduate degree, having been awarded a fully funded scholarship. During her studies, Anika was introduced to innovative projects using mass timber and off-site methods of construction. After completing her studies, she was inspired to start her own consultancy practice in the UK, aiming to promote the use of sustainable materials within the construction industry.
James is the director of a well-established, family-owned architectural firm, originally started by his great-grandfather who was also a prominent societal figure. In the last year, James and his colleagues have sought to develop a sustainability policy for the firm. A key feature of this new policy is a commitment to adopt innovative, sustainable construction solutions wherever possible. James has been contacted by an important client who wants to commission his firm to work on a new residential development.
James first met Anika at university when they were both studying for the same postgraduate degree. Having a high regard for Anika’s capability and professionalism, James contacts Anika to propose working together to develop a proposal for the new residential development.
James hopes that Anika’s involvement will persuade the client to select construction solutions that are aligned with the new sustainability policy adopted by his firm. However, the important client has a reputation for prioritising profit over quality, and openly admits to being sceptical about environmental issues.
Anika schedules a meeting with the client to introduce herself and discuss some initial ideas for the project.
Optional STOP for questions and activities:
1. Discussion: Personal values – What are the different personal values for Anika, James, and the client? How might they conflict with each other?
2. Activity: Professional communication – Elevator pitch activity part 1 – Working in groups of 2-3 and looking at the three different stakeholders’ personal values, each group will create a persuasive pitch of 1 minute used by Anika to convince the client to focus on sustainability.
3. Activity: Technical Analysis – Assemble a bibliography of relevant projects using mass timber and off-site methods of construction, and identify the weaknesses and strengths of these projects in terms of sustainability and long- and short-term costs and benefits.
4. Activity: Professional communication – Elevator pitch activity part 2 – After conducting your technical analysis, work in groups of 2-3 to revise your elevator pitch and role play the meeting with the client. How should Anika approach the meeting?
Dilemma – Part one:
After the first meeting, the client expresses major concerns about Anika’s vision. Firstly, the client states that the initial costings are too high, resulting in a reduced profit margin for the development. Secondly, the client has serious misgivings about the use of mass timber, citing concerns about fire safety and the durability of the material.
Anika is disheartened at the client’s stance, and is also frustrated by James, who has a tendency to contradict and interrupt her during meetings with the client. Anika is also aware that James has met with the client on various occasions without extending the invitation to her, most notably a drinks and dinner reception at a luxury hotel. However, despite her misgivings, Anika knows that being involved in this project will secure the future of her own fledgling consulting company in the short term – and therefore, reluctantly, suspects she will have to make compromises.
Optional STOP for questions and activities:
1. Discussion: Leadership and Communication – Which global responsibilities does Anika face as an engineer? Are those personal or professional responsibilities, or both? How should Anika balance her ethical duties, both personal and professional, and at the same time reach a decision with the client?
2. Activity: Research – Assemble a bibliography of relevant projects where mass timber has been used. How might you design a study to evaluate its structural and environmental credentials? What additional research needs to be conducted in order for more acceptance of this construction method?
3. Activity: Wider impact – Looking at Anika’s idea of using mass timber and off-site methods of construction, students will work in groups of 3-4 to identify the values categories of the following capital models: Natural, Social, Human, Manufactured and Financial.
4. Activity: Equality, Diversity, and Inclusion – Map and analyse qualities and abilities in connection with women and how these can have a positive and negative impact in the construction industry.
5. Discussion: Leadership and Communication – Which are the competitive advantages of women leading sustainable businesses and organisations? Which coping strategy should Anika use for her working relationship with James?
Dilemma – Part two:
Despite some initial misgivings, the client has commissioned James and Anika to work on the new residential development. Anika has begun researching where to locally source mass timber products. During her research, Anika discovers a new off-site construction company that uses homegrown mass timber. Anika is excited by this discovery as most timber products are imported from abroad, meaning the environmental impact can be mitigated.
Optional STOP for questions and activities:
1. Activity: Environmental footprint – Research the Environmental Product Declaration of different construction materials and whole life carbon assessment.
2. Discussion: Is transportation the only benefit of using local resources? Which other values (Natural, Social, Human, Manufactured and Financial) can be maximised with the use of local resources? How should these values be weighted?
3. Discussion: Professional responsibility – How important is Corporate Social Responsibility (CSR) in Construction? How could the use of local biogenic materials and off-site methods of construction be incorporated into a strategic CSR business plan?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Onyekachi Nwafor (KatexPower).
Topic: A country-wide energy transition plan.
Engineering disciplines: Energy; Electrical.
Ethical issues: Sustainability; Social responsibility; Risk.
Professional situations: Public health and safety,
Educational level: Beginner.
Educational aim: Engaging in Ethical Judgement: reaching moral decisions and providing the rationale for those decisions.
Learning and teaching notes:
At COP26, H.E. President Muhammadu Buhari announced Nigeria’s commitment to carbon neutrality by 2050. This case involves an engineer who is one of the stakeholders invited by the president of Nigeria to implement an Energy Transition Plan (ETP). It requires the engineer, who is a professional and well experienced in renewable energy and energy transition, to deliver a comprehensive decarbonisation roadmap that will ensure net zero emissions.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
research various aspects of decarbonisation and the energy transition;
consider short- and long-term components of ethical decision-making;
practice negotiating between stakeholders;
develop and present an energy transition plan.
Teachers have the opportunity to:
introduce or expand on technical content related to decarbonisation;
introduce or reinforce bibliographic research skills;
informally evaluate critical thinking and argumentation.
You are an electrical engineer working as a technical consultant in an international organisation aiming to transform the global energy system to secure a clean, prosperous, zero-carbon future for all. The organisation is one of the stakeholders invited by the federal government of Nigeria to implement the country’s new Energy Transition Plan (ETP) and you are given the task of creating a comprehensive decarbonisation roadmap and presenting it at the stakeholder meeting.
Optional STOP for questions and activities:
1. Discussion: In what ways could an electrical engineer bring needed expertise to the ETP? Why are engineers essential to ensuring a zero-carbon future? Should engineers be involved in policy planning? Why or why not?
2. Activity: Wider context research: Nigeria is currently an oil-producing country. What might policy makers need to consider about this reality when implementing an ETP? How strongly should you advocate for a reduction of the use of fossil fuels in the energy mix?
3. Discussion and activity: List the potential benefits and risks to implementing the ETP. Are these benefits and risks the same no matter which country they are implemented in?
4. Activity: Research and outline countries that have attained a zero emission target. What are their energy distribution mixes? Based on this information, what approach should Nigeria take and why?
5. Activity: What will be your presentation strategy at the stakeholder meeting? What will you advocate for and why? What ethical justifications can you make for the plan you propose?
Dilemma – Part two:
At the stakeholder meeting, you were given the opportunity to present your decarbonisation roadmap and afterwards faced serious opposition by the chief lobbyist of the Fossil Fuel and Mining Association, Mr. Abiola. Mr. Abiola is of the opinion that because Nigeria contributes less than 1% to the global emissions, it should not be held accountable for climate change, and therefore no country-wide climate policy is necessary. Furthermore, he fears the domestic market for coal that is used to produce electricity as well as the global market for fossil fuels will shrink because of the new policy. He also argues that a shift away from coal and fossil fuels could result in challenges to the security of supply, since renewables are by definition unreliable and volatile. Other stakeholders, such as activists and environmental experts, also voiced different concerns and opinions. They argue that time has already run out, and no country can delay decarbonisation plans no matter how small their impact on the global total. This conflict has resulted in disagreements in the negotiation.
Optional STOP for questions and activities:
1. Debate: Do different countries have different ethical responsibilities when it comes to decarbonisation? Why or why not? If so, for what reasons?
2. Discussion: How should countries weigh the short-term versus long-term benefits and burdens of the energy transition? What role do governments and corporations play in managing those? What role should citizens play?
3. Discussion: How will you prepare for and handle opposing questions to your roadmap plan?
4. Activity: Create a participatory stakeholder engagement plan embedded in the overall decarbonisation strategy.
5. Activity: How will you utilise the different renewable energy mix to provide 100% access to electricity and ensure security of supply as an electrical engineer?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr. Natalie Wint (UCL).
Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.
Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering.
Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment.
Professional situations: Whistleblowing; Company growth; Communication; Public health and safety.
Educational level: Intermediate.
Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others.
Learning and teaching notes:
This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.
This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibilityand environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.
This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise as an engineer versus a business;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches that resolve interpersonal and/or professional conflict;
integrate technical content on materials design and chemistry;
informally evaluate students’ critical thinking and communication skills.
Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.
Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health.
Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products.
Optional STOP for questions and activities:
1. Discussion:Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?
2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.
3. Activity: Technical integration– Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.
4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?
Dilemma – Part two:
Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.
Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.
“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.”
Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.
Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”
Optional STOP for questions and activities:
1. Discussion: Personal values– What competing personal values or motivations might trigger an internal conflict for Alex?
2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case?
3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities.
4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important?
5. Discussion: How do you think the issue of microplastics should be controlled?
6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?
7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex?
8. Activity: Technical integration related to calculations or experiments on microplastics.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Gill Lacey (Teesside University).
Topic: Maintenance of an offshore wind farm.
Engineering disciplines: Mechanical; Energy.
Ethical issues: Sustainability; Risk.
Professional Situations: Public health and safety; Quality of work; Conflicts with leadership/management.
Educational level: Beginner.
Educational aim: Becoming Ethically Aware: determining that a single situation can be considered from a ethical point of view.
Learning and teaching notes:
The case is based on a genuine challenge raised by a multinational energy company that operates an offshore wind farm in the North Sea. It involves three professional engineers responsible for various aspects of the project to negotiate elements of safety, risk, environmental impact, and costs, in order to develop a maintenance plan for the wind turbine blades.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
This case is presented in two parts. In the first part, the perspectives and responsibilities of the three engineers are outlined so that students can determine what professional and ethical responsibilities are inherent in their roles. In the second part, a scenario is developed that puts the roles into potential conflict. Students then have the opportunity to work through a real-world brief that requires them to negotiate in order to present a solution to management. Teachers can choose to use Part one in isolation, or some or all of Part two to expand on the issues in the case. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise between professionals and practise resolving those tensions;
consider and present possible solutions to a professional dilemma;
integrate ethical considerations into an engineering solution.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and/or professional conflict;
integrate technical content on engineering design;
evaluate students’ critical thinking and communication skills.
Offshore wind has huge benefits to the electricity industry as a renewable, low carbon resource. The size and scale of the turbines, together with the remoteness – the wind farm referred to in this case is 200 km from shore – are a problem. However, it is a rapidly maturing industry and many of the issues around accessibility during installation have been solved. A wind farm is expected to generate for twenty years and so a system of inspection and maintenance needs to be put in place. At the same time, the environmental impact of industrial activity (including ongoing maintenance and repairs) needs to be managed in order to mitigate risks to ecosystem resources and services provided by the open sea.
In this wind farm there are one hundred turbines, each with three blades. The blades are 108 m long. Clearly, they need to be kept in good condition. However, inspecting the blades is a difficult and time consuming job.
There are three engineers that are responsible for various aspects of maintenance of the wind turbine blades. They are:
1. Blade engineer: My job is to make sure the blades are in good condition so that the wind farm operates as it was designed and generates as much power as possible. I am responsible for:
Checking each blade for damage;
Assessing whether repairs are needed, what repairs those are, and how urgently;
Determining how maintenance can be conducted efficiently and cost-effectively.
2. Health and safety engineer: My job is to make sure that the technicians who inspect and maintain the turbine blades are at minimal risk. I need to ensure compliance with:
Employment safety regulations;
Legal guidelines governing industrial activity in the open sea.
3. Environmental engineer: My job is to ensure that the ecosystem is damaged as little as possible during turbine inspection and maintenance, and to rectify as best as possible any adverse effects that are incurred. After all, wind power is considered to be “green” energy and so wind farms should do as little damage to the environment as possible. This work helps:
The company to meet or exceed its corporate responsibility commitments relating to social licence to operate;
Maintain the ecological integrity of the ecosystem.
Optional STOP for questions and activities:
1. Discussion: What sort of instances might cause damage to the turbine blades? (Possible answers: bird strike, collision with a vessel, storm, ice etc.)
2. Discussion: What problems might a damaged blade cause? (Possible answers: a damaged blade cannot generate properly; it might unbalance the other two blades until the whole turbine is affected. If a blade were to come loose it could strike another turbine blade, a vessel, sea creatures etc.)
3. Activity: Research how blade inspection is done. (Answer: a combination of photos from drones and reports from crew who need to use rope access to take a close look.)
a. If a drone is used, what issues might the drone have? (Answers: needs to be operated from a nearby vessel; weather (wind!); getting good resolution photos from a vibrating and moving drone; energy (battery) to power the drone.)
b. If a technician goes onsite, what issues are there with rope access? (Answers: time consuming; dangerous; can only be done in good weather; have to stop the turbine to access; training the inspection team; recording the findings.)
4. Discussion: What competing values or motivations might conflict in this scenario? Explain what constraints each engineer might be operating under and the potential conflicts between the roles.
5. Activity: Research what health and safety, environmental, and legal policies affect offshore wind farms. If they are in the open sea, which country’s laws are applied? Who is responsible for maintaining ecosystem health in the open sea? How are harms identified and mitigated?
Dilemma – Part two:
So, the blade engineer wants maintenance done effectively, with as little down time as possible; the H&S engineer wants it done safely, with as little danger to crew as possible; while the environmental engineer wants it done with as little damage to the ecosystem as possible. These three people must together develop an inspection plan that will be approved by upper management, who are largely driven by profitability – limited downtime in maintenance means increased profits as well as more energy delivered to customers.
Optional STOP for questions and activities:
The students are then presented with a brief that gives some background to the wind farms and the existing inspection regime. The brief is structured to allow engineering design, engineering drawing and technical research to take place alongside consideration of potential ethical dilemmas.
Brief: In teams of three, where each team member is assigned a different role outlined above (blade engineer, health and safety engineer, environmental engineer), propose a feasible method for blade inspection that:
Minimises or removes the need for personnel rope access and working from height;
Minimises or removes downtime of a wind turbine generator (WTG) during inspection.
Aspects to consider:
Types of damage that the solution can detect
Detection methods
Accuracy of data and how data is retrieved and processed
Weather and sea conditions
Ease and flexibility of operation e.g., distance from turbines, battery life, charging requirements
Speed of inspection
Safety of operation
Effects on the environment.
Teachers could task teams to work together to:
Develop a feasible blade inspection solution
Create a project programme for development of the solution
Assess risk, technical merit and personnel health & safety within the field
Pitch the solution in a technical sales meeting.
The pitch could include details of:
Overview of solution, methodology and unique selling points
Technical explanation of solution (including product specifications and risk)
Explanation of operability within the field
Assessment of health & safety and environmental impact.
1. Activity: Working in groups,consider possible solutions:
a. Explore 2 or 3 alternatives to answer the need or problem, identifying the ethical concerns in each.
b. Analyse the alternative solutions to identify potential benefits, risks, costs, etc.
c. Justify the proposed solution.
(Apart from the design process, this activity allows some discussion over the choice of solution. Looking at more than one allows the quieter students to speak out and justify their thinking.)
2. Activity: Working in groups, present a solution that consists of one or more of the following:
a. Make a CAD or drawn prototype.
b. Make a physical or 3D model.
c. Create a poster detailing the solution which could include technical drawings.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.
Ethical issues: Respect for the environment; Risk.
Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.
Educational level: Intermediate.
Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.
Learning and teaching notes:
This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Learners have the opportunity to:
identify legal, professional, and ethical rules and guidance;
investigate technical and environmental components of circularity;
consider professional roles and associated responsibilities;
practice preparing for a public interview.
Teachers have the opportunity to:
introduce or provide practice in Life Cycle Assessment;
highlight relevant ethical codes and quality standards;
address approaches to professional and/or interpersonal conflict;
informally evaluate critical thinking and analysis.
Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.
Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.
Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.
Optional STOP for questions and activities:
1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?
2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.
3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?
Dilemma: Part two:
After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.
When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.
At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.
Optional STOP for questions and activities:
1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.
2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?
3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?
Dilemma – Part three:
In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.
She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.
Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.
Optional STOP for questions and activities:
1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.
2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.
3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation?
4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?
5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Topic: Balancing personal values and professional conduct in the climate emergency.
Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy.
Ethical issues:Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact.
Professional situations:Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation.
Educational level: Intermediate.
Educational aim:Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way.
Learning and teaching notes:
This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
identify underlying values of professional situations;
practise developing, defending, and delivering arguments;
debate the potential options of an ethical decision;
make and justify an ethical decision;
identify and define positions on an ethical issue;
apply codes of ethics to an engineering ethics dilemma;
consider different perspectives on an ethical issue and what values inform those perspectives;
practise professional communication related to ethical dilemmas;
identify professional responsibilities of engineers in an ethical dilemma;
determine and defend a course of action in response to an ethical dilemma;
consider how they would act in an ethical situation.
Teachers have the opportunity to:
evaluate critical thinking, argumentation, and communication skills;
highlight professional codes of ethics and their relevance to an engineering situation;
Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.
But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero.
Dilemma – Part one:
Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.
Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.
Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”
Optional STOP for questions and activities:
1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest?
2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict?
3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be?
4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?
5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why?
6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario.
7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken?
8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint?
Dilemma – Part two:
After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.
On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.
Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article.
Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it?
Optional STOP for questions and activities:
1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?
2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?
3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario.
4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change?
5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change?
6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation?
7. Activity: Write a statement for Kelechi to release to the press.
8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public.
Dilemma – Part three:
Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”
Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint.“She’s endangering the public,” says another.
It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.”
As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.
Optional STOP for questions and activities:
1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past.
2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”?
3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked?
4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted?
5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement.
6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?
7. Activity: Write a press release for the institution, taking one of the above positions.
8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision?
9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.