Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)
Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure
Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.
The opportunity
Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.
Seed funded taster projects
In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the Universityâs business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the Universityâs Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.
Knowledge Transfer Partnership (KTP) Projects
KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.
The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associateâs outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.
The second, two-year KTP project started in November 2020 with the aim of expanding the companyâs capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.
First of a kind (FOAK) projects
The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.
The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.
The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.
The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.
The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.
Additional benefits to University of Huddersfield
In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.
Figure 1. Head-span showing span-wires and span-wire clamp.
Figure 2. Old (left) and new (right) span-wire clamps.
Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Dr Becky Selwyn (University of Bristol), David Pullinger (RINA) and Dr Irene Renaud-Assemat (University of New South Wales)
Keywords: Authentic Learning
Abstract: The academic approach to writing isnât one that is often appropriate in industry â yet at university it is usually engineering academics who teach undergraduate engineers how to write. This is a problem frequently highlighted by industry. By working in partnership with industry to set an authentic writing challenge, we hoped to provide a sense of real-world purpose and give students a valuable formative opportunity to work on their writing skills for an industrial audience.
Aims of the activity
This case study aimed to address the discrepancy between industry expectations of student writing skills and the writing-related learning opportunities provided to students over the course of a typical degree programme at the University of Bristol.
The academics involved in this project had previously addressed poor technical writing skills among undergraduate (UG) students by providing scaffolded opportunities to practice and receive feedback on written laboratory reports in early years (e.g. [1] and [2]). However, informal conversations with an industry partner highlighted the need for students to also improve their writing skills for industrial audiences (e.g. clients or colleagues external to the immediate specialist team).
Existing written assignments are assessed mainly on their technical content, with a nominal portion of the mark awarded for writing skills. This project removed the focus from the technical work and placed it firmly on how well the recommendation is written for a specific audience, encouraging students to focus on developing their writing skills. The activity provided participants with a set of real client data to synthesise while producing a recommendation to be presented to the board of a fictional company.
Design of the activity
The activity was designed as follows:
The industrial partner provided an introductory presentation to students. This gave examples of the types of written communication that were often required (concise evidence-based written recommendations to non-specialist clients).
Students were provided with a package of information and asked to make a recommendation to the board of a fictional company about which wind farm to invest in. The package of information included energy yield assessments for three possible wind farms, the Renewable Energy Country Attractiveness index, a summary of the current cost of wind power, and brand guidelines to follow when producing their recommendation.
Students were given one week to submit their recommendations.
Students were provided with feedback on their recommendations during a final seminar. Feedback focused on the clarity and conciseness of the writing, as well as its suitability for the audience (the board members).
This was an optional activity for students, and 11 2nd year UG students took part from Mechanical, Mechanical and Electrical, and Engineering Design programmes.
Outcomes
Students were surveyed at the start and end of the activity to investigate their motivation for taking part and their experience of the activity. Before taking part, students reported two main expectations: to improve their writing skills in the context of the industrial requirements, and to support their career aspirations. This latter aim was stated either in relation to networking with the industrial partner or in relation to adding the activity to their CV.
Feedback following completion of the activity was consistently positive. Students enjoyed the real-world application and experiencing a task that was representative of tasks the industrial partner undertakes, and also appreciated the networking opportunity provided by the partnership with industry.
Reflections and future work
Students were asked what they would change about the activity next time, and two themes emerged: a request to provide more examples or guidance on the style of writing required, and embedding the activity within the compulsory units in the programme. This latter theme ties in with the ongoing work within the department to improve the way we teach and assess writing skills throughout the programme.
From an academic perspective, the workload associated with developing and running the activity (3-4 hours) was relatively small compared to the positive experience reported by the participants. Although there were only a small number of participants, the activity could be scaled up relatively easily â either by continuing to use the information package provided by a single industrial partner, or by enlisting more partners to contribute similar tasks and allowing students to complete one or more of the tasks.
Industrial partner perspective
From an industrial perspective the time commitment associated with the activity was small (3-4 hours) and was outweighed by the benefits of being able to trial techniques to improve results-oriented writing. The difficulty that students experienced in distilling relatively simple information into a concise evidence-based decision was similar to the difficulties experienced by many established professionals in industry. The typical undergraduate writing style is to tell the story from beginning to middle to conclusion leading to tendencies for writers to be verbose and indirect. In industry the style of reporting often requires the approach to be flipped whereby the conclusion is the sole focus of the writing, this requires very short, unambiguous and direct writing. The approach to writing these different types of document is altogether different and requires practise to improve the quality of the authorâs reports. Giving undergraduates more opportunities to write in different styles would improve their preparedness for working in an industrial role and also be a great benefit to graduate employers by way of having more highly skilled employees.
References
[1] Selwyn, R., & Renaud-Assemat, I. (2020). Developing technical report writing skills in first and second year engineering students: a case study using self-reflection. Higher Education Pedagogies, 5(1), 19-29. https://doi.org/10.1080/23752696.2019.1710550
[2] Selwyn, B., Renaud-Assemat, I., Lazar, I., & Ross, J. (2018). Improving student writing skills using a scaffolded approach. In Proceedings of the 7th International Symposium for Engineering Education (ISEE 2018) University College London.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)
Abstract: The âTransforming Tomorrowâ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to âhit the ground runningâ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.
Introduction
WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Departmentâs experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.
The âTransforming Tomorrowâ Project is about taking a holistic view of the Departmentâs educational provision in order to understand the effectiveness of the provision from studentsâ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we  better meet the needs of industry. This paper reports the first part of the Project.
Context
For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and online learning; five key themes were identified:
The need to adopt  a design approach to curriculum development
The quality of the student experience
 Student engagement
The challenges and benefits of blended learning
Student and academic perceptions of online learning
Each of these themes have in common the fact that the virtual learning approaches analysed and  discussed were developed over a significant period of time.  Â
Method and Findings
A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on studentsâ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown.Â
The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least, Â engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.
Figure 1: First Year Engineering Studentsâ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)
In looking at the above table one thing that immediately drew colleaguesâ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested  a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.
For the academic staff, a survey conducted at the same time sought to determine colleaguesâ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questionsâŠ
This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future). Â With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.
Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st Century Industry
Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.
The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics: Â
1. Teaching to Meet the Challenges of Industry
Contextualising learning in society
Looking back to move forward
Transforming teaching
Producing work-ready graduates when âworkâ is constantly changing.
2. Student-Centred Active Learning
Deep or surface learning?
Engendering independent learning in the millennial student
Co-creation in learning
Encouraging a learning culture
3. Growing independent learners
Developing self-authorship in students (and staff)
Disruptive pedagogies = flexible graduates
Authenticity in assessment
Re-imagining assessment for employability Â
4. Levelling the Playing Field
Supporting students to succeed
Post-colonial industry-focused learning Â
Inclusivity in learning and teaching
Student-led, research-based, real-life teaching
5. Re-Designing what we do
Design thinking for the future
Linking work and education for the millennium generation
Knowledge exchange and co-creation
Embedding sustainability principles across the curriculum
6. Engineering  an environment for learning
Scaffolding active learning across
Finding space for study
Bringing engineering challenges into learning
Off-On-Hybrid: Moving forward from Covid
Conclusion
In conclusion, society is entering what has been termed âthe new normalâ; for WMG, there is nothing ânormalâ about what we do. We are entering a ‘Transformational Timeâ; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt the ânew normalâ. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge.Â
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.
Background
Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.
The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.
The Brief
Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.
Figure 1. Image from the project brief indicating the potential building envelopes for the roof design
Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.
Requirements
Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.
The chosen design was developed to include:
Full structural design; Calculations to Eurocodes, load path diagrams, member sizing, connection design, explanation of structural choices.
Buildability (cost breakdown, site logistics, consideration of context)
Health and Safety risks, impacts on design and control measures
Construction sequence
Sustainability summary inc. embodied carbon calculations
Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.
Figure 2. Connection detail drawing by group 9
Delivery
Course material was delivered over 4 sessions with a final session for presentations:
Session 1: Project introduction and scheme designing
Session 2: Timber design
Session 3: Construction and constructability
Session 4: Fire Engineering and sustainability
Session 5: Student Presentations
Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.
These sessions built on learning from previous modules and projects.
Learning / Skills Development
The project aimed to develop skills and learning in the following areas:
Technical skills relating to structural design using timber, embodied energy calculations, drawing and H&S risk assessment.
Design skills relating to consideration of the site, its context and the need, creativity and assessing ideas, consideration and overlapping of numerous disciplines, design iteration and improvement.
Professional skills in relation to communicating with clients, producing reports to a professional standard, presenting a project, working in teams, organising resources, etc.
Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.
Benefits of Collaborating
The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.
Figure 3. Development of design concepts by group 12
The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).
Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.
Reflections and Feedback
Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.
Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.
Figure 4. Winning design summary diagram by group 12
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Keywords: Civil Engineering Design, Building Information Modelling, BIM, Digital Engineering, Industry, Collaboration
Abstract: This project, developed jointly with industry partners at Multiplex, allowed Civil Engineering students at UCL to develop their understanding and technical skills around the use of Building Information Modelling (BIM) on civil engineering projects and related software. Students worked on a model of an emergency shelter (designed by UCL alumnus) and were required to consider the relevant parties involved (technical and non-technical), the information they require and how to utilise the model to organise and communicate this information effectively.
Background
Digital engineering tools and Building Information Modelling (BIM) are increasingly becoming important features of modern construction projects. The design teaching team in the Department of Civil, Environmental and Geomatic Engineering (CEGE) at University College London (UCL) recognised the need to embed this practice into parts of the design teaching delivery for students on the Civil Engineering undergraduate programmes.
UCL and Mulitplex (civil engineering contractor) had been partnering on school outreach activities for several years. A discussion at such an event led to a realisation that there was good alignment on how these topics should be taught, with a focus on information and communication rather than modelling. Staff at UCL had already started developing a project that would involve using elements of BIM in the design development of an emergency shelter for humanitarian relief and that the project should encourage students to think about the information and communication aspects of this. The digital engineering team at Multiplex then agreed to join the project and provide technical assistance, to develop and deliver teaching materials and to provide real life examples and case studies to supplement the project.
The Brief
Students were provided with a pre-developed REVITÂź model of an emergency shelter design made, predominantly, from timber. The shelter had been designed by a UCL alumnus during their time as a UCL student and agreement was granted to use it for this project. Students were presented with an imagined scenario that they were working for a charity that was planning to build 10 of these shelters in Haiti to assist with humanitarian relief effort following an earthquake. The students needed to consider which parties would need to be communicated with, what information they would need, how this information could be communicated with them and how the digital model could assist with this process.
Figure 1. Image of Emergency Shelter model in REVITÂź
Students were encouraged to consider (but not limited to) included:
Design information (limits, assumptions, etc)
Commercial
Construction (programme, logistics and sequencing)
Health and safety
Environmental factors
Handover information and future maintenance requirements
Students were required to research the relevant information and populate the REVITÂź model appropriately and professionally.
Requirements
Teams (of 6) were required to provide a 10xA3 page report that would run through each of the potential parties to communicated with, what information they would need and how the model would be used to enable this communication. They also needed to describe any assumptions that were made and how information was selected during the research phase. They needed to highlight the critical thinking that had been carried out in relation to sources of information and its suitability and reliability.
Figure 2. Use of model to explain construction sequence
Teams also needed to submit their completed REVITÂź model files for inspection as well as an 8 min video presentation that would:
Present the completed model and show competency in finding the relevant information for different elements
Showcase how the model enhanced communication to each of the relevant parties
Explain how the team collaborated to produce a justified proposal
Discuss problems encountered and how they were overcome
Figure 3. External view of model
Delivery
Course material was delivered over 4 sessions with a final session for presentations:
Session 1: Project introduction and software introduction
Session 2: (i) Information and exporting in REVITÂź. (ii) Commercial overview
Session 3: (i) Construction and Logistics. (ii) Health, safety and environmental factors
Session 4: (i) Handover requirements. (ii) Maintainable assets. (iii) Building management
Session 5: Student presentations
Sessions were co-designed and delivered by a UCL academic and a digital manager from Multiplex. The sessions involved a mixture of elements incl. taught, tutorial and workshop time that allowed students to work in their groups.
Learning / Skills Development
The project aimed to develop skills and learning in the following areas:
Improve REVITÂź / software skills
Understand the benefits of BIM to a multi-party construction project particularly in relation to information and communication.
Improve construction knowledge
Recognise that digital technology isnât a replacement for engineering knowledge and input.
Improve employability of students by equipping them with relevant and up-to-date construction tools and techniques.
Benefits of Collaborating
The first benefit was the inspirational aspect of working on a shelter design that had been produced by a former UCL student. This Alumnus contributed to the introduction session by running through their design and this helped students understand just how much had been achieved by someone in their position.
The collaboration with Multiplexâs digital team brought obvious benefits to the technical skills development but also benefitted student understanding by showing how these skills are being used on live construction sites. The process of learning from and presenting to practicing construction professionals also allowed students to develop key professional behavioural skills that help develop and enhance employability.
Reflections and Feedback
Reflections and feedback from all staff involved was that the work produced was of a high quality and that this demonstrated an understanding of the project objectives from the student perspective. It was also apparent that students were becoming adept at using REVITÂź software effectively and appropriately.
Wider feedback from students in the module review was very positive about the project and that it had improved their understanding of the role of digital technologies in the construction industry. Students said in feedback âBIM has helped us to look at all aspects of the design and to figure out more stuff in the same amount of time,â and, âDoing it this way [REVIT model] means you can see what you think might be a risk to the workers more easily.â
Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.
2 of the students successfully applied for summer internships with Multiplexâs digital team immediately following the project and were able to build on their digital engineering skills further.
The project was featured by trade magazine BIMPlus which ran an article on the project showcasing the relative novelty and uniqueness of the approach taken.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Abstract: The case study looks at how we use guest lecturers from industry (and academia) at Cranfield University. In the case study we examine why and how module leaders use guest lecturers in their modules. Furthermore, we also cover the student perspective. How do students perceive this form of industry collaboration and what are their expectations from guest lectures? The case study will benefit the EPC community by giving insight and advice on how to include guest lecturers in the curriculum. While many universities use guest lecturers from industry, very little research has been conducted into module leadersâ and studentsâ experience with guest lectures. The case study provides good practice examples based on studentsâ and module leadersâ feedback.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Ian Hobson (Senior Lecturer and Academic Mentor for Engineering Leadership Management at Swansea University and former Manufacturing Director at Tata Steel) and Dr Vasilios Samaras (Senior Lecturer and Programme Director for Engineering Leadership Management at Swansea University)
Keywords: Academia, Industry
Abstract: Throughout the MSc Engineering Leadership Management program, the students at Swansea University develop theoretical knowledge and capability around leadership in organisations. Working alongside our industry partner Tata Steel, they deploy this knowledge to help understand and provide potential solutions to specific organisational issues that are current and of strategic importance to the business. The output of this work is presented to the Tata Steel board of directors along with a detailed report.
Aims of the program
In todayâs world, our responsibility as academics is to ensure that we provide an enabling learning environment for our students and deliver a first-class education to them. This has been our mantra for many years. But what about our responsibility to the employing organisations? Itâs all well and good providing well educated graduates but if they are not aligned to the requirements of those organisations then we are missing the point. This may be an extreme scenario, but there is a real danger that as academics we can lose touch with the needs of those organisations and as time moves on the gap between what they want and what we deliver widens.
In todayâs world this relationship with the employment market and understanding the requirement of it is essential. We need to be agile in our approach to meet those requirements and deliver quality employees to the market.
How did we set this collaborative approach?
In reality the only way to do this is by adopting a collaborative approach to our program designs. Our aim with the MSc Engineering Leadership Management (ELM) at Swansea University is to ensure that we collaborate fully with the employment market by integrating industry professionals into our program design and delivery processes. In this way we learn to understand the challenges that organisations face and how they need strength in the organisation to meet those challenges. This of course not an easy task to accomplish.
In our experience professionals within organisations are often overrun with workload and trying to manage the challenges that they face. A university knocking the door with an offer of collaboration is not always top of their priority list, so how do we make this happen? You need to have a balance of academics and experienced industry leaders working within the program who understand the pressures that business faces. They also often have networks within the external market who are willing to support such programs as the ELM. The power of collaboration is often overlooked. Itâs often a piece of research, dealing with a specific technical issue, it is rarely a continuum of organisational alignment. If the collaboration is designed for the long-term benefit of improving employability, then organisations will see this as a way to help solve the increasing challenge of finding âgoodâ employees in a market that is tightening. So overall this becomes a win-win situation.
How was the need for the program identified?
Our program was developed following feedback to the university from the market that graduates were joining organisations with good academic qualifications but lacked an understanding of how organisations work. More importantly how to integrate into the organisation and develop their competencies. This did come with time and support, but the graduates fell behind the expected development curve and needed significant support to meet their aspirations.
Swansea University developed the ELM to provide education on organisations and how they work and develop the skills that are required to operate in them as an employee. These tend to be the softer skills, but also developing the studentâs competence in using them. Examples include working as teams and providing honest feedback via 1-1s and 360s and team reviews.
In our experience the ability to challenge in a constructive way is a competency that the students donât possess. All our work is anchored in theory which provides reference for the content. The assignments that we set involve our industry partners and provide potential solutions to real issues that organisations face. Â The outcome of their projects is presented to senior management within the host organisation. This is often the high point of the year for the students. This way the students get exposure to the organisations which extends their comfort zones preparing them for the future challenges.
What are the program outcomes?
September 2022 will be our fifth year. The program is accredited by the Institution of Engineering and Technology (IET). Our numbers have increased year on year, and we are running cohorts of up to 20 students. Itâs a mix of UK and international students. The program requires collaboration between the university faculties which has brought significant benefits and provided many learning opportunities. The collaboration between the engineering and business schools has made us realise that working together we provide a rounded program that is broad in content, but also deep in areas that are identified as specific learning objectives.
The feedback from the University is that students on the ELM program perform well and they have a more mature approach to learning and have confidence in themselves and are proactive in lectures. From our industry partners they feed back that the ELM students are ahead of the curve and are promoted into positions ahead of their peers.
What have we learned from the program?
As lecturers, over the years it has become very clear that the content that we deliver must change year on year. We cannot deliver the same content as it quickly becomes out of date. The theory changes very little, but the application changes significantly, in line with the general market challenges. It is almost impossible to predict and if we sit back and look at the past 4 years this pattern is clear. We also need to refresh our knowledge and we have as much to learn from our students as they do from us. We treat them as equals and have a very good learning relationships and have open and honest debates. We always build feedback into our programs and discus how we can improve the content and delivery of the program. Without exception feedback from a yearâs cohort will modify the program for the following year.
Looking ahead
We are being approached by organisations interested in the University delivering a similar program to their future leaders on a part time basis which is something we are considering. We do however recognise that this program is successful because of the experience and knowledge of the lecturers and the ability to work with small cohorts which enables a tailored approach to the program content.
We believe that collaboration with the market keeps the ELM aligned with its requirements. Equally as importantly is the collaboration with our students. They are the leaders of the future and if the market loses sight of the expectations of these future leaders, then they will fail.
The ELM not only aligns its programs with the market, it keeps the market aligned with future leaders.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Steve Jones (Siemens), Associate Prof David Hughes (Teesside University), Prof Ion Sucala (University of Exeter), Dr Aris Alexoulis (Manchester Metropolitan University) and Dr Martino Luis (University of Exeter)
Abstract: Siemens have worked together with university academics from 10 institutions to develop and implement holistic digitalisation training and resources titled the âConnected Curriculumâ. The collaboration has proved hugely successful for teaching, research and knowledge transfer. This model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners.
Collaboration between academic institutions and industry is a core tenet of all Engineering degrees; however its practical realisation is often complex. Academic institutions employ a range of strategies to improve and embed their relationships with industry. These approaches are often institution specific and do not translate well across disciplines. This leaves industries with multiple academic partnerships, all operating differently and a constant task of managing expectations on both sides. The difference about Siemens Connected Curriculum is that it is an industry-led engagement which directly seeks to address and resource these challenges.
In 2019 Siemens developed the âConnected Curriculumâ, a suite of resources (see fig1) to support and enable academic delivery around the topic of âIndustry 4â. A novel multi-partner network was formed between Siemens, Festo Didactic and universities to develop and deliver the curriculum using real industrial hardware and software. Siemens is uniquely positioned to support on Industry 4 because it is one of the few companies that has a product portfolio that spans the relevant industrial hardware and software. As a result, Siemens is more able to bring together the cyber-physical solutions that sit at the heart of Industry 4.
Figure 1 – Core resources of Siemens Connected Curriculum
Connected Curriculum Aims
The scheme set out with a number of designed aims for the benefit of both Siemens and the partner universities.
Increase the ability of graduates to have an impact on complex Industry 4 topics
Develop graduate employability/recruitment through real world understanding nurtured through industrial case studies and problem-based engagement with industry.
Expanding the market with engineers familiar with Siemens’ industrial hardware and software
Develop and keep current the skills of academics in a rapidly changing technical landscape
A model that supported sustained industrial investment in academic capability
A model that was scalable to engage future institutions
Connected Curriculum Implementation
In 2019, four universities agreed with Siemens to create a pilot programme with a common vision for where Siemens could add value, how the university partners could collaborate, and how the network could scale. The initial pilot programme included Manchester Metropolitan University (MMU), The University of Sheffield (UoS), Middlesex University (Mdx), and Liverpool John Moores University (LJMU). Since the success of its pilot programme, as of Jan 2022 Connected Curriculum now has ten UK university partners with the addition of Teesside University, Coventry University, Exeter University, Salford University, Sheffield Hallam University and The University West of England. The consortium continues to grow and is now expanding internationally. The university academics and the Connected Curriculum team at Siemens have worked together to develop holistic digitalisation training and resources.
Siemens developed a specific team to resource Connected Curriculum, which now includes a full-time Connected Curriculum lead and two Engineering support staff. In addition to the direct team, the initiative also relies on input from a range of experts across the multiple Siemens business units.
The collaboration between multiple institutions and Siemens has proved hugely successful for teaching, research and knowledge transfer. We feel this model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners. Evidential outcomes of these benefits are demonstrated through the following examples.
Multi-disciplinary delivery
In 2020 Teesside Universityâs School of Computing, Engineering and Digital Technologies completed a module review including the embedding of digitalisation, resourced through Connected Curriculum, across its Engineering degrees. A discipline specific, scaffolded approach was developed, enabling students to build on previous learning. This includes starting at a component level and building towards fully integrated cyber-physical systems and plants. Connected Curriculum resources are used to inform and resource new modules including Robotics Design and Control and Process Automation. Due to the inherent need for multi-disciplinary working on digitalisation projects many of these have been structured as shared modules. As Siemens work across such a broad range of industries we are able to embed case studies and tasks which are relevant and foster collaborative working. The need for these digital skills and collaborative approaches has been highlighted by a number of studies including the joint 2021 IMechE/IET survey report: The future manufacturing engineer – ready to embrace major change?
Impact on Industry
In May 2021, Exeter’s Engineering Management group and a manufacturer of electric motors, generators, power electronics, and control systems (located in Devon, UK) collaborated to create digital twins for the assembly line of the Internal Permanent Magnet Motor. With the support from Siemens, we implemented Siemens Tecnomatix Plant Simulation to develop the models. The aim was to optimise assembly line performance of producing the Internal Permanent Magnet Motor such as cycle time, resource utilisation, idle time, throughput and efficiency. What-if scenarios (e.g. machine failure, various material handling modes, absenteeism, bottlenecks, demand uncertainty and re-layout workstations) were performed to build resilient, productive and sustainable assembly lines. Two MSc students were closely involved in this collaborative project to carry out the modelling and the experiments.  Our learners have experienced hands-on engineering practice and action-oriented learning to implement Siemens plant simulation in industry.
Industrially resourced project-based learning
In 2020 Siemens was involved in the Ventilator Challenge UK (VCUK) consortium that was formed in response to the COVID-19 pandemic. VCUK was tasked with ramping up production of ventilators from 10/week to 1500/week to produce a total of 13500 in just 12 weeks. Inspired by this very successful project, academics at MMU approached the Connected Curriculum team asking if the project could be replicated with a multidisciplinary group of 2nd year Engineering students. MMU Academics and Engineers from Siemens codeveloped a project pack using an open-source ventilator design from Medtronic. The students were tasked with designing a manufacturing process that would produce 10000 ventilators in 12 weeks. The students had 6 weeks to learn how to use the industry standard tools required for plant simulation (Siemens Tecnomatix) and to carry out the project successfully. The project attracted media attention and was featured in articles 1 and 2.
Keys to Success
So, what made the Connected Curriculum so successful? Digitalisation is clearly a current trend and so timing has played an important role. One of the most significant reasons is that Siemens not only led the scheme but resourced it. This has been key to supporting the rapidly growing need for relevant academic expertise. The on-going support from Siemens is also key for issue resolution and to support implementation for universities in adopting new curriculum. Engaging academic partners early in the process was key to ensuring the content was relevant and appropriately pitched.
Siemens breadth and depth of technological expertise across numerous technologies has been a key factor in the success of this initiative. Combined with its global engineering community, this has facilitated a rich integrated curriculum approach which covers a range of aligned technologies. Drawing on internal experts across its global community has allowed the initiative to benefit from a wealth of existing knowledge and resources. Having reached critical mass the initiative is now financially self-sustaining. Without reaching this milestone continued engagement would have been impossible.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Author: Dr Mike Murray (Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow)
Keywords: Mentors, Mentees, Civil Engineering
Abstract: On enrolment at university, undergraduate civil engineering students begin their journey towards a professional career. Graduate mentoring of student mentees supports students in their transition towards âbecomingâ a professional engineer. This case study examines the results from a graduate mentoring initiative (2010-2022) involving third-year (N= 974) civil and environmental engineering student mentees, 235 graduate mentors and 73 employers.
A virtuous collaboration between academia and industry
This case study examines the establishment of an industry-student mentoring scheme whereby Alumni civil engineering graduates volunteer to mentor student mentees. The mentoring is formalised in a third-year module (Construction Project Management).
Authentic learning
The mentoring initiative aims to expose the mentees to authentic civil engineering practice, to shape their professional identity and belongingness to their chosen discipline, and, to enhance their employability skills. Mentors are tasked âto help motivate students towards learning what is useful and what might make them a better engineer rather than just focusing on gradesâ [1].Two theoretical concepts provided a lens to guide the implementation. âPossible selves are representations of the self in the future, including those that are ideal and hoped for as well as those that one does not wish forâ [2 p.233]. Anticipatory socialisation involves individuals anticipating their future occupation prior to entry and constitutes all learning that takes place prior to an individualâs first day at work [3].
People, place & culture
The collaboration between the department and employers began in 2010 when the author approached the department’s existing industry contacts, to become the inaugural mentors. Today, LinkedIn and other social media provide a platform for broadcasting mentoring news. Over time the mentoring has built its own brand momentum and Alumni and employers now make unsolicited offers to assist (i.e. see [4] for university and industry-driven engagement strategies). The brand is enhanced through its association with key sector employers but given the propensity for small and micro SMEs in the engineering sector, these employers should not be overlooked.
Whilst the mentoring is embedded within the mechanics of a formal structure (i.e. Module, Learning Outcomes, and Assessment etc.) the development, sustaining and leadership of the initiate is fuelled through informal professional relationships. Social relations are important to maintain ongoing engagement between universities and industry stakeholders [4 p.14]. The collaborative culture is characterised by value alignment and trust between the stakeholders [5].
Mentoring with a contractor.
Stakeholders
The mentoring initiative can be considered an âemployer groupâ model whereby âengagement included collaboration between a single HEI (University of Strathclyde) and two or more employers on the same initiativeâ [5 p.23]. The initial buy-in from the mentors normally requires sanctioning by a line manager, often, a supervising civil engineer.
The value alignment between all stakeholders is personified through knowledge transfer (mentor-mentee); professional development (mentor-employer); creating social value (employer-university) and, the university department through fulfilling the programme accreditation requirements:
JBM strongly recommends that higher education institutions (HEIs) maintain strong, viable and visible links with the civil engineering profession [6 p.21].
By association, the professional institutions benefit through the mentorsâ contribution to their own CPD, en-route to IEng / CEng, and, through the mentees gaining an awareness of profession attributes through their own IPD during their university studies:
All members shall develop their professional knowledge, skills and competence on a continuing basis and shall give all reasonable assistance to further the education, training and continuing professional development (CPD) of others [7].
A fuller description of the mentoring process can be found [8]. Suffice to say the mentees (in groups of four) visit their mentors in the field, at a consultantâs office, and/or to a live construction site on four occasions over two academic semesters. Typically, the mentors will also provide mentees with access to their peers who would shed light on their own graduate trajectories. The departmentâs industrial advisory board [9] published guidance to assist the mentors. During the Covid pandemic, the majority of meetings were undertaken on ZOOM /TEAMS platforms. To date, the initiative has involved:
Total time in mentoring meetings constituting student IPD circa 7792 hrs.
Assessment evolution
Over the piece, the mentoring assessment has constituted a circa 40% weighting for the 10 credit module. Initially, the students were tasked with only describing what had been learned and to link this to professional institution attributes [10]. This morphed into an Assessment for Learning [11] and sought to develop the studentâs reflective practitioner [12] and metacognition skills [13]. Students develop four SMART learning objectives, linked to their programme curriculum, and, to explore these topics with guidance from their mentors. Today, the assessment criteria partially reflects the tenets of self-determined learning:
The essence of heutagogy is that in some learning situations, the focus should be on what and how the learner wants to learn, not on what is being taught [14 p.7].
During the 2020-22 academic sessions the Covid pandemic presented an opportunity to employ eLearning technology, to enhance the studentâs reflection skills. The author is currently piloting Vlogging [15] whereby the students are tasked with completing short video blogs concerning their mentoring experience, and, to use the audio transcript to facilitate second-order reflection in a summative report:
..any technique that requires a learner to look through previous reflective work and to write a deeper reflective overview [16 p.148].
Mentoring with a Consultant
Key outcomes
The key outcomes concern enhanced opportunities for placement and graduate employment, and, an improvement in the studentsâ employability skills [8]. Recent anecdotal feedback (i.e. unsolicited student emails; NSS Free text; Module Evaluation; Employer Feedback) demonstrates that students, and employers, consider the initiative to constitute an emerging talent pipeline. The mentoring provides a surrogate mechanism to short circuit employerâs traditional recruitment process.
The CE4R [17] workshops are the best thing ever. That along with the mentoring class in third year is the main reason I have my graduate job, whilst my grades and ability helped, these aspects of my course opened the door for me. (NSS Free Text, 2021)
The graduate mentoring programme is excellent and is highly beneficial to both the students, our graduates in the business and AECOM as a whole. (Lynn Masterson AECOM, Regional Director North, Scotland & Ireland. Ground, Energy & Transactions Solutions, UK&I)
The [mentoring] scheme works for us on a number of levels in providing benefits to us as a company, the professional development of our current graduate engineers, and the development of current Strathclyde undergraduates who may go on to work for us or others in industry. (Simon McCormick, Balfour Beatty, Contracts Director, Scotland)
Lessons learned
Your current students are your future graduate mentors. Establishing a peer mentoring scheme will help to develop a culture of collegiality and collaboration across your programme(s).
Inculcate a culture of collaboration, rather than competition, amongst the mentees. Mentoring in groups requires professional communications between the mentees, and with their mentor.
Not all mentees will be sufficiently motivated or are willing to understand the concepts of self-determined learning and reflective practice. This can be considered a Threshold Concept and will require attending to studentsâ epistemic believes.
Unless you have sufficient time, and or assistance from colleagues to manage the mentoring scheme, do not micromanage. Manage by exception.
At department / faculty level, academic-industry collaborations should be organised and managed as a holistic system. However, do not conflate requests to employers for help with studentsâ (time in kind) with requests to support university income streams (research / KE).
Davies, J.W &Â Rutherford, U. (2012) Learning from fellow engineering students who have current professional experience, European Journal of Engineering Education, 37:4, 354-365, DOI: 10.1080/03043797.2012.693907
Valentine, A., Marinelli, M., &Â Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033
Waterhouse, P (2020) Mentoring for Civil Engineers, London: ICE Publishing
University guidance:
University of Colorado Boulder (2022) Chemical & Biological Engineering: Alumni-Student Mentor Program, https://www.colorado.edu/chbe/ASMP
[1] Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering educationâ A good practice guide, Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/effective-industrial-engagement-in-engineering-edu
[2] Stevenson, J & Clegg, S. (2011). Possible selves: students orientating themselves towards the future through extracurricular activity, British Educational Research Journal 37(2): 231â246.
[3] Sang, K., Ison, S., Dainty, A., & Powell, A. (2009). Anticipatory socialisation amongst architects: a qualitative examination. Education + Training 51(4):309-321, DOI: 10.1108/00400910910964584 .
[4] Valentine, A., Marinelli, M., &Â Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033
[5] Bolden R.,  Connor, H., Duquemin, A.,  Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE, https://ore.exeter.ac.uk/repository/bitstream/handle/10036/79653/Higher%20Skills%20research%20report.pdf;jsessionid=0A6694CF9D25BBD80AC649069C2D9DFA?sequence=1
[6] Joint Board of Moderators (2021) Guidelines for developing degree programmes. https://www.jbm.org.uk/media/hiwfac4x/guidelines-for-developing-degree-programmes_ahep3.pdf
[7] Institution of Civil Engineers (2022) Code of Professional Conduct https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/About%20Us/ice-code-of-professional-conduct.pdf
[8] Murray. M., Ross. A., Blaney, N & Adamson, L. (2015). Mentoring Undergraduate Civil Engineering Students. Proceedings of the ICE-Management, Procurement & Law, 168(4): 189â198.
[9] University of Strathclyde (2013) Department of Civil & Environmental Engineering, Industrial Advisory Board Guide to mentoring.
[10] Institution of Civil Engineers (2022) Attributes for professionally qualified membership, https://www.ice.org.uk/my-ice/membership-documents/member-attributes#CEng2022
[11] Sambell, K, McDowell, L and Montgomery C (2013) Assessment for learning in Higher Education, Oxon: Routledge.
[12] Schon, D. (1987). Educating the Reflective Practitioner, San Francisco; Jossey-Bass.
[13] Davis, D., Trevisan, M., Leiffer,P., McCormack,J., Beyerlein, S., Khan, M.J., & Brackin, R.(2013) Reflection and Metacognition in Engineering Practice, In, Kaplan, M., Silver, N., Lavaque-Manty, D & Meizlish, D (edits) Using Reflection and metacognition to Improve Student Learning: Across the Disciplines, Across the Academy, Virginia: Stylus Publishing, pp78-103.
[14] Hase, S & Kenyon, C. (2013). Self-Determined Learning: Heutagogy in Action London: Bloomsbury Publishing Plc.
[15] Brott, P.E. (2020): Vlogging and reflexive applications, Open Learning: The Journal of Open, Distance and e-Learning, DOI: 10.1080/02680513.2020.1869536
[16] Moon, J (2004) A Handbook of Reflective & Experiential learning: Theory & Practice. London: Routledge.
[17] Murray, M., Hendry, G., & McQuade, R. (2020). Civil Engineering 4 Real (CE4R): Co-curricular Learning for Undergraduates. European Journal of Engineering Education. 45(1):128-150.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.
Authors: Bob Tricklebank (Dyson Institute of Engineering and Technology) and Sue Parr (WMG, University of Warwick).
Keywords: Partnerships, Academic, Industry
Abstract: This case study illustrates how, through a commitment to established guiding principles, open communication, a willingness to challenge and be challenged, flexibility and open communication, itâs possible to design and deliver a degree apprenticeship programme that is more than the sum of its parts.Â
Introduction
Dyson is driven by a simple mission: to solve the problems that others seem to ignore. From the humble beginnings of the worldâs first bagless vacuum cleaner, Dyson is now a global research and technology company with engineering, research, manufacturing and testing operations in the UK, Singapore, Malaysia and the Philippines. The company employs 14,000 people globally including 6,000 engineers and scientists. Its portfolio of engineering expertise, supported by a ÂŁ3 million per week investment into R&D, encompasses areas from solid-state batteries and high-speed digital motors to machine learning and robotics.
Alongside its expansive technology evolution, Dyson has spent the past two decades supporting engineering education in the UK through its charitable arm, the James Dyson Foundation. The James Dyson Foundation engages at all stages of the engineering pipeline, from providing free resources and workshops to primary and secondary schools to supporting students in higher education through bursaries, PhD funding and capital donations to improve engineering facilities.
It was against this backdrop of significant investment in innovation and genuine passion for engineering education that Sir James Dyson chose to take a significant next step and set up his own higher education provider: the Dyson Institute of Engineering and Technology.
The ambition was always to establish an independent higher education provider, able to deliver and award its own degrees under the New Degree Awarding Powers provisions created by the Higher Education and Research Act 2017. But rather than wait the years that it would take for the requisite regulatory frameworks to appear and associated applications to be made and quality assurance processes to be passed, the decision was made to make an impact in engineering education as quickly as possible, by beginning delivery in partnership with an established university.
Finding the right partner
The search for the right university partner began by setting some guiding principles; the non-negotiable expectations that any potential partner would be expected to meet, grounded in Dysonâs industrial expertise and insight into developing high-calibre engineering talent.
1.An interdisciplinary programme
Extensive discussions with Dysonâs engineering leaders, as well as a review of industry trends, made one thing very clear: the engineers of the future would need to be interdisciplinarians, able to understand mechanical, electronic and software engineering, joining the dots between disciplines to develop complex, connected products. Any degree programme delivered at the Dyson Institute would need to reflect that â alongside industrial relevance and technical rigour.
2. Delivered entirely on the Dyson Campus
It was essential that delivery of the degree programme took place on the same site on which learners would be working as Undergraduate Engineers, ensuring a holistic experience. There could be no block release of learners from the workplace for weeks at a time: teaching needed to be integrated into learnersâ working weeks, supporting the immediate application of learning and maintaining integration into the workplace community. Â
3. Actively supported by the Dyson Institute
This would not be a bipartisan relationship between employer and training provider. The fledgling Dyson Institute would play an active role in the experience of the learners, contributing to feedback and improvements and gaining direct experience of higher education activity by shadowing the provider.
WMG, University of Warwick
Dyson entered into discussions with a range of potential partners. But WMG, University of Warwick immediately stood out from the crowd.
Industrial partnership was already at the heart of WMGâs model. In 1980 Professor Lord Kumar Bhattacharyya founded WMG to deliver his vision to improve the competitiveness of the UKâs manufacturing sector through the application of value-adding innovation, new technologies and skills development. Four decades later, WMG continues to drive innovation through its pioneering research and education programmes, working in partnership with private and public organisations to deliver a real impact on the economy, society and the environment.
WMG is an international role model for how universities and businesses can successfully work together; part of a Top 10 UK ranked and Top 100 world-ranked university.
WMGâs expertise in working with industrial partners meant that they understood the importance of flexibility and were willing to evolve their approach to meet Dysonâs expectations â from working through the administrative challenge of supporting 100% delivery on the Dyson Campus, to developing a new degree apprenticeship programme.
Academics at WMG worked closely with Dyson engineers, who offered their insight into the industrial relevance of the existing programme â regularly travelling to WMG to discuss their observations in person and develop new modules. This resulted in a degree with a decreased focus on group work and project management, skills that learners would gain in the workplace at Dyson, and an increased focus on software, programming and more technically focused modules.
Importantly, WMG was supportive of Dysonâs intention to set up an entirely independent higher education provider. Rather than see a potential competitor, WMG saw the opportunity to play an important part in shaping the future of engineering education, to engage in reciprocal learning and development alongside a start-up HE provider and to hone its portfolio for future industrial partnerships.
The programme
In September 2017, the Dyson Institute opened its doors to its first cohort of 33 Undergraduate Engineers onto a BEng in Engineering degree apprenticeship, delivered over four years and awarded by the University of Warwick.
Two days per week are dedicated to academic study. The first day is a full day of teaching, with lecturers from WMG travelling to the Dyson Campus to engage in onsite delivery. The second day is a day of self-study, with lecturers available to answer questions and help embed learning. The remaining three days are spent working on live engineering projects within Dyson.
The first two years of the programme are deliberately generalist, while years three and four offer an opportunity to specialise. This academic approach is complemented in the workplace, with Undergraduate Engineers spending their first two years rotating through six different workplace teams, from electronics and software to research and product development, before choosing a single workplace team in which to spend their final two years. Final year projects are based on work undertaken in that team.
The Dyson Institute enhances WMGâs provision in a variety of ways, including administration of the admissions process, the provision of teaching and learning facilities, pastoral support, health and wellbeing support, social and extra-curricular opportunities, monitoring of student concerns and professional development support. Â
Key enhancements include the provision of Student Support Advisors (one per cohort), a dedicated resource to manage learnersâ workplace experience, quarterly Wellbeing and Development Days and the Summer Series, a professional development programme designed to address the broader set of skills engineers need, which takes the place of academic delivery across July and August.
Continuous improvement Â
The collaborative partnership between Dyson, the Dyson Institute and WMG, the University of Warwick did not end when delivery began. Instead, the focus turned to iteration and improvement.
Dyson Institute and WMG programme leadership hold regular meetings to discuss plans, progress and challenges. These conversations are purposefully frank, with honesty on both sides allowing concerns to be raised as soon as they are noted. An important voice in these conversations is that of the student body, whose âon the ground experienceâ is represented not only through the traditional course representatives, but through stream and workplace representatives.
Even as the Dyson Institute has begun independent delivery (it welcomed its first Dyson Institute-registered Undergraduate Engineers in September 2021), both partners remain dedicated to improving the student experience. The current focus is on increasing WMGâs onsite presence as well as the regularity of joint communications to the student body, with a view to supporting a more streamlined approach to challenge resolution.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professorsâ Council or the Toolkit sponsors and supporters.