Toolkit: Complex Systems Toolkit.

Author: Dr. Ewa Ura-Binczyk (Warsaw University of Technology).

Topic: Rail accident investigation and material failure analysis using systems thinking.

Title: Using fault tree analysis in a rail failure investigation.

Resource type: Teaching – Case study.

Relevant disciplines: Mineral, metallurgy & materials engineering; Civil engineering.

Keywords: Available soon.

Licensing: This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Related INCOSE Competencies: Toolkit resources are designed to be applicable to any engineering discipline, but educators might find it useful to understand their alignment to competencies outlined by the International Council on Systems Engineering (INCOSE). The INCOSE Competency Framework provides a set of 37 competencies for Systems Engineering within a tailorable framework that provides guidance for practitioners and stakeholders to identify knowledge, skills, abilities and behaviours crucial to Systems Engineering effectiveness.   A free spreadsheet version of the framework can be downloaded.

This resource relates to the Systems Thinking, Systems Modelling and Analysis, Ethics and Professionalism, Technical Leadership and Critical Thinking INCOSE Competencies.

AHEP4 mapping: This resource addresses several of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): Analytical Tools and Techniques (critical to the ability to model and solve problems), and Integrated / Systems Approach (essential to the solution of broadly-defined problems). In addition, this resource addresses AHEP themes of Design, Ethics and Communication. 

Educational level: Intermediate; Advanced.

 

Learning and teaching notes:

The case is built around 3 × 90-minute sessions and independent report writing. A suggested breakdown of the activities can be seen below. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Downloads: 

 

Learning and teaching resources:

 

Session  Focus  Suggested activities and timing 
1  Introduction and problem framing  20 min: Introduce case scenario and system context; 30 min: Group discussion on initial impressions, key stakeholders, and potential causes; 40 min: Begin Fault Tree Analysis (FTA) construction using initial evidence. 
2  Investigation and analysis  30 min: Continue FTA construction and data evaluation; 30 min: Peer review of other groups’ fault trees; 30 min: Consolidate findings and prepare draft report outline. 
3  Reporting and reflection  30 min: Present findings to a simulated stakeholder panel; 30 min: Discuss feedback and defend conclusions; 30 min: Individual reflection on complexity, uncertainty, and assumptions. 

 

Summary of the system or context:

Rail transport systems consist of thousands of interdependent components, including rails, fasteners, sleepers, signalling systems, and maintenance processes. Failures in a single component can cascade, affecting: 

 

Complex system features: 

 

Narrative of the case:

On a cold January morning, a commuter train was halted after inspectors discovered a fractured rail joint component. Services were disrupted for several hours, stranding thousands of passengers. The media quickly picked up the story, raising questions about safety and reliability. 

The rail operator urgently commissioned an engineering consultancy (the students) to investigate the failure. Their findings will inform both the safety authority’s decision on whether the line can reopen and the legal proceedings to determine liability. 

 

The dilemma: 

As consultants, students face incomplete evidence: some lab tests are missing, inspection logs are inconsistent, and eyewitness accounts conflict. They must use Fault Tree Analysis (FTA) to map possible causes, evaluate data, and produce an expert opinion report — knowing that their conclusions could influence legal outcomes and public safety decisions. 

Groups: 3–5 students per group; 3-4 groups can run in parallel. 

Materials required: case narrative handouts, sample inspection log, example FTA, whiteboards/flipcharts, sticky notes for FTA mapping. 

Activity flow: 

1. Introduce case and assign roles. 

2. Construct initial fault trees using evidence. 

3. Peer-review across groups. 

4. Draft expert report and present to simulated stakeholder panel. 

5. Individual reflection on complexity and uncertainty. 

 

Why use Fault Tree Analysis (FTA):

FTA is a structured approach to trace a failure from an observed event back to potential causes, including technical, human, and organisational factors. 

FTA is particularly suitable for this case because it allows students to structure complex, uncertain information in a logical and transparent way. It helps them trace the chain of causes behind the rail component failure, linking material, human, and organisational factors into one coherent framework. By visualising how small events combine into system-level failures, FTA encourages learners to think critically about interdependencies, data gaps, and assumptions. It also mirrors real-world engineering investigations, where professionals must justify conclusions under uncertainty and demonstrate clear reasoning to stakeholders such as regulators or courts. 

Advantages in this case: 

 

Questions and activities: 

Prompt  Expected insight / reflection 
What technical, human, and organisational factors might have contributed to this failure?  Students identify multiple interacting factors, illustrating interdependencies and emergent risks. 
How does Fault Tree Analysis help structure uncertainty in this investigation?  Learners recognise FTA’s role in visualising cause-effect pathways and clarifying assumptions. 
Which assumptions are you forced to make, and how might they affect your conclusions?  Students reflect on data gaps, biased observations, and ethical implications of assumptions. 
How do different stakeholders’ interests shape urgency and framing of your analysis?  Learners understand trade-offs, pressures from conflicting priorities, and the precautionary principle. 
What are the risks of issuing a preliminary report under time pressure?  Students explore implications for safety, liability, professional integrity, and public trust. 

 

Activity  Focus  What “good practice” looks like  Facilitator notes / tips 
1. FTA construction  Collaborative problem analysis  Teams discuss evidence openly, question assumptions, and co-create a logical tree linking technical, human, and organisational causes.   Encourage each group to identify at least one “human/organisational” branch and to label any data gaps explicitly. 
2. Peer review  Critical reflection and systems perspective  Groups provide constructive critique, highlighting hidden assumptions, missing branches, or unclear logic. Dialogue stays professional and evidence-based.  Provide coloured sticky notes or digital comments to record feedback; model how to frame critique as questions (“Have you considered…?”). 
3. Report writing (in-class drafting)  Synthesis and professional communication  Drafts show a clear, defensible reasoning chain from evidence to conclusion. Teams justify assumptions and note uncertainties.  Remind students to separate “facts” from “interpretations.” Encourage use of structured headings (Findings – Analysis – Conclusions). 
4. Simulation role-Play  Perspective-taking and communication under pressure  Presentations are concise (≤5 min), factual, and adapted to stakeholder roles. Learners respond respectfully and clearly to challenging questions.  Provide role cards for the panel (operator, regulator, manufacturer, public). Rotate students if possible. 
5. Reflection  Metacognition and learning from uncertainty  Students identify what surprised them, what they found ambiguous, and how their view of engineering judgment evolved.  Offer prompts like “What would you do differently next time?” or “Where did your reasoning feel uncertain?” 

 

Further challenge:

Instructors may choose to introduce a second “reveal” phase: a new metallurgical test result or a whistle-blower statement emerges halfway through the case. Students must revise their fault tree and defend whether and how their conclusions change. This highlights the evolving nature of complex systems investigations. 

 

Assessment opportunities:

 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.  

 

Theme: Collaborating with industry for teaching and learning, Universities’ and businesses’ shared role in regional development, Knowledge exchange, Graduate employability and recruitment

Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)

Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure

Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.

 

The opportunity

Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.

Seed funded taster projects

In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.

Knowledge Transfer Partnership (KTP) Projects

KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.

The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.

The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.

First of a kind (FOAK) projects

The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.

The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.

The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.

The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.

The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.

Additional benefits to University of Huddersfield

In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.

 

Figure 1. Head-span showing span-wires and span-wire clamp.

 

Figure 2. Old (left) and new (right) span-wire clamps.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website