Authors:
Cortney Holles (Colorado School of Mines); Ekaterina Rzyankina (University of Cape Town).

Topic: Critical digital literacy.

Engineering disciplines: Computer Science; Information Systems; Biomedical engineering.

Ethical issues: Cultural context; Social responsibility; Privacy.

Professional situations: Public health and safety; Working in area of competence; Informed consent.

Educational level: Intermediate.

Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.

 

Learning and teaching notes:

The case involves an engineering student whose personal choices may affect her future professional experience. It highlights both micro- and macro-ethical issues, dealing with the ways that individual actions and decisions can scale to create systemic challenges.

An ethical and responsible engineer should know how to work with and use digital information responsibly. Not all materials available online are free to use or disperse. To be digitally literate, a person must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). It is important to guide engineering students in understanding the media landscape and the influence of misleading information on our learning, our political choices, and our careers. A large part of critical digital literacy is evaluating information found on the web. For students working on a research project or an experiment, accessing accurate information is imperative. This case study offers several approaches to engaging students in the critique and improvement of their critical digital literacy skills. The foundations of this lesson can be applied in multiple settings and can be expanded to cover several class periods or simplified to be inserted into a single class.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

News articles:

Educational institutions:

Legal regulations:

Non-profit organisations:

Business:

 

Summary:

Katherine is a biomedical engineering student in her 3rd year in 2022, and will have a placement in a community hospital during her last term at university. She plans to pursue a career in public health after seeing what her country went through during the Covid-19 pandemic. She wants to contribute to the systems that can prevent and track public health risks from growing too large to manage, as happened with Covid-19. She is motivated by improving systems of research and treatment for emerging diseases and knows that communication between a variety of stakeholders is of the utmost importance.

 

Optional STOP for questions and activities:

1. Discussion: What can you determine about Katherine’s values and motivation for her studies and her choice of career?

2. Discussion: How do you connect with her mission to improve diagnostic and treatment systems for public health threats?

3. Discussion: Who should be responsible for the messaging and processes for public health decisions? How are engineers connected to this system?

4. Activity: Research the Covid-19 vaccine rollout in the United Kingdom versus other countries – how did power, privilege, and politics influence the response?

5. Activity: Research current public health concerns and how they are being communicated to the public. In what ways might engineers affect how and what is communicated?

 

Dilemma – Part one:

As Katherine approaches the winter holiday season, she makes plans to visit her grandmother across the country. She hasn’t seen her since before the Covid-19 pandemic and is excited to be around her extended family for the holidays once again. However, she receives an email from her cousin informing everyone that he and his family are not vaccinated against Covid-19 because the whole vaccination operation was forced upon citizens and they refused to participate. Katherine is immediately worried for her grandmother – at 85 years old, she is at a higher risk than most – and for her brother, who suffers from Addison’s disease, an autoimmune disorder. Additionally, if Katherine comes into contact with Covid-19 while celebrating the holidays with her family, she could suffer repercussions at both her university and the hospital where she will work for her placement.

 

Optional STOP for questions and activities:

1. Discussion: How can Katherine communicate with her cousin about her concerns for her brother and grandmother? How might she use her expertise as a biomedical engineer in this conversation?

2. Discussion: What kind of information will be most convincing to support her decision? What sources would provide the evidence she is looking for, and which ones would provide counter arguments?

3. Discussion: What impacts might the decision have on Katherine’s position as a student or in the hospital?

4. Discussion: Do engineers, scientists, and medical professionals have more of an obligation to promote and adhere to public health guidance? Why or why not?

5. Activity: Talk to people in your life about their experience of navigating the Covid-19 vaccine. Did they choose to get it as soon as it was available? Did they avoid getting the vaccine for particular reasons? Were there impacts on their personal relationships or work because of their choices about the vaccine?

6. Activity: Research some of the impacts on individuals with health concerns and comorbidities in regard to Covid-19 and other viruses or public health concerns. How do these experiences match with or differ from your own?

7. Activity: Investigate the different ways that engineers were involved in vaccination development and response.    

 

Dilemma – Part two:

Katherine went back to university after a lengthy break for the holidays and immediately registered for an account on Facebook as a brand-new user. She was in such a hurry to have her profile up that she did not take the time to configure any privacy settings. She stayed up late reading an article about Covid-19  that had been posted on the website of one of the online newspapers. Before she posted this report on her own Facebook page, she did not verify the accuracy of the information or the source of the information.

 

Optional STOP for questions and activities:

1. Discussion: What kind of impact might this social media activity have on Katherine’s position as a student or in the company/organisation/hospital she is working for as an intern? What should Katherine be worried or concerned about after posting information?

2. Discussion: Do social media companies collect or ask for any other non-essential information from you? Why does the website claim that they are collecting or asking for your information? Does the website share/sell/trade the information that they collect from you? With whom does the website share your collected information? How long does the website keep your collected information? Does the website delete your information, or simply de-personalise it?

3. Discussion: Regarding question 2, how are engineers involved with products, processes, or services that enable those choices and actions?

4. Discussion: What is real and fake news? How do you know? What do you look for to know if it is real or fake news (share guidelines)? Do you expect it to be easy to spot fake news? Why should we care if people distribute and believe fake news?

Students are particularly susceptible to being duped by propaganda, misleading information, and fake news due to the significant role that information and communication technology which is problematic to verify plays in their everyday life. Students devote a significant portion of their time to participating in various forms of online activity, including watching television, playing online games, chatting, blogging, listening to music, posting photos of themselves on social networking sites, and searching for other individuals with whom they can engage in online conversation. Students owe a significant portion of what they know about the world and how they perceive reality to the content that they read online. While many people share reliable and positive information online, others may engage in negative impact information sharing:

5. Discussion: What are some other examples of how engineering might fall prey to negative impact information sharing?

6. Discussion: How might engineers help address the problem of fake news and negative impact information sharing?

 

References:

Martin, A. (2008). ‘Digital Literacy and the “Digital Society”’, in Lankshear C. and Knobel M. (eds.), Digital Literacies: Concepts, Policies, and Practices. New York: Peter Lang,  (pp. 151-176).

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr. Natalie Wint (UCL). 

Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.  

Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering. 

Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment. 

Professional situations: Whistleblowing; Company growth; Communication; Public health and safety. 

Educational level: Intermediate. 

Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others. 

 

Learning and teaching notes: 

This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.  

This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibility and environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.  

This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:   

Teachers have the opportunity to:    

 

Learning and teaching resources: 

Professional organisations: 

EU agencies: 

Industry publications: 

EU law: 

 

Dilemma – Part one: 

Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.  

Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health. 

Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products. 

 

Optional STOP for questions and activities:  

1. Discussion: Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?

2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.  

3. Activity: Technical integration – Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.  

4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?  

 

Dilemma – Part two: 

Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.  

Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.  

“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.” 

Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.  

Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”  

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – What competing personal values or motivations might trigger an internal conflict for Alex? 

2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case? 

3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities. 

4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important? 

5. Discussion: How do you think the issue of microplastics should be controlled? 

6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?

7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex? 

8. Activity: Technical integration related to calculations or experiments on microplastics. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Research

Authors: Dr Grazia Todeschini (King’s College London) and Kah Leong-Koo (National Grid UK)

Keywords: Electrical Engineering, Power Systems, Renewable Energy, Computer Model

Abstract: This case study deals with a collaboration between KCL and National Grid on a EPSRC project. The project deals with assessing the impact of renewable energy sources on the electricity grid. This assessment will be carried out by using a transmission grid model provided by National Grid and device models developed by KCL.

 

Topic of the case study

This case study deals with the development of advanced models to study the impact of renewable energy sources, and more in general, inverter-based devices, on the UK transmission grid. More specifically, this project focuses on the impacts in terms of voltage and current distortion. This topic is referred to as ‘power quality’ in the specialist literature.

Aims

This research was motivated by various reports presented in the technical literature in the last decade, where a general increase of harmonic levels has been observed. A similar trend has been reported in several countries, simultaneously to the installation of increasing levels of renewable energy sources and other inverter-based devices. These reports have created some concerns about harmonic management in the future, when more renewable energy sources will be in services. Ultimately, the project aims at forecasting harmonic levels in 2050, and at determining impact on the equipment, and possible mitigating solutions.

Collaborating parties

This case study involved the collaboration between the Department of engineering at King’s College London and National Grid UK.

Project set up

Power quality is a specialist area within power systems that deals with deviation of voltage and current waveforms from the nominal values, in terms of both amplitude and frequency. The academic PI worked for a few years in the power industry, with the aim of specialising in power quality and understanding the issues faced by the power industry, as well as the tools that are used to carry out power system studies. The industrial PI is an expert in the area of power quality and has been involved with many standardisation groups as well as professional organisation to help developing common tools to harmonise the approach to power quality. Therefore, the two PIs have a similar expertise and background that allowed them to discuss and define common areas of research. When looking to develop such a specialist project, it is very important that all parties involved have a common ground, so that it is possible to interact and work in the same direction.

Outcomes

The project is still not finished, however, some of the original objectives have been achieved:

  1. A 2050 scenario has been developed, by using: transmission system model data provided by National Grid, device models developed through research and testing, and identification of future locations of renewable energy sources. Although the case is still under development, preliminary results indicate that harmonic levels are expected to increase, but they can be managed using existing design practice.

Lessons learned, reflections, recommendations

Further resources

We published two papers and others are in preparation:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Gareth Thomson (Aston University, Birmingham), Dr Jakub Sacharkzuk (Aston University, Birmingham) and Paul Gretton (Aston University, Birmingham)

Keywords: Industry, Engineering Education, Authenticity, Collaboration, Knowledge exchange, Graduate employability and recruitment.

Abstract: This paper describes the work done within the Mechanical, Biomedical and Design Engineering group at Aston University to develop an Industry Club with the aim to enhance and strategically organise industry involvement in the taught programmes within the department. A subscription based model has been developed to allow the hiring of a part-time associate to manage the relationship with industry, academic and student partners and explore ways to develop provision. This paper describes the approach and some of the activities and outcomes achieved by the initiative.

 

Introduction

Industry is a key stakeholder in the education of engineers and the involvement of commercial engineering in taught programmes is seen as important within degrees but may not always be particularly optimised or strategically implemented.

Nonetheless, awareness of industry trends and professional practice is seen as vital to add currency and authenticity to the learning experience [1,2]. This industry involvement can take various forms including direct involvement with students in the classroom or in a more advisory role such as industrial advisory or steering boards [3] designed to support the teaching team in their development of the curriculum.

Direct input into the curriculum from industry normally involves engagement in dissertations, final year ‘capstone’ project exercises [4], visits [5], guest lectures [6,7], internships [8,9] or design projects [10,11]. These are very commonly linked to design type modules [12,13] or projects where the applied nature of the subject makes industrial engagement easier and are more commonly centred toward later years when students are perceived to have accrued the underpinning skills and intellectual maturity needed to cope with the challenges posed.

These approaches can however be ad hoc and piecemeal. Industry contacts used to directly support teaching are often tied into specific personal relationships through previous research or consultancy or through roles such as the staff involved also being careers or placement tutors. This means that there is often a lack of strategic thinking or sharing of contacts to give a joined up approach – an academic with research in fluid dynamics may not have an easy way to access industrial support or guidance if allocated a manufacturing based module to teach.

This lack of integration often gives rise to fractured and unconnected industrial involvement (Figure 1) with lack of overall visibility of the extent of industrial involvement in a group and lack of clarity on where gaps exist or opportunities present themselves.

 

Figure 1 : Industry involvement in degrees is often not as joined up as might be hoped.

 

As part of professional body accreditation it is also generally expected that Industrial Advisory Boards are set-up and meet regularly to help steer curriculum planning. Day to day pressures however often mean that these do not necessarily operate as effectively as they could and changes or suggestions proposed by these can be slow to implement.

Industry Club

To try to consolidate and develop engagement with industry a number of institutions have developed Industry Clubs [14,15] as a way of structuring and strategically developing industrial engagement in industry.

For companies, such a scheme offers a low risk, low cost involvement with the University, access to students to undertake projects and can also help to raise awareness in the students minds of companies and sectors which may not have the profile of the wider jobs market beyond the big players in the automotive, aerospace or energy sectors. At Aston University industry clubs have been running for several years in Mechanical Engineering, Chemical Engineering and Computer Science.

The focus in this report is the setting up and development of the industry club in the Mechanical, Biomedical and Design Engineering (MBDE) department.

Recruitment of companies was via consolidation of existing contacts from within the MBDE department and engagement with the wider range of potential partners through the University’s ‘Research and Knowledge Exchange’ unit.

The industry focus within the club has been on securing SME partners. This is a sector which has been found to be very responsive. Feedback from these partners has indicated that often getting access to University is seen as ‘not for them’ but when an easy route in is offered, it becomes a viable proposition. By definition SMEs do not have the visibility of multi-nationals and so they can struggle to attract good graduates so the ability to raise brand awareness is seen as positive. From the perspective of academics, the very flat and localised management structure also makes for a responsive partner able to make decisions relatively quickly. Longer term this opens up options to explore more expansive relationships such as KTPs or other research projects and also sets up a network of different but compatible companies able to share knowledge among themselves.

Within MBDE the industry club initially focussed on placing industrially linked projects for final year dissertation students. This was considered relatively ‘low hanging fruit’ with a simple proposition for companies, academics and students.

While this proposal is straightforward it is not entirely without difficulty with matching of academics to projects, expectation management and practical logistics of diary mapping between partners all needing attention.

To support this, an Industry Club Associate was recruited to help manage the initiative, funding for this being drawn from industry partner subscriptions and underwritten by the department.

This has allowed the Industry Club to move beyond its initial basis of final year projects to have a much wider remit to oversee much of the involvement of industry in both the teaching programmes directly and in their advising and steering of the curriculum.

Figure 2 shows schematically the role and activities of the industry club within the group.

Impact Beyond Projects

The use of the Industry Club to co-ordinate and bolster other industry activity within the department has gone beyond final year projects. These can be seen in Figure 2.

The Industrial Advisory Board has now become linked to the Industry Club and so with partners now involved in the wider activities of the club involvement is now not exclusively limited to twice yearly meeting but is an active ongoing partnership using the projects, other learning and teaching activity and a LinkedIn group to create a more dynamic and responsive consultation body. A subset of the IAB is now also made up entirely of recent alumni to act as a bridge between the students and practising industry to help spot immediate gaps and opportunities to support students in this important transition.

 

Figure 2 : Industry Club set-up and Activity

 

The club has also developed a range of other industrially linked activities in support of teaching and learning.

While industrial involvement is relatively easy to embed in project or design type modules this is not so easy in traditional underpinning engineering science type activity.

To address the lack of industrial content in traditional engineering science modules a pilot interactive online case studies be developed to help show how fundamental engineering science can be applied in authentic industrial problems. A small team consisting of an academic, the industry club associate and an industrialist was assembled.

This team developed an online pump selection tool which combined interactive masterclasses and activities, introduced and explained by the industrialist to show how the classic classroom theory could be used and adapted in real world scenarios (Figure 3). This has been well-received by students, added authenticity to the curriculum and raised awareness in student minds of the perhaps unfashionable but important and rewarding water services sector.

 

Figure 3 : Online Interactive Activity developed as part of industry club activity

Further interactions developed by the Industry Club, and part of its remit to embed industrial links at all stages of the degree, include the involvement of an Industrial Partner on a major wind turbine design, build and test project engaged in as group exercises by all students in year one. Here the industrialist, a wind energy professional, contextualises work while his role is augmented by a recent alumni member of the Industrial board who is currently working as a graduate engineer on offshore wind and who completed the same module as the students four years or so previously.

Conclusion

While the development of the Industry Club and its associated activity can not be considered a panacea, it has significantly developed the level of industry involvement within programmes. More crucially it moves away from an opaque and piecemeal approach to industry engagement and offers a more transparent framework and structure on which to hang industry involvement to support academics and industry in developing and maximising the competencies of graduates.

References

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Author: Dr Mike Murray (Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow)

Keywords: Mentors, Mentees, Civil Engineering

Abstract: On enrolment at university, undergraduate civil engineering students begin their journey towards a professional career. Graduate mentoring of student mentees supports students in their transition towards ‘becoming’ a professional engineer. This case study examines the results from a graduate mentoring initiative (2010-2022) involving third-year (N= 974) civil and environmental engineering student mentees, 235 graduate mentors and 73 employers.

 

A Virtuous collaboration between academia and industry

This case study examines the establishment of an industry-student mentoring scheme whereby Alumni civil engineering graduates volunteer to mentor student mentees. The mentoring is formalised in a third-year module (Construction Project Management).

Authentic Learning

The mentoring initiative aims to expose the mentees to authentic civil engineering practice, to shape their professional identity and belongingness to their chosen discipline, and, to enhance their employability skills. Mentors are tasked ‘to help motivate students towards learning what is useful and what might make them a better engineer rather than just focusing on grades’ [1].Two theoretical concepts provided a lens to guide the implementation. ‘Possible selves are representations of the self in the future, including those that are ideal and hoped for as well as those that one does not wish for’ [2 p.233]. Anticipatory socialisation involves individuals anticipating their future occupation prior to entry and constitutes all learning that takes place prior to an individual’s first day at work [3].

People, Place & Culture

The collaboration between the department and employers began in 2010 when the author approached the department’s existing industry contacts, to become the inaugural mentors. Today, LinkedIn and other social media provide a platform for broadcasting mentoring news. Over time the mentoring has built its own brand momentum and Alumni and employers now make unsolicited offers to assist (i.e. see [4] for university and industry-driven engagement strategies). The brand is enhanced through its association with key sector employers but given the propensity for small and micro SMEs in the engineering sector, these employers should not be overlooked.

Whilst the mentoring is embedded within the mechanics of a formal structure (i.e. Module, Learning Outcomes, and Assessment etc.) the development, sustaining and leadership of the initiate is fuelled through informal professional relationships. Social relations are important to maintain ongoing engagement between universities and industry stakeholders [4 p.14]. The collaborative culture is characterised by value alignment and trust between the stakeholders [5].

 

Mentoring with a contractor.

Stakeholders

The mentoring initiative can be considered an ‘employer group’ model whereby ‘engagement included collaboration between a single HEI (University of Strathclyde) and two or more employers on the same initiative’ [5 p.23]. The initial buy-in from the mentors normally requires sanctioning by a line manager, often, a supervising civil engineer.

The value alignment between all stakeholders is personified through knowledge transfer (mentor-mentee); professional development (mentor-employer); creating social value (employer-university) and, the university department through fulfilling the programme accreditation requirements:

JBM strongly recommends that higher education institutions (HEIs) maintain strong, viable and visible links with the civil engineering profession [6 p.21].

By association, the professional institutions benefit through the mentors’ contribution to their own CPD, en-route to IEng / CEng, and, through the mentees gaining an awareness of profession attributes through their own IPD during their university studies:

All members shall develop their professional knowledge, skills and competence on a continuing basis and shall give all reasonable assistance to further the education, training and continuing professional development (CPD) of others [7].

A fuller description of the mentoring process can be found [8]. Suffice to say the mentees (in groups of four) visit their mentors in the field, at a consultant’s office, and/or to a live construction site on four occasions over two academic semesters. Typically, the mentors will also provide mentees with access to their peers who would shed light on their own graduate trajectories. The department’s industrial advisory board [9] published guidance to assist the mentors. During the Covid pandemic, the majority of meetings were undertaken on ZOOM /TEAMS platforms. To date, the initiative has involved:

Assessment Evolution

Over the piece, the mentoring assessment has constituted a circa 40% weighting for the 10 credit module. Initially, the students were tasked with only describing what had been learned and to link this to professional institution attributes [10]. This morphed into an Assessment for Learning [11] and sought to develop the student’s reflective practitioner [12] and metacognition skills [13]. Students develop four SMART learning objectives, linked to their programme curriculum, and, to explore these topics with guidance from their mentors. Today, the assessment criteria partially reflects the tenets of self-determined learning:

The essence of heutagogy is that in some learning situations, the focus should be on what and how the learner wants to learn, not on what is being taught [14 p.7].

During the 2020-22 academic sessions the Covid pandemic presented an opportunity to employ eLearning technology, to enhance the student’s reflection skills. The author is currently piloting Vlogging [15] whereby the students are tasked with completing short video blogs concerning their mentoring experience, and, to use the audio transcript to facilitate second-order reflection in a summative report:

..any technique that requires a learner to look through previous reflective work and to write a deeper reflective overview [16 p.148].

 

Mentoring with a Consultant

Key Outcomes

The key outcomes concern enhanced opportunities for placement and graduate employment, and, an improvement in the students’ employability skills [8]. Recent anecdotal feedback (i.e. unsolicited student emails; NSS Free text; Module Evaluation; Employer Feedback) demonstrates that students, and employers, consider the initiative to constitute an emerging talent pipeline. The mentoring provides a surrogate mechanism to short circuit employer’s traditional recruitment process.

The CE4R [17] workshops are the best thing ever. That along with the mentoring class in third year is the main reason I have my graduate job, whilst my grades and ability helped, these aspects of my course opened the door for me. (NSS Free Text, 2021)

The graduate mentoring programme is excellent and is highly beneficial to both the students, our graduates in the business and AECOM as a whole.  (Lynn Masterson AECOM, Regional Director North, Scotland & Ireland. Ground, Energy & Transactions Solutions, UK&I)

The [mentoring] scheme works for us on a number of levels in providing benefits to us as a company, the professional development of our current graduate engineers, and the development of current Strathclyde undergraduates who may go on to work for us or others in industry. (Simon McCormick, Balfour Beatty, Contracts Director, Scotland)

Lessons Learned

Guidance & Resources

Generic Guidance:

Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE.

Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering.

Davies, J.W &  Rutherford, U. (2012) Learning from fellow engineering students who have current professional experience, European Journal of Engineering Education, 37:4, 354-365, DOI: 10.1080/03043797.2012.693907

Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

Waterhouse, P (2020) Mentoring for Civil Engineers, London: ICE Publishing

University Guidance:

University of Colorado Boulder (2022) Chemical & Biological Engineering: Alumni-Student Mentor Program, https://www.colorado.edu/chbe/ASMP

University of Exeter (2022) Career Mentor Scheme: Mentee Guide, http://www.exeter.ac.uk/media/universityofexeter/careersandemployability/employmentservices/Mentee_Guide_December_2021.pdf

University of Southampton (2022) Career Mentoring Programme: Mentor Handbook, https://www.southampton.ac.uk/~assets/doc/careers/Mentor_Handbook.pdf

The Pennsylvania State University (2022) Civil & Environmental Engineering (CEE) Mentoring Program, https://www.cee.psu.edu/alumni/mentor/index.aspx

End notes

[1] Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/effective-industrial-engagement-in-engineering-edu

[2] Stevenson, J & Clegg, S. (2011). Possible selves: students orientating themselves towards the future through extracurricular activity, British Educational Research Journal 37(2): 231–246.

[3] Sang, K., Ison, S., Dainty, A., & Powell, A. (2009). Anticipatory socialisation amongst architects: a qualitative examination. Education + Training 51(4):309-321, DOI: 10.1108/00400910910964584 .

[4] Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

[5] Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE, https://ore.exeter.ac.uk/repository/bitstream/handle/10036/79653/Higher%20Skills%20research%20report.pdf;jsessionid=0A6694CF9D25BBD80AC649069C2D9DFA?sequence=1

[6] Joint Board of Moderators (2021) Guidelines for developing degree programmes. https://www.jbm.org.uk/media/hiwfac4x/guidelines-for-developing-degree-programmes_ahep3.pdf

[7] Institution of Civil Engineers (2022) Code of Professional Conduct https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/About%20Us/ice-code-of-professional-conduct.pdf

[8] Murray. M., Ross. A., Blaney, N & Adamson, L. (2015). Mentoring Undergraduate Civil Engineering Students. Proceedings of the ICE-Management, Procurement & Law, 168(4): 189–198.

[9] University of Strathclyde (2013) Department of Civil & Environmental Engineering, Industrial Advisory Board Guide to mentoring.

[10] Institution of Civil Engineers (2022) Attributes for professionally qualified membership, https://www.ice.org.uk/my-ice/membership-documents/member-attributes#CEng2022

[11] Sambell, K, McDowell, L and Montgomery C (2013) Assessment for learning in Higher Education, Oxon: Routledge.

[12] Schon, D. (1987). Educating the Reflective Practitioner, San Francisco; Jossey-Bass.

[13] Davis, D., Trevisan, M., Leiffer,P., McCormack,J.,  Beyerlein, S., Khan, M.J., & Brackin, R.(2013) Reflection and Metacognition in Engineering Practice, In, Kaplan, M., Silver, N., Lavaque-Manty, D & Meizlish, D (edits) Using Reflection and metacognition to Improve Student Learning: Across the Disciplines, Across the Academy, Virginia: Stylus Publishing, pp78-103.

[14] Hase, S & Kenyon, C. (2013). Self-Determined Learning: Heutagogy in Action London: Bloomsbury Publishing Plc.

[15] Brott, P.E. (2020): Vlogging and reflexive applications, Open Learning: The Journal of Open, Distance and e-Learning, DOI: 10.1080/02680513.2020.1869536

[16] Moon, J (2004) A Handbook of Reflective & Experiential learning: Theory & Practice. London: Routledge.

[17] Murray, M., Hendry, G., & McQuade, R. (2020). Civil Engineering 4 Real (CE4R): Co-curricular Learning for Undergraduates. European Journal of Engineering Education. 45(1):128-150.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website