Authors: Dr Gilbert Tang; Dr Rebecca Raper (Cranfield University). 

Topic: Considering the SDGs at all stages of new robot creation. 

Tool type: Guidance. 

Relevant disciplines: Computing; Robotics; Electrical; Computer science; Information technology; Software engineering; Artificial Intelligence; Mechatronics; Manufacturing engineering; Materials engineering; Mechanical engineering; Data. 

Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes. 

Sustainability competency: Systems thinking; Anticipatory; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production). 

Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.

Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering. 

 

Premise:  

There is an urgent global need to address the social and economic challenges relating to our world and the environment (Raper et al., 2022). The United Nations Sustainable Development Goals (SDGs) provide a framework for individuals, policy-makers and industries to work to address some of these challenges (Gutierrez-Bucheli et al., 2022). These 17 goals encompass areas such as clean energy, responsible consumption, climate action, and social equity. Engineers play a pivotal role in achieving these goals by developing innovative solutions that promote sustainability and they can use these goals to work to address broader sustainability objectives. 

Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment. 

 

1. During research and problem definition:

Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005. 

 

2. At design and conceptualisation:

Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset. 

 

3. During creation and manufacturing:

The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation. 

 

4. Deployment:

Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life. 

 

5. Disposal:

Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal. 

 

Conclusion: 

Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly.  

 

References: 

Dias, M. B., Mills-Tettey, G. A., & Nanayakkara, T. (2005, April). Robotics, education, and sustainable development. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 4248-4253). IEEE. 

Eidenskog, M., Leifler, O., Sefyrin, J., Johnson, E., & Asplund, M. (2023). Changing the world one engineer at a time–unmaking the traditional engineering education when introducing sustainability subjects. International Journal of Sustainability in Higher Education, 24(9), 70-84.  

Gutierrez-Bucheli, L., Kidman, G., & Reid, A. (2022). Sustainability in engineering education: A review of learning outcomes. Journal of Cleaner Production, 330, 129734. 

Hristov, I., & Chirico, A. (2019). The role of sustainability key performance indicators (KPIs) in implementing sustainable strategies. Sustainability, 11(20), 5742. 

Karastoyanov, D., & Karastanev, S. (2018). Reuse of Industrial Robots. IFAC-PapersOnLine, 51(30), 44-47. 

Leifler, O., & Dahlin, J. E. (2020). Curriculum integration of sustainability in engineering education–a national study of programme director perspectives. International Journal of Sustainability in Higher Education, 21(5), 877-894. 

Raper, R., Boeddinghaus, J., Coeckelbergh, M., Gross, W., Campigotto, P., & Lincoln, C. N. (2022). Sustainability budgets: A practical management and governance method for achieving goal 13 of the sustainable development goals for AI development. Sustainability, 14(7), 4019. 

SDG Indicators — SDG Indicators (2018) United Nations (Accessed: 19 February 2024) 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.

Topic: Materials sourcing and circularity.

Engineering disciplines: Materials engineering; Manufacturing; Environmental engineering; Construction.

Ethical issues: Respect for the environment; Risk.

Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.

Educational level: Intermediate.

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.

 

Learning and teaching notes:

This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

NGOs:

Government site:

Business:

Journal articles:

Professional organisations:

 

Dilemma – Part one:

Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.

Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.

Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.

 

Optional STOP for questions and activities:

1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?

2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.

3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?

  

Dilemma: Part two:

After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.

When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.

At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.

 

Optional STOP for questions and activities:

1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.

2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?

3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?

 

Dilemma – Part three:

In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.

She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.

Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.

 

Optional STOP for questions and activities:

1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.

2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.

3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation? 

4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?

5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Developing an internet constellation

Activity: Anatomy of an internet satellite.

Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

 

Overview:

This enhancement is for an activity found in the Dilemma Part two section. It is based on the work done by Kate Crawford and Vladan Joler and published by the SHARE Lab of the SHARE Foundation and the AI Now Institute of New York University, which investigates the “anatomy” of an Amazon Echo device in order to “understand and govern the technical infrastructures” of complex devices. Educators should review the Anatomy of an AI website to see the map and the complementary discussion in order to prepare and to get further ideas. This activity is fundamentally focused on developing systems thinking, a competency viewed as essential in sustainability that also has many ethical implications. Systems thinking is also an AHEP outcome (area 6). The activity could also be given a supply chain emphasis.

This could work as either an in-class activity that would likely take an entire hour or more, or it could be a homework assignment or a combination of the two. It could easily be integrated with technical learning. The activity is presented in parts; educators can choose which parts to use or focus on.

 

1. What are the components needed to make an internet satellite functional?:

First, students can be asked to brainstorm what they think the various components of an internet satellite are without using the internet to help them. This can include electrical, mechanical, and computing parts.

Next, students can be asked to brainstorm what resources are needed for a satellite to be launched into orbit. This could include everything from human resources to rocket fuel to the concrete that paves the launch pad. Each of those resources also has inputs, from chemical processing facilities to electricity generation and so forth.

Next, students can be asked to brainstorm what systems are required to keep the internet satellite operational throughout its time in orbit. This can include systems related to the internet itself, but also things like power and maintenance.

Finally, students can be asked to brainstorm what resources will be needed to manage the satellite’s end of life.

Small groups of students could each be given a whiteboard to make a tether diagram showing how all these components connect, and to try to determine the path dependencies between all of them.

To emphasise ethics explicitly, educators could ask students to imagine where within the tether diagram there could be ethical conflicts or dilemmas and why. Additionally, students could reflect on how changing one part of the system in the satellite would affect other parts of the system.

 

2. How and where are those components made?:

In this portion of the activity, students can research where all the parts of those components and systems come from – including metals, plastics, glass, etc. They should also research how and where the elements making up those parts are made – mines, factories, chemical plants, etc. – and how they are then shipped to where they are assembled and the corresponding inputs/outputs of that process.

Students could make a physical map of the globe to show where the raw materials come from and where they “travel” on their path to becoming a part of the internet satellite system.

To emphasise ethics explicitly, educators could ask students to imagine where within the resources map there could be ethical conflicts or dilemmas and why, and what the sustainability implications are of materials sourcing.

 

3. The anatomy of data:

In this portion of the activity, students can research how the internet provides access to and stores data, and the physical infrastructures required to do so. This includes data centres, fibre optic cables, energy, and human labour. Whereas internet service is often quite localised (for instance, students may be able to see 5G masts or the service vans of their internet service provider), in the case of internet satellites it is very distant and therefore often “invisible”.

To emphasise ethics explicitly, educators could ask students to debate the equity and fairness of spreading the supply and delivery of these systems beyond the area in which they are used. In the case of internet satellites specifically, this includes space and the notion of space as a common resource for all. This relates to other questions and activities presented in the case study.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors:  Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Sarah Jayne Hitt SFHEA (NMITE); Professor Thomas Lennerfors (Uppsala University); Claire Donovan (Royal Academy of Engineering); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Isobel Grimley (Engineering Professors’ Council).

Topic: Low earth orbit satellites for internet provision. 

Engineering disciplines: Electronics, Mechanical engineering.

Ethical issues: Respect for environment, Public good, Future generations.

Professional situations: Communication, Management, Working cultures.

Educational level: Intermediate.

Educational aim: Practise ethical analysis. Ethical analysis is a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action. 

 

Learning and teaching notes:

This case is about an experienced engineer leading a team at a tech start-up. The company has been awarded a contract to produce an innovative satellite that will be used in an internet constellation. While the team was initially excited about their work, some members are now concerned about the impact of the internet constellation. While mainly focused on environmental ethics, effects on human communities are also raised in this case study.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, this section enables students to practise different types of analysis and to introduce aspects of environmental ethics. It highlights the challenges of making ethical decisions with global consequences, in scenarios where policy isn’t clear. Part two develops and complicates the concepts presented in Part one to provide for additional learning by focusing on the course of actions taken by an individual engineer based on the dilemma presented in Part one. The Challenge of Environmental Ethics linked below is recommended, though not required, for students engaging with this case. Additionally, throughout the case, there is the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources: 

 

Summary: 

After years of working your way up the corporate ladder, you are now Head of Engineering for a tech start-up. The company has won a contract connected to a project creating a constellation of thousands of low Earth orbit satellites. This constellation has the potential to create a reliable system of internet access for areas of the world that are hard to reach by conventional infrastructure. Your company is one of those chosen to develop and build a low-cost, lightweight, efficient satellite that can be produced at scale. This is a huge accomplishment for you, as well as for your company. 

 

Dilemma – Part one:

A conference that brings together various project partners is met by protesters whose message is that the internet constellation has several potential negative impacts for nature and human communities. Disparaging comments have been made about your company’s participation in the project on social media. Some members of your team seem quite rattled by the protests, and you convene at a coffee shop to discuss. 

 

Optional STOP for questions and activities:

1. Discussion: Technical analysis – Undertake a technical activity in the areas of electronic and / or mechanical engineering related to internet constellations.

2. Activity: Position analysis – Divide students into three groups—constellation project managers; satellite engineers and protestors. Imagine how their positions are related to the internet constellation. What values might inform their positions? What knowledge might inform their position that the other groups do not have access to or understanding of?

3. Discussion: Environmental analysis – While nature cannot speak for itself, if it could, what might be its position on the internet constellation? What aspects of the natural world might be affected by this technology in both the short- and long-term? For example, are there any direct or indirect effects on the health of humans and the ecosystems around them? Should the natural world of space be treated the same way as the natural world on earth?

4. Discussion: Policy analysis – Who should make decisions about projects that affect nature on a global scale? What laws or regulations exist that govern internet constellations?

5. Discussion and Activity: Moral analysis – Use environmental ethics principles such as intrinsic value and anthropocentrism to debate the project. Beyond environmental concerns, how might other ethical approaches, such as consequentialism or justice, inform positions on the issue?

 

Dilemma – Part two:

You remind and explain to your team members that they, and the company, have a duty to the client. Everyone has been hired to deliver a specific project and been excited about overcoming the technical challenges to ensure the project’s success. The team agrees, but also expresses concern about aspects that aren’t in the project remit, such as how the satellite will be maintained and what will happen to it at the end of its life. They demand that you pause your work until an ethical review is conducted. 

You report all of this to the CEO, who reacts with disappointment and unhappiness at your team’s actions. She argues that the only thing your company is doing is building the satellite: it’s not your responsibility what happens to it afterwards. She feels that it’s your job to get your team back in line and on task. How do you approach this situation? 

 

Optional STOP for questions and activities:

1. Discussion and Activity: How do you respond to this situation? What responsibilities do you have to your team, your boss, and the client? How will you balance these? Are the team’s engineers right to be concerned about the impact of their satellite within the wider constellation, or is it beyond their scope? Role-play an interaction between you and the engineering team, or between you and your boss.

2. Activity: Life cycle analysis – Research life cycles of satellites and their environmental impact.

3. Discussion and Activity: Debate if, and how, we have obligations to future generations. Is it possible to have a moral contract with a person that may never be born? How do we know that people in the future, will value the same things we do now? Both creating the internet constellation and preventing its implementation seem to potentially benefit future generations. How do we balance these ‘goods’ and make a decision on how to proceed? Who gets to decide?

4. Activity: Anatomy of an internet satellite – use the Anatomy of an AI case study as an example of a tether map, showing the inputs and outputs of a device. Create a tether map showing the anatomy of an internet satellite.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

Let us know what you think of our website