Author: James E. Harper, Senior Product Manager (Knovel /Elsevier).

Keywords: Information literacy; digital literacy; misleading information; source and data reliability; ethical behaviour; sustainability. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate technical information literacy into the engineering and design curriculum or module design. It will also help to provide students, particularly those embarking on Bachelor’s or Master’s research projects, with the integrated skill sets that employers are looking for, in particular, the ability to critically evaluate information. 

 

Introduction:

In an era dominated by digital information, engineering educators face the critical challenge of preparing students not just in technical skills, but in navigating the complex digital landscape with an ethical compass. This article explores how integrating information and digital literacy into engineering education is not only essential for fostering ethical behaviour but also crucial for ensuring sustainability in engineering practices. 

The intertwined nature of information and digital literacy in engineering is undeniable. Engineering practitioners need to be able to select and critically assess the reliability of the information sources they use to ensure they comply with ethical practice.  The Engineering Council and Royal Academy of Engineering’s Joint Statement of Ethical Principles underscores the need for accuracy and rigour, a core component of these literacies. Faculty members play a pivotal role in cultivating these skills, empowering students and practitioners to responsibly source and utilise information. 

 

The challenge of information overload:

One of the challenges facing trained engineers, engineering faculty and students alike is that of accessing, critically evaluating, and using accurate and reliable information.  

A professional engineer needs to gather insights and information to solve problems, deliver projects, and drive innovation. This involves undertaking as much research as possible: looking at case-studies, standards, best practices, and examples that will support or disprove what they think is the best approach. In a profession where the analysis of failures is a core competence, critical, dispassionate thinking is vital.  In fact, to be digitally literate, an ethically responsible engineer must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008). 

Students, while adept at online searching, often struggle with assessing the credibility of sources, particularly information gleaned on social media, especially in their early academic years. This scenario necessitates faculty guidance in discerning reputable and ethical information sources, thereby embedding an ethical approach to information use early in their professional development. 

 

Accuracy and rigour:

Acquisition of ‘information literacy’ contributes to compliance with the Statement of Ethical Principles in several ways. It promotes the ‘accuracy and rigour’ essential to engineering. It guarantees the basis and scope of engineering expertise and reliability so that engineers effectively contribute to the well-being of society and its safety and understand the limits of their expertise. It also contributes to promoting ‘respect for the environment and public good’, not just by ensuring safety in design, drawing up safety standards and complying with them, but also by integrating the concept of social responsibility and sustainability into all projects and work practices. In addition, developing students’ capacity to analyse and assess the accuracy and reliability of environmental data enables them to recognise and avoid ‘green-washing’, a growing concern for many of them. 

 

Employability:

In the workplace, the ability to efficiently seek out relevant information is invaluable. In a project-based, problem-solving learning environment students are often confronted with the dilemma of how to refine their search to look for the right level of information from the very beginning of an experiment or research project. By acquiring this ‘information literacy’ competence early on in their studies they find themselves equipped with skills that are ‘workplace-ready’. For employers this represents a valuable competence and for students it constitutes an asset for their future employability. 

 

Tapping into specialised platforms:

In 2006 the then-CEO of Google, Eric Schmidt famously said “Google is not a truth machine”, and the recent wave of AI-powered chatbots all come with a stark disclaimer that they “may display incorrect or harmful information”, and “can make mistakes. Consider checking important information.”  Confronted with information overload and the difficulty of sifting through non-specialised and potentially unreliable material provided by major search engines, students and educators need to be aware of the wealth of reliable resources available on specialised platforms. For example, Elsevier’s engineering-focused, purpose-built platform, Knovel, offers trustworthy, curated engineering content from a large variety of providers. By giving students access to the same engineering resources and tools as professionals in the field it enables them to incorporate technical information into their work and provides them with early exposure to the industry standard. For educators, it offers support for the foundational years of teaching, covering all aspects of problem-based learning and beyond. It is also an efficient way of remaining up-to-date with the latest information and data on key issues. The extensive range of information and data available equips students and engineers with the ability to form well-rounded, critical perspectives on the various interests and power dynamics that play a role in the technical engineering challenges they endeavour to address. 

 

Conclusion:

By embedding information and digital literacy into the fabric of engineering education (such as by using this case study), we not only promote ethical behaviour but also prepare students for the challenges of modern engineering practice. These skills are fundamental to the ethical and sustainable advancement of the engineering profession. 

 

Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.  

46% of EPC members already have access to Knovel.  If you don’t currently have access but would like to try Knovel in your teaching or to brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson,  susan.watson@elsevier.com. Check out this useful blog post from James Harper on exactly that topic here.

Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel

 

References:

 

Additional Resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Dr Emma A Taylor, Royal Academy of Engineering Visiting Professor, Cranfield University and Professor Sarah Jayne Hitt, PhD SFHEA, NMITE, Edinburgh Napier University, discusses embedding ethics in engineering education through wide use of deaf awareness: a gateway to a more inclusive practice.

“An ethical society is an inclusive society”. This is a statement that most people would find it hard to disagree strongly with. As users of the EPC’s Engineering Ethics Toolkit and readers of this blog we hope our message is being heard loud and clear.

But hearing is a problem:

One in five adults in the UK are deaf, have hearing loss or tinnitus. That is 12 million adults or 20% of the population. In the broader context of‘ ‘communication exclusion’ (practices that exclude or inhibit communication), this population figure may be even larger, when including comprehension issues experienced by non-native speakers and poor communication issues such as people talking over one another in group settings such as during meetings.

This ‘communication exclusion’ gap is also visible in an education context, where many educators have observed group discussion and group project dynamics develop around those who are the most dominant (read: loudest) communicators. This creates an imbalanced learning environment with the increased potential for unequal outcomes. Even though this ‘communication exclusion’ and lack of skills is such a huge problem, you could say it’s hidden in plain sight. Identification of this imbalance is an example of ethics in action in the classroom.

Across all spheres, we suggest that becoming deaf aware is one way to begin to address communication exclusion issues. Simple and practical effective tips are already widely disseminated by expert organisations with deep in the field experience (see list of resources below from RNID). Our collective pandemic experience took us all a great step forward in seeing the benefits of technology, but also in understanding the challenges of communicating through the barriers of technology. As engineering educators we can choose to become more proactive in using tools that are already available, an action that supports a wider range of learners beyond those who choose to disclose hearing or understanding related needs. This approach is inclusive; it is ethical.

And as educators we propose that there is an even greater pressing need to amplify the issue and promote practical techniques towards improving communication. Many surveys and reports from industry have indicated that preparing students for real world work environments needs improving. Although they often become proficient in technical skills, unless they get an internship, students may not develop the business skills needed for the workplace. Communication in all its forms is rightly embedded in professional qualifications for engineers, whether EngTech, IEng, CEng or other from organisations such as the UK’s Engineering Council.

And even when skills are explicitly articulated in the syllabus and the students are assessed, much of what is already being taught is not actually being embedded into transferable skills that are effectively deployed in the workplace. As education is a training ground for professional skills, a patchy implementation of effective and active practice of communication skills in the education arena leads to variable skill levels professionally.

As engineers we are problem solvers, so we seek clarification of issues and derivation of potential solutions through identification and optimisation of requirements. The problem-solving lens we apply to technology can also be applied to finding ways to educate better communicators. The “what” is spoken about in generic terms but the “how”, how to fix and examine root causes, is less often articulated.

So what can be done? What is the practical framework that can be applied by both academics and students and embedded in daily life? And how can deaf awareness help get us there?

Our proposal is to work to embed and deploy deaf awareness in all aspects of engineering education. Not only because it is just and ethical to do so, but because it can help us see (and resolve) other issues.  But this won’t, and can’t, be done in one step. Our experience in the field shows that even the simplest measures aren’t broadly used despite their clear potential for benefit. This is one reason why blogs and toolkits like this one exist: to help educators embed resources and processes into their teaching practice.

It’s important to note that this proposal goes beyond deaf awareness and is really about reducing or removing invisible barriers that exist in communication and education, and addressing the communication problem through an engineering lens. Only when one takes a step back with a deaf awareness filter and gets the relevant training, do your eyes (and ears) open and see how it helps others. It is about improving the effectiveness of teaching and communication.

This approach goes beyond EDI principles and is about breaking barriers and being part of a broader student development approach, such as intellectual, emotional, social, and personal growth. The aim is to get students present and to be in the room with you, during the process of knowledge transfer.

As we work on making our engineering classrooms better for everyone, we are focusing on understanding and supporting students with hearing impairments. We are taking a step back and getting re-trained to have a fresh perspective. This helps us see things we might have missed before. The goal is not just to be aware but to actually improve how we teach and communicate.

We want our classrooms to be inclusive, where everyone’s needs are considered and met. It is about creating an environment where all our students, including those with hearing impairments, feel supported and included in the learning process. And stepping back and taking a whole human (“humanist”) view, we can define education as an endeavour that develops human potentialnot just an activity that produces nameless faceless quantifiable outcomes or products. As such, initiatives such as bringing forward deaf awareness to benefit broader communication and engagement provide a measurable step forward into bringing a more humanistic approach to Engineering Education.

So what can you do?

Through the EPC’s growing efforts on EDI, we welcome suggestions for case studies and other teaching materials and guidance that bring together ethics, sustainability and deaf awareness (or other issues of inclusivity).

We’re pleased to report that we are aiming to launch an EDI Toolkit project soon, building on the work that we’ve begun on neurodiversity. Soon we’ll be seeking  people to get involved and contribute resources, so stay tuned! (i.e. “If you have a process or resource that helped your teaching become more inclusive, please share it with us!”).

 

RNID resources list

 

Other resources

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

This article is also available here.

Authors: The Lemelson Foundation; Cynthia Anderson, Sarah Jayne Hitt and Jonathan Truslove (Eds.) 

Topic: Accreditation mapping for sustainability in engineering education. 

Tool type: Guidance. 

Engineering disciplines:  Any.

Keywords: Accreditation and standards; Learning outcomes; AHEP; Student support; Sustainability; Higher education; Students; Teaching or embedding sustainability.

Sustainability competency: Critical thinking; Systems thinking; Integrated problem-solving; Collaboration.

AHEP mapping: This resource addresses themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4). See details about mapping within the guide. 

Related SDGs: SDG 12 (Responsible consumption and production). 

Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity; Cross-disciplinarity.

 

Learning and teaching notes:

This guide, currently under review by the Engineering Council, maps the Engineering for One Planet (EOP) Framework to AHEP4. The EOP Framework is a practical tool for curricular supplementation and modification, comprising 93 sustainability focused learning outcomes in 9 topic areas. 

The Lemelson Foundation, VentureWell, and Alula Consulting stewarded the co-development of the EOP Framework with hundreds of individuals mostly situated in the United States. Now, in collaboration with the EPC and Engineers Without Borders UK, the EOP Framework’s student learning outcomes have been mapped to AHEP4 at the Chartered Engineer (CEng) level to ensure that UK educators can more easily align these outcomes and corresponding resources with learning activities, coursework, and assessments within their modules.  

 

Click here to access the guide. 

 

Supporting resources: 

EOP Comprehensive Teaching Guide 

EOP’s 13 Step-by-Step Ideas for Integrating Sustainability into Engineering Modules 

EOP Quickstart Activity Guide 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University), Professor Jarka Glassey (Director of Education, School of Engineering, Newcastle University). 

Topic: How to integrate the SDGs using a practical framework.   

Type: Guidance.  

Relevant disciplines: Any.  

Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy. 
 
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):The Engineer and Society(acknowledging that engineering activity can have a significant societal impact) andEngineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4hereand navigate to pages 30-31 and 35-37. 

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).  
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.

Who is this article for?  This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design.  

 

Premise: 

The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context. 

 

For programme-wide alignment: 

 1. Look around. The outcome of this phase is a framework that identifies current and future requirements for programme graduates. 

a. Review guidelines and subject/discipline benchmark documents on sustainability. 

b. Review government targets and discipline-specific guidance. 

c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic. 

d. Review your university strategy relating to sustainability and education. For example, Middlesex University signed up to the UN Accord. 

e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert). 

 

2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision.  

a. Engage in critical reflective analysis of the current programme as a whole and of individual modules.   

b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness. 

c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert). 

d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified. 

e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme.  

 

 3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such. 

a. Create revised programme aims and graduate outcomes that reflect the SDGs. The Reimagined Degree Map and Global Responsibility Competency Compass can support this activity. 

b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules.  

c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is: 

  1. “Apply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).” 

d. Align assessment criteria and rubrics to the revised ILOs.  

e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials.  

 

For module-wide alignment: 

1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme. 

a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics.  

b. Determine any specific guidelines, standards, and regulations for this theme within the discipline. 

 

2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps.  

a. Engage in critical reflective analysis of current modules, as both individual module instructors and leaders, and as a team.  

b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs. 

c. Review feedback from current students on the clarity of the modules links to the SDGs. 

d. Review feedback from external examiners on the sustainability content of the module. 

 

3. Look ahead.  

a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated.  

b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options.  

 

Appendix:

A. Outcome I.2 (programme level mapping)  

 

B. Outcome II.5 (module level mapping) – same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs. 

 

 C. II.6.b – Specific activities 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Authors: Dr Jonathan Truslove MEng PhD and Emma Crichton CEng MICE (Engineers Without Borders UK). 

Topic: Assessing sustainability competencies in engineering education. 

Type: Knowledge. 

Relevant disciplines: Any. 

Keywords: Assessment; Design challenges; Global responsibility; Learning outcomes; Sustainability; AHEP; Higher education; Pedagogy. 
 
Sustainability competency: Integrated problem-solving, Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Authentic assessment; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It may also be of interest for students practising lifelong learning to articulate and explore how their learning translates into competency development as they embark on their careers. 

 

Premise: 

Today we know that how we engineer is changing – and this change is happening at a quicker pace than in previous decades. The decisions engineers make throughout their careers shape the world we all inhabit. Consequently, the education of engineers has a profound impact on society. Ensuring our degrees are up to date is of pressing importance to prepare all future practitioners and professionals. Arguably, it is especially important for engineers to act sustainably, ethically and equitably. 

How do engineers understand their roles when sustainability becomes a key driver in the context of their work? What does sustainability look like in learning journeys, and how can it be incorporated into assessments? This article does not advocate for simply adding ‘sustainability’ to degrees; rather, it encourages the connection between sustainability competencies and engineering assessments. 

 

Developing 21st-century engineers 

Choosing to become an engineer is a great way to be useful to society. Studying an engineering degree can develop what people can do (skills), what they know (knowledge) and how they think (mindset), as well as open up a diverse range of career opportunities. 

The path to becoming an engineer can start at university (though there are other routes in). Weaving in a focus on globally responsible engineering throughout a degree course is about embracing the need to develop a broader set of competencies in engineers and expand the types of projects they practise on during their degree to reflect the problems they may encounter during their career. 

This doesn’t mean that engineering degrees as they are aren’t valuable or useful. It’s about strengthening the building blocks of degrees to ensure that 21st-century engineers have space to play their role in addressing 21st-century societal challenges. These building blocks are what learning outcomes are prioritised, what pedagogies are used, the types of projects students work on, who they work with and the way we assess learning. All of these elements can be aggregated to develop competence in sustainable engineering practice. 

 

What are sustainability competency frameworks saying? 

There are many frameworks exploring what are the competencies most needed today (such as UNESCO Education for Sustainable Development competencies, EU GreenComp, Inner Development Goals). Many frameworks are calling for similar things that allow us to shift focus, attention and energy onto how to truly develop a person over the three to five plus years of experience they might gain at university.  

By designing education to meet learning outcomes, you build and evidence a range of competencies, including developing the mindsets of learners. Practically, it is the use of different competency frameworks, and the associated updates to learning outcomes, and how we deliver education and assessment that really matters. The table below, in the second column, synthesises various competency frameworks to clearly articulate what it means a learner can then do. Rather than argue different frameworks, focusing on what a student can do as a result is really key.  

Figure 1. Competencies for sustainable development in Advance HE and QAA (2021) and UNESCO Education for Sustainable Development (2017). 

 

By reading through this table, you can see that this is more than just about ‘sustainability’ – these are useful things for a person to be able to do. Ask yourself, what if we don’t develop these in our graduates? Will they be better or worse off? 

Graduates can then build on this learning they have had at university to continue to develop as engineers working in practice. The Global Responsibility Competency Compass for example points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. It is made up of 12 competencies and is organised around the four guiding principles of global responsibility – Responsible, Purposeful, Inclusive and Regenerative.  

 

What needs to shift in engineering education? 

The shifts required to the building blocks of an engineering degree are:  

  1. To adapt and repurpose learning outcomes. 
  2. To integrate more real-world complexity within project briefs. 
  3. To be excellent at active pedagogies and mindset development. 
  4. To ensure authentic assessment. 
  5. To maximise cross-disciplinary experience and expertise.  

All of the above need to be designed with mechanisms that work at scale. Let’s spotlight two of these shifts, ‘to adapt and repurpose learning outcomes’ and ‘to integrate authentic assessment’ so we can see how sustainability competence relates. 

 

Adapt and repurpose learning outcomes. 

We can build on what is already working well within a degree to bring about positive changes. Many degrees exhibit strengths in their learning outcomes such as, developing the ability to understand a concept or a problem and apply that understanding through a disciplinary lens focused on simple/complicated problems. However, it is crucial to maintain a balance between addressing straightforward problems and tackling more complex ones that encourage learners to be curious and inquisitive.  

For example, a simple problem (where the problem and solution are known) may involve ‘calculating the output of a solar panel in a community’. A complex problem (where the problem and solution are unknown) may involve ‘how to improve a community’s livelihood and environmental systems, which may involve exploring the interconnectedness, challenges and opportunities that may exist in the system. 

Enhancing the learning experience by allowing students to investigate and examine a context for ideas to emerge is more reflective of real-world practice. Success is not solely measured by learners accurately completing a set of problem sets; rather, it lies in their ability to apply concepts in a way that creates a better, more sustainable system. 

See how this rebalancing is represented in the visual below: 

Figure 2. ​​​​Rebalancing learning within degrees to be relevant to the future we face. Source: Engineers Without Borders UK. 

 

Keeping up to date and meeting accreditation standards is another important consideration. Relating the intended learning outcomes to the latest language associated with accreditation requirements, such as AHEP4 (UK), ABET (US) or ECSA (SA), doesn’t mean you have to just add more in. You can adapt what you’ve already got for a new purpose and context. For instance, the Engineering for One Planet framework’s 93 (46 Core and 46 Advanced) essential sustainability-focused learning outcomes that hundreds of academics, engineering professionals, and other key stakeholders have identified as necessary for preparing all graduating engineers — regardless of subdiscipline — with the skills, knowledge, and understanding to protect and improve our planet and our lives. These outcomes have also been mapped to AHEP4. 

 

Integrate authentic assessment: 

It is important that intended learning outcomes and assessment methods are aligned so that they reinforce each other and lead to the desired competency development. An important distinction exists between assessment of learning and assessment as or for learning: 

  1. Assessment OF learning e.g. traditional methods of assessment of student learning against learning outcomes and standards that typically measure students’ knowledge-based learning.
  2. Assessment AS/FOR learning e.g. reflective and performance-based (e.g. self-assessments, peer assessments and feedback from educators using reflective journals or portfolios) where the learning journey is part of the assessment process that captures learners’ insights and critical thinking, and empowers learners to identify possibilities for improvement.  

Assessment should incorporate a mix of methods when evaluating aspects like sustainability, to bring in authenticity which strengthens the integrity of the assessment process and mirrors how engineers work in practice. For example, University College London and Kings College London both recognise that critical evaluation, interpretation, analysis, and judgement are all key skills which will become more and more important, and making assessment rubrics more accessible for students and educators. Authentic assessment can mirror professional practices, such as having learners assessed within design reviews, or asking students to develop a portfolio across modules.  

 

Engineers Without Borders UK | Assessing competencies through design challenges: 

Below is an example of what Engineers Without Borders UK has done to translate competencies into assessment through our educational offerings. The Engineering for People Design Challenge (embedded in-curriculum focuses on placing the community context at the heart of working through real-world project-based learning experiences) and Reshaping Engineering (a co-curricular voluntary design month to explore how to make the engineering sector more globally responsible). The competencies in the Global Responsibility Competency Compass are aligned and evidenced through the learning outcomes and assessment process in both challenges.  

Please note – the Global Responsibility Competency Compass points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. 

See below an example of the logic behind translating competencies acquired by participants to assessment during the design challenges.  

Figure 3. Example of the logic behind translating the Global Responsibility Competency Compass to assessment during the design challenges. Source: Engineers Without Borders UK.  

 

    1. The Competencies developed through the educational offering are orientated around the Global Responsibility Competency Compass to align with the learning journey from undergraduate to practising globally responsible individuals in learners’ future careers.
    2. We then align learning outcomes to the competency and purpose of the design challenge using simple and concise language.

  a. Useful resources that were used to help frame, align and iterate the learning outcomes and marking criteria are shared at the end of this article.

    1. The Marking Criteria draws on the assessment methods previously mentioned under ‘Assessment OF’ and ‘Assessment AS/FOR’ while aligning to the context of intended learning i.e. design focussed, individual journals reflecting on the learning journey, and collaborating in teams.
    2. We frame and align key action words from Competency to learning outcome to marking criteria using Bloom’s taxonomy (in Figure 2) to scale appropriately, the context of learning and what the intended outcome of learning/area of assessment would be.  

 

Conclusions: 

How your students think matters. How they engage in critical conversations matters. What they value matters. How we educate engineers matters.  

These may feel like daunting shifts to make but developing people to navigate our future is important for them, and us. Sustainability competencies are actually about competencies that are useful – the label ‘sustainability’ may or may not help but it’s the underlying concepts that matters most. The interventions that we make to instil these competencies in the learning journeys of future engineers are required – so degrees can be continuously improved and will be valuable over the long term. Making assessment mirror real practice helps with life-long learning. That’s useful in general, not just about sustainability. This is a major opportunity to attract more people into engineering, keep them and enable them to be part of addressing urgent 21st century challenges. 

  

Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 

2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course) 

 

Useful resources: 

There are some excellent resources out there that help us understand and articulate what sustainability competencies and learning outcomes look like, and how to embed them into teaching, learning and assessment. Some of them were used in the example above. Here are some resources that we have found useful in translating the competencies in the Compass into learning outcomes in our educational offerings: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Ema Muk-Pavic, FRINA SHEA (University College London) 

Topic: Links between sustainability and EDI 

Tool type: Guidance. 

Relevant disciplines: Any. 

Keywords: Sustainability; AHEP; Programmes; Higher education; EDI; Economic Growth; Inclusive learning; Interdisciplinary; Global responsibility; Community engagement; Ethics; Future generations; Pedagogy; Healthcare; Health.
 
Sustainability competency: Self-awareness; Normative; Collaboration; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All 17. 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; More real-world complexity.

Who is this article for: This article should be read by educators at all levels in Higher Education who wish to understand how engineering practice can promote sustainable and ethical outcomes in equality, diversity, and inclusion. 

 

Supporting resources: 

Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB) 

Montt-Blanchard, D., Najmi, S., & Spinillo, C. G. (2023). Considerations for Community Engagement in Design Education. The Journal of Design, Economics, and Innovation, 9(2), 234-263.  

Phillips SP, G. K. (2022, Nov 5). Medical Devices, Invisible Women, Harmful Consequences. Int J Environ Res Public Health. 2022 Nov 5, 19(21). 

Royal Academy of Engineering. (2018). Designing inclusion into engineering education. London: Royal Academy of Engineering.  

Sultana F, e. a. (2023). Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. Aquaculture and Fisheries, 8(5), 463-480 

 

Premise:  

The role of engineering is to enhance the safety, health and welfare of all, while protecting the planet and reversing existing environmental damage by deploying engineering solutions that can meet urgent global and local needs across all sectors (Engineering Council, 2021). The socioeconomic and environmental problems are strongly linked and finding responsible solutions is of imminent urgency that requires a holistic interdisciplinary perspective.  

 

Sustainability and Equality, Diversity and Inclusion (EDI): 

Equality, diversity, and Inclusion are interlinked concepts that emphasise equal opportunities, the inclusion of underrepresented groups, and the benefits that derive from diverse perspectives within the engineering field. Because sustainability is a global phenomenon, achieving the objective of “providing for all” should be a priority for all engineering professionals to ensure solutions are developed that benefit all (Jordan et al., 2021).  To address sustainability challenges, engineers need to keep in mind that some communities are disproportionately impacted by climate change and environmental harm. It is essential to empower these communities to create systematic change and advocate for themselves. 

 

A strategic pedagogical approach to sustainability and EDI: 

A variety of pedagogical strategies can be applied to incorporate diversity and inclusion perspectives into sustainability engineering. Rather than adopting an “add-on” approach to the existing programmes it is recommended to fully embed inclusive and sustainable perspectives in the existing curriculum. These perspectives should be incorporated following a learning path of the students, from the beginning of the programme in the engineering fundamentals, starting with raising awareness and understanding of these perspectives and gradually improving student knowledge supported by evidence and further to implementing and innovating in engineering practice and solutions. By the end of the programme, diversity and inclusion and sustainability perspectives should be fully incorporated into the attitude of the graduates so that they will consider this when approaching any engineering task. This approach would go hand-in-hand with incorporating an ethics perspective. 

Some practical examples of implementation in the programme and gradually deepening student learning are: 

 

1. Awareness and understanding: 

a. Define sustainability and its relation to EDI. 

b. Engage with practical examples in modules that can be considered and discussed from EDI, ethical, and sustainability perspectives (e.g. present a product related to the subject of a class; in addition to discussing the product’s engineering characteristics, extend the discussion to sustainability and diverse stakeholders perspective – who are the end users, what is the affordability, where does the raw material comes from, how could it be recycled etc.)  

 

2. Applying and analysing: 

Seek out case studies which can expose the students to a range of EDI issues and contexts, e.g.: 

a. Examples of “sustainable” engineering solutions aimed toward “wealthy” users but not available or suitable for the “poor”. Question if EDI was considered in stakeholder groups (who are the target end users, what are their specific needs, are the solutions applicable and affordable for diverse socioeconomic groups (e.g. high-tech expensive sophisticated medical devices, luxury cars).

b. Examples of product design suffering from discriminatory unconscious bias (e.g. medical devices unsuitable for women (Phillips SP, 2022); “affordable housing projects” being unaffordable for the local community, etc.). 

c. Positive examples of sustainable engineering solutions with strong EDI perspectives taken that are also financially viable (e.g. sustainable water and sanitation projects, seaweed farming for food security and climate change mitigation (Sultana F, 2023), sustainable gem production (Center for Responsible Business (CRB), 2023) etc.) 

 

3. Implementing, evaluating, and creating: 

a. Use existing scenario-based modules to focus on finding solutions for the sustainability problems that will improve socioeconomic equality, access to water, improvement of healthcare, and reduction of poverty. This will guide students to implement sustainability principles in engineering while addressing social issues and inequalities. 

b. In project-based modules, ask students to link their work with a specific UNSDG and evidence an approach to EDI issues. 

 

4. Provide visibility of additional opportunities:

Extracurricular activities (maker spaces, EWB UK’s Engineering for People Design Challenge, partnership with local communities, etc.) can represent an additional mechanism to bolster the link between sustainable engineering practice and EDI issues. Some of these initiatives can even be implemented within modules via topics, projects, and case studies. 

A systematic strategic approach will ensure that students gain experience in considering the views of all stakeholders, and not only economic and technical drivers (Faludi, et al., 2023). They need to take account of local know-how and community engagement since not all solutions will work in all circumstances (Montt-Blanchard, Najmi, & Spinillo, 2023). Engineering decisions need to be made bearing in mind the ethical, cultural, and political questions of concern in the local setting. Professional engineers need to develop a global mindset, taking into account diverse perspectives and experiences which will increase their potential to come up with creative, effective, and responsible solutions for these global challenges. (Jordan & Agi, 2021) 

 

Leading by example: 

It is of paramount importance that students experience that the HE institution itself embraces an inclusive and sustainable mindset. This should be within the institutional strategy and policies, everyday operations and within the classroom. Providing an experiential learning environment with an inclusive and sustainable mindset can have a paramount impact on the student experience and attitudes developed (Royal Academy of Engineering, 2018). 

 

Conclusion: 

Engineering education must prepare future professionals for responsible and ethical actions and solutions.  Only the meaningful participation of all members of a global society will bring us to a fully sustainable future. Thus, the role of engineering educators is to embed an EDI perspective alongside sustainability in the attitudes of future professionals. 

 

References: 

Burleson, G., Lajoie, J., & et al. (2023). Advancing Sustainable Development: Emerging Factors and Futures for the Engineering Field. 

Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB). 

Engineering Council. (2021). Guidance on Sustainability. London: Engineering Council UK. 

Faludi, J., Acaroglu, L., Gardien, P., Rapela, A., Sumter, D., & Cooper, C. (2023). Sustainability in the Future of Design Education. The Journal of Design, Economics and Innovation, 157-178. 

International Labour Organization. (2023). Transformative change and SDG 8: The critical role of collective capabilities and societal learning. Geneva: International Labour Organization.  

Jordan, R., & Agi, K. (2021). Peace engineering in practice: A case study at the University of New Mexico. Technological Forecasting and Social Change, 173. 

Montt-Blanchard, D., Najmi, S., & Spinillo, C. G. (2023). Considerations for Community Engagement in Design Education. The Journal of Design, Economics, and Innovation, 9(2), 234-263.  

Phillips SP, G. K. (2022, Nov 5). Medical Devices, Invisible Women, Harmful Consequences. Int J Environ Res Public Health. 2022 Nov 5, 19(21). 

Royal Academy of Engineering. (2018). Designing inclusion into engineering education. London: Royal Academy of Engineering. 

Sultana F, e. a. (2023). Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A review. Aquaculture and Fisheries, 8(5), 463-480.  

United Nations. (2023). The Sustainable Development Goals Report. New York: United Nations. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Authors: Maryam Lamere, Marianthi Leon, Wendy Fowles-Sweet, Lucy Yeomans,  Laura Fogg-Rogers (University of the West of England, UWE Bristol). 

Topic: Opportunities and challenges for integrating ESD into engineering programmes via PBL. 

Tool type: Guidance. 

Relevant disciplines: Any.  

Keywords: Education for sustainable development; Project-based learning; Problem-based learning; Engineering design; Sustainability; AHEP; UK-SPEC; Pedagogy; Higher education; Curriculum. 
 
Sustainability competency: Critical thinking; Integrated problem-solving, Collaboration.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development.

Who is this article for? This article should be read by educators at all levels in higher education who are seeking an overall perspective on using PBL for integrating sustainability in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

Engineering graduates are increasingly required to implement sustainability-focussed initiatives within industry, alongside enhanced expectations from professional bodies and the UK specification (UK-SPEC) for engineers (Engineering Council, 2024). However, a recent study of UK Higher Education institutions highlighted that only a handful have implemented Education for Sustainable Development (ESD) into their curricula in a systemic manner (Fiselier et al., 2018), which suggests many engineering institutions still need support in this area. This article aims to explain opportunities and challenges for integrating ESD into engineering programmes via project-based learning. 

 

 1. An overview of problem-based learning as a tool for teaching sustainability within engineering:

To develop sustainability-literate graduates, the Higher Education Academy (AdvanceHE) and the UK Quality Assurance Agency for Higher Education (QAA) emphasise that students need to:  

  1. understand what the concept of environmental stewardship means for their discipline and their professional and personal lives; 
  2. think about issues of social justice, ethics, and wellbeing, and how these relate to ecological and economic factors; and 
  3. develop a future-facing outlook by learning to think about the consequences of actions, and how systems and societies can be adapted to ensure sustainable futures (QAA & HEA, 2014).  

Problem-Based Learning (PBL) provides a suitable teaching method for addressing these educational objectives. It is an influential approach in engineering education that emphasises real-world problem-solving and student-centred investigation. PBL deeply engages engineering students, prompting them to develop higher-level thinking skills while they personally confront and navigate economic, social, and environmental issues. This method fosters holistic systems thinking, interdisciplinary insights, ethical considerations, and an emphasis on the long-term viability of technical solutions (Cavadas and Linhares, 2023), while also inspiring and motivating learners (Loyens, 2015). 

While PBL can be delivered through theoretical case study examples, the term is used interchangeably with Project-Based Learning within engineering education. Both problem-based learning and project-based learning share characteristics such as collaboration and group work, the integration of knowledge and practice, and foregrounding problem analysis as the basis of the learning process (De Graaff and Kolmos, 2003). One of the main differences is where the parameters lie: with problem-based learning the parameters are defined at the beginning and students are able to find a range of solutions; with project-based learning the parameters lie at the end and students are expected to reach a specific end solution (Savery, 2006). There is also a difference in the role of the tutor and the information they provide: in problem-based learning the tutor facilitates but gives little information, while in project-based learning they are both a facilitator and a source of knowledge (Savery, 2006). Project based learning may be more accepted within engineering education since it is considered to more closely resemble the reality of the profession (Perrenet, Bouhuijs and Smits, 2000), hence Aalborg’s working definition of PBL as “Problem-Oriented, Project-Organized, Learning” (Dym et al., 2005) 

PBL thus facilitates the creation of immersive student-centric environments where group projects enable collaborative learning (Kokotsaki, Menzies and Wiggins, 2016). As Lozano et al. (2017) highlight, the nature of PBL advances critical thinking and problem-solving in engineering contexts, enabling students to critically reflect on sustainability concepts and apply this understanding to real-world challenges. Importantly, it is paramount in engineering education to foster action-oriented competencies and incorporate social contextualisation aspects (Fogg-Rogers et al., 2022), such as ethical nuances, justice, and equality, ensuring a comprehensive grasp of an engineer’s role amidst evolving societal and environmental challenges (Wang et al., 2022).  

 

2. Overcoming challenges within PBL:

While PBL presents an obvious approach for embedding sustainability, there are a series of challenges which engineering educators need to overcome to facilitate transformational learning. This section presents some of the most common challenges encountered, along with pedagogic solutions.  

 

Lack of apparent topic relevance
Sustainability topics can sometimes be treated as isolated topics, rather than an integrated aspect of an engineering problem. A perception of sustainability in engineering is that it is not implicit in design, manufacture, and operation; rather it is often perceived as an ‘add-on’ to technical skill development. This applies to both students and teachers: both require support to understand the relevance and complexities of sustainability. When academics delivering sustainability materials may struggle to relate the topic to their own engineering disciplines, students may fail to see how they can impact change. Students must work on real-world projects where they can make a difference locally or globally, and they are more inclined towards sustainability topics that are relevant to their subject discipline with subject experts.  

 

Dealing with an overwhelming amount of information
Students can be overwhelmed by the large amounts of multidisciplinary information that needs to be processed when tackling real-world problems. This can also be a challenge for academics delivering teaching, especially if the topic is not related to their speciality. Additional support (and training), along with allocation of teaching workload, are needed to successfully integrate sustainability contexts for both staff and students.   

 

Group work challenges
PBL is best conducted by mixing individual study and group work. However, groups can fail if group creation, monitoring, supporting, and assessing processes are inconsistent, or not understood by academic tutors or students. Tutors need to act as group facilitators to ensure successful collaborative learning.  

 

Issues with continual engagement
PBL often requires active engagement of students over an extended period (several weeks or months). This can be a challenge, as over time, students’ focus and priorities can change. We suggest that whole programmes need to be designed around PBL components, so that other modules and disciplines provide the scaffolding and knowledge development to the relevant PBL topics.  

 

Delivering PBL online 

PBL is best delivered using experiential hands-on learning. For example, at UWE Bristol, this is provided through civic engagement with real-world industry problems and service learning through engagement with industry, schools, and community groups (Fogg-Rogers et al., 2017). This experiential learning was exceptionally challenging to deliver online during the COVID-19 pandemic, and programmes would need to be re-designed for online learning. 

 

3. Recommendations for successful implementation of PBL:

Sustainability topics need to be embedded within engineering education so that each discipline-specific engineering problem is explored within PBL from a technical, economic, ethical, and sustainability perspective.  Drawing from UWE Bristol’s journey of ESD implementation using PBL, key recommendations are outlined below.  

 

Managing academic workload
In the initial phases of ESD integration at UWE Bristol, a small number of committed academics contributed a lot of time, effort, and dedication to push through and enable ESD acceptance from staff and students. Programme-wide implementation of ESD required wider support at the institutional level, alongside additional support for module leaders and tutors, so they felt capable of delivering ESD with a realistic workload. 

 

Structured delivery of ESD
Structuring delivery over time and throughout different modules enables students to work through large amounts of information. Providing summative feedback/assessments during key phases of the PBL exercise can also help students stay on track and manage their workload. At UWE Bristol, group presentations with pass/fail grading are introduced mid-project, so students can present information gathered about the context, before beginning problem-solving. 

 

Managing group work challenges
PBL is best conducted by mixing individual study and group work. Ensuring assessment briefs have implicit sustainability requirements is vital to embedding ESD concepts, so that students can see the need for engagement. This is further enhanced by stating the relevance to workplace contexts and UK-SPEC requirements. Tutors need to facilitate group dynamics and engagement, along with providing support structures for students who, for whatever reason, are unable to engage with group work.  

 

Creating an enabling environment for ESD integration
The integration of sustainable development throughout the curricula at UWE Bristol has been supported at the institutional level, and this has been critical for the wide scale rollout. An institution-wide Knowledge Exchange for Sustainability Education (KESE) network was created to support staff by providing a platform for knowledge sharing. Within the department, Staff Away days were used to run sustainability workshops to discuss ESD and topics of interest to students. An initial mapping exercise was conducted to highlight where sustainability was already taught within the curriculum and to identify the discipline relevant contexts (Lamere et al., 2022). Further training and industrially relevant contexts were provided to convince some staff that sustainability needed to be included in the curriculum, along with evidence that it was already of great relevance in the wider engineering workplace. This led to the development of an integrated framework of key learning requirements which embedded professional attributes and knowledge of the UK-SPEC.  

 

Student motivation and continual engagement  

For sustainability education to be effective, the content coverage should be aligned, or better still, integrated, with the topics that form part of students’ disciplinary studies. To maintain continual engagement during the PBL delivery and beyond, clear linkages need to be provided between learning and future career-related practice-based sustainability activities. Partnerships have been developed with regional stakeholders and industry, to provide more context for real-world problems and to enable local service learning and community action (Fogg-Rogers, Fowles-Sweet, 2018). Industry speakers have also been invited to contribute to lectures, touching on a wide range of sustainability and ethical issues. ESD teaching is also firmly linked to the individual’s own professional development, using the UK-SPEC competency requirements, and linked to end-point assessments. This allows students to see the potential impact on their own professionalism and career development. 

 

These recommendations can enable engineering educators to integrate sustainability topics within the curriculum using PBL to enhance student learning and engagement.  

 

References:  

Cavadas, B., Linhares, E. (2023). ‘Using a Problem-Based Learning Approach to Develop Sustainability Competencies in Higher Education Students’, in Leal Filho, et al. W., Azul, A.M., Doni, F., Salvia, A.L. (eds) Handbook of Sustainability Science in the Future. Springer, Cham. (Accessed 05 February 2024) 

De Graaff, E. and Kolmos, A. (2003) ‘Characteristics of Problem-Based learning’. International Journal of Engineering Education. 19 (5), pp. 657–662. 

Dym, C.L., et al.  Agogino, A.M., Eris, O., Frey, D.D. and Leifer, L.J. (2005) ‘Engineering design thinking, teaching, and learning’. Journal of engineering education. 94 (1), pp. 103–120. 

Engineering Council (2024). UK-SPEC Fourth Edition. (Accessed 05 February 2024).  

Fogg-Rogers, L., Lewis, F., & Edmonds, J. (2017). ‘Paired peer learning through engineering education outreach’, European Journal of Engineering Education, 42(1). (Accessed 05 February 2024).   

Fogg Rogers, L., & Fowles-Sweet, W. (2018). ‘Engineering and society: Embedding active service learning in undergraduate curricula’, in J. Andrews, R. Clark, A. Nortcliffe, & R. Penlington (Eds.), 5th Annual Symposium of the United Kingdom & Ireland Engineering Education Research Network (125-129). Aston University 

Fogg-Rogers, L., Bakthavatchaalam, V., Richardson, D., & Fowles-Sweet, W. (2022). ‘Educating engineers to contribute to a regional goal of net zero carbon emissions by 2030’. Cahiers COSTECH, 5, Article 133 

Fiselier, E. S., Longhurst, J. W. S., & Gough, G. K. (2018). ‘Exploring the current position of ESD in UK higher education institutions.’ International Journal of Sustainability in Higher Education, 19(2), 393–412.  

Kokotsaki, D., Menzies, V. and Wiggins, A. (2016) ‘Project-based learning: A review of the literature.’ Improving Schools. 19 (3), pp. 267–277. 

Lamere, M., Brodie, L., Nyamapfene, A., Fogg-Rogers, L., & Bakthavatchaalam, V. (2022). ‘Mapping and enhancing sustainability literacy and competencies within an undergraduate engineering curriculum’ in 9th Research in Engineering Education Symposium and 32nd Australasian Association for Engineering Education Conference (REES AAEE 2021) (298-306) 

Lozano, R., Merrill, M.Y., Sammalisto, K., Ceulemans, K. and Lozano, F.J. (2017), ‘Connecting competences and pedagogical approaches for sustainable development in higher education: a literature review and framework proposal’, Sustainability, Vol. 9 No. 10, pp. 1889-1903. 

Perrenet, J.C., Bouhuijs, P.A.J and Smits, J.G.M.M. (2000) ‘The Suitability of Problem based Learning for Engineering Education: Theory and practice.’ Teaching in Higher Education. 5 (3) pp.345-358. 

QAA & HEA. (2014). Education for sustainable development: guidance for UK higher education providers. Retrieved from Gloucester, UK. 

Savery, J.R. (2006) Overview of Problem-based Learning: Definitions and Distinctions.  The Interdisciplinary Journal of Problem-based Learning. 1 (1), pp. 9–20. 

Wang, Y., Sommier, M. and Vasques, A. (2022), ‘Sustainability education at higher education institutions: pedagogies and students’ competences’, International Journal of Sustainability in Higher Education, Vol. 23 No. 8, pp. 174-193.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this document, click here to download the PDF.

Author: Mark J. Heslop (University of Strathclyde). 

Topic: ESD in Chemical Engineering projects. 

Tool type: Guidance. 

Relevant disciplines: Chemical. 

Keywords: Problem-based learning; Education for sustainable development; Circularity; Circular economy; Assessment; AHEP; Sustainability; Higher education; Design; Data; Pedagogy. 
 
Sustainability competency: Systems-thinking; Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 2 (Zero hunger); SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 12 (Responsible consumption and production); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Authentic assessment; More real-world complexity.

Who is this article for? This article should be read by Chemical Engineering educators in higher education who are seeking to integrate sustainability in their project modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

The design project (DP) is considered to be the major focus of the CE curriculum, where students work in groups to design a complete chemical process – feeds, products process routes, energy requirements, financial aspects and emissions.  It is considered challenging for various reasons including the following: the requirement to recall and combine knowledge covered previously in taught classes (some of which may have been forgotten), dealing with a huge corpus of data (unavailability, uncertainty, some being in conflict and some being superfluous) and all the design decisions that need to be made from many options.  This is a major contrast with standard taught modules where all the data required is normally provided in advance.  Just making decisions is not enough – they need to be timely and justified otherwise the project may be rushed and may not complete by the deadline.  This is why the DP is valued by employers.  Furthermore, if Education for Sustainable Development (ESD) is embedded in the design project, it is more likely that students will take forward sustainability into the workplace. Figure 1 illustrates Chemical processes and the design project.   

 

1. Subject (CE) and DP pictorial representations:

Part (a) is a generic representation of a chemical process and shows the input-output nature of chemical processes.  A chemical process takes a feed and converts it to useful products (the process shown has two equipment units and four streams). Part (b) is a representation of the design project, where the specification (or brief) is provided to groups at the start (DSpec) and the final submission (or solution) is the information in part (a).  Part (c) shows that specifications can be product-based (the top two) or feed-based (the bottom two).  The dashed lines indicate specifications where the flowrate and composition of the feed/product is subject to design choice – a typical factor that will extend the design procedure and require more decision-making. 

 

 2. Inclusion of sustainability in the project topic and communication with students:

This is fairly straightforward in CE design projects, because of the circular economy and the associated waste minimisation.  So, from Figure 1, a feed-based (rather than product-based) specification can be employed.  Topics that have been used at Strathclyde in recent years have been the utilisation of coffee grounds, food waste and (in 2024) green and garden waste. It is helpful that such topics can be linked to many of the UN SDGs. Furthermore, waste products are often complex with many components, and one of the characteristics of chemical engineering is the various separation techniques. These two factors should be communicated to students to improve engagement.   

 

3. Inclusion of sustainability as an ESD activity to be carried out by groups:

One of the complicating factors about the UN SDGs is that there are so many, meaning that there is the possibility of a chemical process having both positive and negative impacts on different SDGs. This means that groups really need to consider all of the SDGs.  This might be conveniently demonstrated as per Table 1.  Certainly, it would be hoped that there are more ticks in column 2 than in column 3.  Column 4 corresponds to minimal change, and column 5 where there is not enough information to determine any impact. 

 

Table 1: Sustainability rating form for design project submissions   

As an example, consider a design project which is based on better utilisation of green waste.  Let us say that this results in less greenhouse gas emissions, as well as there being less need to plant and harvest plants.  This will result in positive outcomes for SDG12 and SDG13.  There are also positive effects because more land can be used for crops, and there will be higher plant coverage during the year.  It could be argued then that there are minor positive effects om SDG2 and SDG3.  The subsequent SDG profile in Table 1 shows two major impacts and two minor impacts – this might be typical for DPs.  

 

4. Assessment of sustainability in the design project:

Table 2 shows the typical sections in a DP submission.  For convenience these are shown as having equal 20-mark contributions.  One way of determining marks is to divide these sections into a number of dimensions, for example: use of the literature, technical knowledge, creativity/innovation and style/layout.  Sustainability could then be included as a fifth dimension.  It is then a case of determining the sustainability dimension for each of the marking sections.  It could be argued that sustainability is particularly important at the start of the project (when feeds and amounts are being decided) and at the end (when the final process is being assessed).  This explains the larger weightings in Table 2. Coherence refers to how well the submission reads in terms of order and consistency and is thus independent of sustainability.  The weightings are subject to debate, but they do at least give the potential for consistent (and traceable) grading between different assessors.        

 

Table 2: Design project assessment now including ESD   

References: 

Byrne, E.P. (2023) “The evolving engineer; professional accreditation sustainability criteria and societal imperatives and norms”, Education for Chemical Engineers 43, pp. 23–30  

Feijoo, G., Moreira, M.T. (2020) “Fostering environmental awareness towards responsible food consumption and reduced food waste in chemical engineering students”, Education for Chemical Engineers 33, pp. 27–35  

IChemE (2021), “Accreditation of chemical engineering programmes: a guide for education providers and assessors” 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Author: Onyekachi Nwafor (CEO, KatexPower). 

Topic: Revealing links between ethics and sustainability by teaching with case studies. 

Tool type: Guidance. 

Relevant disciplines: Any. 

Keywords: Sustainability education; Engineering ethics; Environmental impact; Responsible design; Stakeholder engagement; AHEP; Sustainability; Higher education; Pedagogy; Renewable energy; Green energy; Climate change; Local community. 
 
Sustainability competency: Self-awareness; Normative.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity.

Who is this article for? This article should be read by educators at all levels in higher education who are seeking to apply an approach of teaching with case studies in order to reveal the links between ethics and sustainability. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

Supporting resources: 

 

Premise: 

As environmental pressures mount, the world demands not just engineering solutions, but sustainable ones. This shift presents profound challenges and opportunities for engineering educators. How can we equip future engineers with the ethical frameworks and critical thinking skills needed to navigate the complex trade-offs inherent in green solutions? 

This article provides a guide for integrating ethical considerations into engineering education by using case studies. By fostering awareness of sustainability principles and promoting responsible decision-making through real-world examples, we can empower students to become stewards of a more equitable and resilient future. 

 

The interplay of ethics and sustainability: 

At its core, sustainability goes beyond environmental impact. It encompasses social responsibility, economic viability, and intergenerational equity. Ethical engineering aligns with these principles by: 

 

Integrating ethical considerations into engineering curricula presents several challenges: 

 

Learning from a case study:  

The sprawling Ivanpah Solar Electric Generating System in California’s Mojave Desert, initially celebrated as a beacon of clean energy, now casts a complex shadow on the region’s ecological landscape. While harnessing the sun’s power to electrify millions, its concentrated solar technology inadvertently unleashed unintended consequences. The intense heat generated by the mirrors tragically claimed thousands of birds, particularly desert tortoises, a threatened species. Drawn to the shimmering light, they would collide with the mirrors or structures, falling victim to a technological mirage. This stark reality challenged the “green” label of a project originally intended to combat climate change.  

 

Unforeseen costs of progress: 

Ivanpah’s case highlights the hidden costs of even well-intentioned renewable energy projects. It sparks critical questions for students to grapple with: 

Sustainability beyond carbon emissions: While reducing carbon footprint is crucial, broader ecosystem impacts must be considered. Can technological advancements mitigate harm to vulnerable species and habitats? 

Balancing energy needs with ecological needs: How can we find the sweet spot between harnessing renewable energy and preserving biodiversity? Can alternative technologies or site selection minimise ecological disruption? 

Engaging stakeholders in ethical decision-making: How can local communities and ecological experts be meaningfully included in planning and mitigation strategies to ensure equitable outcomes? 

By delving into the Ivanpah case (and others like it*), students can develop critical thinking skills to analyse the long-term implications of seemingly green solutions. They learn to consider diverse perspectives, advocate for responsible design practices, and prioritise environmental stewardship alongside energy production. 

*Relevant case studies: 

 

Empowering future engineers: 

As educators, we hold the power to shape the ethical compass of future engineers. By integrating ethical considerations into the fabric of our curriculum, we can equip them with the tools and knowledge necessary to: 

 

Conclusion: 

The pursuit of a sustainable future demands ethical engineers, engineers who can not only innovate, but also act with integrity and responsibility. By equipping students with the knowledge and skills necessary to grapple with complex ethical dilemmas, we can empower them to become transformative agents of change, shaping a world that thrives for generations to come. 

 

References: 

Delong, D. (2012). ‘Sustainable engineering: A comprehensive introduction’. John Wiley & Sons. 

Engineering ethics toolkit (2022) Engineering Professors Council. (Accessed: 05 February 2024). 

Engineers Without Borders. (n.d.). ‘Case studies on ethical dilemmas in sustainability’.(Accessed: October 20, 2023). 

The Hamilton Commission. (2019)  ‘On sustainable practices in Motorsport engineering’. (Accessed: October 20, 2023). 

MacKay, D.J.C. (2008). ‘Sustainable Energy – Without the Hot Air’. UIT Cambridge Ltd. 

Pritchard, M. S et al. (2013). ‘Engineering Ethics: Challenges and Opportunities’. Morgan & Claypool Publishers. 

Vallero, D. (2013). ‘The Ethics of Sustainable Engineering’. Princeton University Press. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.  

 

To view a plain text version of this resource, click here to download the PDF.

Authors: Emma Crichton CEng MICE and Dr Jonathan Truslove MEng PhD (Engineers Without Borders UK). 

Topic: How to talk about sustainability in engineering education. 

Tool type: Guidance. 

Relevant disciplines: Any. 

Keywords: Advocacy; Collaboration; Global responsibility; Sustainability; Systems change; Climate change; AHEP; Higher education; Pedagogy. 
 
Sustainability competency: Self-awareness; Strategic; Critical thinking.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development.

Who should read this article? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It’s especially useful in helping educators, heads of departments and deans to engage in a constructive or uncomfortable conversation if you don’t see yourself as a sustainability expert.  

 

Premise: 

To not have conversations because they make you uncomfortable is the definition of privilege. Your comfort is not at the centre of this discussion. That’s not how it works. We have to be able to choose courage over comfort, we have to be able to say, ‘Look, I don’t know if I’m going to nail this but I’m going to try because I know what I’m sure as hell not going to do is stay quiet.’” Brene Brown  

 

Some of the best conversations you can have in life are not comfortable to initiate: 

Think about a time you’ve participated in a meaningful conversation. These are not easy conversations, but they can also be the ones we look back to as very powerful, even if they took courage to initiate. And sometimes in a conversation, especially a constructive conversation, people disagree. People debate. People have different perspectives. And that’s the beauty of conversation and the beautiful rich diversity of people. It would be so boring if we all had the same life experiences, expertise and thoughts. If we only wanted to hear our own perspective, you can do that in a voice note to yourself, in your journal or by talking to the mirror.  

There can also be different conversations depending on the values of those having the conversation. What they see as important, scary or what environment they live in helps form their core understanding. But despite our differences, humans are hard-wired for connection, to listen and talk with others. We discuss ideas in order to find common ground, and/or to learn about an experience we didn’t have ourselves. Difficult, constructive conversations build relationships, while avoiding them leads to a less deep connection.  

 

Why talk about sustainability? 

Educators, you have permission to start and facilitate a conversation about something you don’t know much about or are not an expert in. Just be honest about what you know and be driven to learn more.    

This relates to conversations around the topic of sustainability. When we talk about how we can live within our planetary limits, whilst meeting the needs of all people, questions about justice, inequality and fairness often crop up. We don’t have one right answer here, we don’t have a magic fix or one person to blame. No one is an expert here. Sure, some know more about the science, others more about people’s lived experiences and others can feel they don’t know enough. But we all have a right to participate in conversations about our collective humanity. For example, conversations you could have with students about sustainability could cover: 

After all, sustainability is about imagining our future: One where we have less impact on our safe climate and biodiversity and less inequality. But we may see that future world differently. We may worry about the impact any change might have on our lives and the things we value most. Some may struggle with the idea of repurposing golf courses to address our housing crisis, others may struggle with the idea of policies stopping people from flying frequently (but they might be okay with this being imposed on those with private jets). Others may despair at the slow levels of change, where we don’t move from our default trajectory and risk climate breakdown.  

On our current trajectory, we are looking at living in a world where our climate exceeds 1.5 degrees of warming, where there is mass migration, sea level rise, etc. This world may be worse, where more people suffer. But would you change how we engineer to make it better or play a role in another way to shift our trajectory? 

 

How to initiate conversations about sustainability in engineering education: 

To not have these important conversations means we don’t see any role for ourselves or the organisations we work for in creating change – and that’s not true, since sustainability requires systemic change to how we engineer AND to how we educate. For example, we asked hundreds of engineering educators and educationalists what they hope to see as the future of engineering education. Their responses are visualised below: 

Discussing your opinions about these responses could be one way to start a conversation with a colleague. 

It is also really important to engage in regular conversations about sustainability with students as a feature of their university education. Be a role model for how to participate in constructive conversations respectfully. Help them practise how to hold and present themselves in these spaces.  

So, with this in mind, what can you do?  

 
Initiate the conversation. Prepare to do so. Here are some tips and tricks.  

Be humble! Learning from others is key. Degrees can be designed so that students can frequently hear and learn about different perspectives and develop the ability to speak with economists, social scientists, scientists, humanities experts, ecologists, and those with expertise gained through lived experience. Be willing to learn from others and acknowledge that it’s okay they don’t have all the answers either. In our experience, students usually respect this attitude of humility.  

It can be helpful to work with those with experience. Recognise who is leading changes and creating ways for educators to feel safe in leading and making change. Sometimes all it takes is the offer of a coffee with a colleague to form a connection and get a shared understanding of how to move forward. 

Seek (and give) advice and share your experience. Share resources, barriers, insights and position initiatives to support in an organised and collaborative way.  

Work in partnership with students. Students also have a critical role to play in this shift, not just because they are increasingly demanding to see more sustainability in the curriculum. For many emerging students, sustainability is the topic of their lifetime. Listen to the perspectives of international students, who can bring more diverse perspectives on global responsibility.  

 

Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course) 

 

Useful resources to get talking: 

There are some excellent resources out there that can help us get started framing and having conversations about sustainability with others: 

1. The Talk Climate Change campaign tracks climate discussions to share messages and inspire others around the world. It provides advice, conversation starters and allows you to add your discussions with family, friends, and communities about sustainability to their interactive map and explore conversations submitted by others. 

2. Listen to podcasts such as the Liberating Sustainability podcast by Students Organising for Sustainability UK (SOSUK) who bring together leaders from student liberation movements and academia to deconstruct the exclusivity of sustainability activism and education, or An Idiot’s Guide to Saving the World which dives into each of the Sustainable Development Goals and focuses in on ‘who is affected?’, ‘What are solutions on a global scale?’, and ‘what can I as an individual do?’. 

3. Watch the presentation on Imagining 2050 from James Norman, a current educator (who will be 72 years old in 2050) and Cleo Parker, an engineering student (who will be 49 in 2050) during the Institution of Structural Engineers Annual Academics Conference 2022. You can also read the main learning points from the conference in this blog post 

4. The World Café methodology is an example of creating a space for collaborative dialogue around questions that matter and sharing insights and lessons learned. You can see an example of this by the UK Green Building Council (UKGBC) who run Collaboration Cafes on Climate Resilience, here. 

5. Watch the TED talks playlists on sustainability covering key questions and visionary ideas on the question of our generation.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

To view a plain text version of this resource, click here to download the PDF.

Let us know what you think of our website