Sustainability competency: Anticipatory; Integrated problem-solving; Strategic; Systems thinking.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.
Who is this article for?: This article should be read by educators at all levels of higher education looking to embed and integrate ESD into curriculum, module, and / or programme design.
Learning and Teaching Notes:
Supported by AdvanceHE, this Toolkit provides a structured approach to integrating Education for Sustainable Development (ESD) into higher education curricula. It uses the CRAFTS methodology and empowers educators to enhance their modules and programs with sustainability competencies aligned with UN Sustainable Development Goals.
Key Features:
• Five-Phase Process: Analyse stakeholder needs, map current provision, reflect on opportunities for development, redesign with an ESD focus, and create an action plan for continuous enhancement.
• Practical Tools: Includes templates for stakeholder analysis, module planning, active learning activities, and evaluation.
• Flexible Implementation: Designed for use at both module and programme level.
• Competency-Based: Focuses on developing authentic learning experiences across cognitive, socio-emotional, and behavioural domains.
Benefits
• Identify stakeholder sustainability needs
• Map existing ESD elements in your curriculum
• Reflect on opportunities to enhance ESD integration
• Redesign modules with active learning approaches of ESD
• Create actionable plans for implementation and evaluation
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr. Kieran Higgins (Ulster University); Dr. Alison Calvert (Queen’s University Belfast).
Who is this article for?: This article should be read by module coordinators, programme directors, and teaching teams in higher education who want to meaningfully integrate ESD into their curriculum design and delivery.
It’s always a struggle to get started on something new in the time- and resource-poor environment that is higher education. Sustainability can become just another box to tick rather than the world-changing priority it should be.
We knew there was more to ESD than simply labelling a module handbook with the SDG logos, especially when it was only SDG4 because it happens to mention education. There was a need to become familiar and comfortable with a deeper perspective on the SDGs and their related targets and indicators – without becoming intimidated by them. ESD should prepare students to tackle unforeseen challenges and navigate complex systems, rather than focusing on content alone. As higher education professionals, we recognised the inherent challenges of this.
As a result, we developed our CRAFTS (Co-Designing Reflective Approaches for the Teaching of Sustainability) model of curriculum design, based on an adaptation of Design Thinking, to provide a structured and usable, yet accessible, flexible, and not discipline-specific means of embedding and embodying ESD in the curriculum. We were then approached by AdvanceHE to develop this further into a practical, systematic resource that would empower educators to take genuine ownership of sustainability in their teaching and assessment.
The Toolkit helps tackle these issues in a straightforward way by breaking them down into five stages.
First, it shows how to analyse what stakeholders like students, employers and accrediting bodies want and need from a module when it comes to sustainability.
Then, it guides educators to map exactly what is being taught as the curriculum stands, aligning it to the SDGs and the ESD Competencies. This is a moment of real relief for many people, who discover that much of what they already do aligns perfectly with ESD.
After that, there’s a guided reflection to see where stronger integration might happen or where superficial coverage can be expanded into something more meaningful.
The redesign process helps to embed active learning and authentic assessments and finishes off with an action plan for moving forward and measuring impact for future evaluation.
We find it heartening to watch colleagues pivot from feeling like ESD is an add-on to realising it can enhance what they already do. Instead of worrying that they must become experts in every single SDG, the Toolkit reminds them that authentic engagement with a few well-chosen goals can lead to the deeper kind of learning we all aspire to provide.
This personal, reflective approach has helped academics overcome the sense that sustainability in the curriculum is an overwhelming requirement. They see it as a powerful lens through which students learn to handle uncertainty, become resilient critical thinkers and gain the confidence to tackle real-world problems.
We hope the Toolkit continues to spark conversations and encourage more creative approaches to ESD across disciplines. We don’t believe there’s a one-size-fits-all solution. It has been inspiring to see colleagues reclaim that sense of possibility and excitement, reassured that teaching for a sustainable future can be woven into what they’re already doing – just with an extra layer of intentionality and reflection.
If you’re looking for a way to bring ESD into your own classroom, we hope the Toolkit will be a reliable companion on that journey.
Dr Kieran Higgins (Lecturer in Higher Education Practice, Ulster University) and Dr Alison Calvert (Senior Lecturer in Biological Sciences, Queen’s University Belfast) have collaborated on Education for Sustainable Development projects for over 4 years, drawing on extensive and wide ranging experiences of higher education and sustainability. Their vision is of transformed global higher education curricula that empowers all graduates, regardless of discipline or career path, to become champions of a sustainable future.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University),Professor Jarka Glassey(Director of Education, School of Engineering, Newcastle University).
Topic: How to integrate the SDGs using a practical framework.
Type: Guidance.
Relevant disciplines: Any.
Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy.
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):The Engineer and Society(acknowledging that engineering activity can have a significant societal impact) andEngineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4hereand navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design.
Premise:
The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context.
b. Review government targets and discipline-specific guidance.
c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic.
e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert).
2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision.
b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness.
c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert).
d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified.
e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme.
3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such.
b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules.
c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is:
“Apply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).”
e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials.
For module-wide alignment:
1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme.
a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics.
b. Determine any specific guidelines, standards, and regulations for this theme within the discipline.
2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps.
b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs.
c. Review feedback from current students on the clarity of the modules links to the SDGs.
d. Review feedback from external examiners on the sustainability content of the module.
3. Look ahead.
a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated.
b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options.
Appendix:
A. Outcome I.2 (programme level mapping)
B. Outcome II.5 (module level mapping) – same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs.
C. II.6.b – Specific activities
Activity 1: Best carried out at the start of the module and then repeated near the end of the module to compare students perception and learning. Split students into groups of 3-4, at the start of the module use the module template (attached as a resource) to clearly outline the ILOs. Then present the SDGs and ask students to spend no more than 5 min identifying the top 3 SDGs they believe the material delivered in the module will enable them to address. Justify the selection. Can either feed back or exchange ideas with the group to their right. Capture these SDGs for comparison of the repeat exercise towards the end of the module. How has the perception of the group changed following the delivery of the module and why?
Activity 2: Variation on the above activity – student groups to arrange the SDGs in a pyramid with the most relevant ones at the top, capture the picture and return to it later in module delivery
Activity 3: Suitable particularly for the earlier stages. Use https://go-goals.org/ to increase the general awareness of SDGs.
Activity 4: The coursework geared to the SDGs, with each student choosing a goal of their choice and developing a webmap to demonstrate the role of module-relevant data and analysis in tackling that goal.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Mike Murray BSc (Hons) MSc PhD AMICE SFHEA (Senior Teaching Fellow in Construction Management, Department of Civil & Environmental Engineering, University of Strathclyde).
Topic: Links between education for sustainable development (ESD) and intercultural competence.
Tool type: Teaching.
Engineering disciplines: Civil; Any.
Keywords: AHEP;Sustainability; Student support; Local community; Higher education; Assessment; Pedagogy; Education for sustainable development; Internationalisation; Global reach; Global responsibility; EDI.
Sustainability competency: Self-awareness; Collaboration; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 16 (Peace, justice, and strong institutions).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner.
Learning and teaching notes:
This resource describes a coursework aligned to three key pedagogical approaches of ESD. (1) It positions the students as autonomous learners (learner-centred); (2) who are engaged in action and reflect on their experiences (action-oriented); and (3) empowers and challenges learners to alter their worldviews (transformative learning). Specifically, it requires students to engage in collaborative peer learning (Einfalt, Alford, and Theobald 2022; UNESCO 2021). The coursework is an innovative Assessment for Learning” (AfL) (Sambell, McDowell, and Montgomery, 2013) internationalisation at home (Universities UK, 2021) group and individual assessment for first-year civil & environmental engineers enrolled on two programmes (BEng (Hons) / MEng Civil Engineering & BEng (Hons) / MEng Civil & Environmental Engineering). However, the coursework could easily be adapted to any other engineering discipline by shifting the theme of the example subjects. With a modification on the subjects, there is potential to consider engineering components / artifacts / structures, such as naval vessels / aeroplanes / cars, and a wide number of products and components that have particular significance to a country (i.e., Swiss Army Knife).
Learners have the opportunity to:
Engage in collaborative peer learning and socialise with students from different countries.
Gain knowledge related to the design and construction of civil engineering buildings and structures.
Develop a ‘global engineering mindset.’
Teachers have the opportunity to:
Promote, recognise, and reward intercultural engagement and the development of intercultural competence (IC).
Raise student awareness of an engineer’s role in the UNSDGs.
There have been several calls to educate the global engineer through imbedding people and planet issues in the engineering curriculum (Bourn and Neal, 2008; Grandin and Hirleman 2009). Students should be accepting of this practice given that prospective freshers are ‘positively attracted by the possibility of learning alongside people from the rest of the world’ (Higher Education Policy Unit, 2015:4). Correspondingly, ‘international students often report that an important reason in their decision to study abroad is a desire to learn about the host country and to meet people from other cultures’ (Scudamore, 2013:14). Michel (2010:358) defines this ‘cultural mobility’ as ‘sharing views (or life) with people from other cultures, for better understanding that the world is not based on a unique, linear thought’.
Civil Engineering is an expansive industry with projects across many subdisciplines (i.e. Bridges, Buildings, Coastal & Marine, Environmental, Geotechnical, Highways, Power including Renewables. In a group students are required to consult with an international mentor and investigate civil engineering (buildings & structures) in the mentor’s home country. Each student should select a different example. These can be historical projects, current projects or projects planned for the future, particularly those projects that are addressing the climate emergency. Students will then complete two tasks:
Task 1: Group International Poster (10% weighting)
a. Reasoning for coursework with reference to transnational engineering employers and examples of international engineering projects and work across national boundaries.
b. Links between engineering, people, and planet through the example of biomimicry in civil engineering design (Hayes, Desha, & Baumeister, 2020) or nature-based solutions in the context of civil engineering technology (Cassina and Matthews ,2021).
c. Existence of non-governmental organisations (NGOs) such as RedR UK (2023) Water Aid (2023) and Bridges to Prosperity (2023).
d. The use of corporate social responsibility (CSR) to address problematic issues such as human rights abuses (Human Rights Watch, 2006) and bribery and corruption (Stansbury and Stansbury) in global engineering projects.
2. Assign students to groups:
a. Identify international mentors. After checking the module registration list, identify international students and invite them to become a mentor to their peers. Seek not to be coercive and explain that it is a voluntary role and to say no will have no impact on their studies. In our experience, less than a handful have turned down this opportunity. The peer international students are then used as foundation members to build each group of four first-year students. Additional international student mentors can be sourced from outside the module to assist each group.
3. Allow for group work time throughout the module to complete the tasks (full description can be found in the complete brief).
Assessment criteria:
The coursework constitutes a 20% weighting of a 10-Credit elective module- Engineering & Society. The submission has two assessed components: Task 1) a group international poster with annotated sketches of buildings & structures (10% weighting); and Task 2) A short individual reflective writing report (10% weighting) that seeks to ascertain the students experience of engaging in a collaborative peer activity (process), and their views on their poster (product). Vogel et al, (2023, 45) note that the use of posters is ‘well-suited to demonstrating a range of sustainability learning outcomes’. Whilst introducing reflective writing in a first-year engineering course has its challenges, it is recognised that reflective practice is an appropriate task for ESD- ‘The teaching approaches most associated with developing transformative sustainability values stimulate critical reflection and self-reflection’ (Vogel et al, 2023, 6).
The coursework has been undertaken by nine cohorts of first-year undergraduate civil engineers (N=738) over seven academic sessions between 2015-2024. To date this has involved (N=147) mentors, representing sixty nationalities. Between 2015-2024 the international mentors have been first-year peers (N=67); senior year undergraduate & post-graduate students undertaking studies in the department (N=58) and visiting ERASMUS & International students (N =22) enrolled on programmes within the department.
Whilst the aim for the original coursework aligns with ESD (‘ESD is also an education in values, aiming to transform students’ worldviews, and build their capacity to alter wider society’ -Vogel et al ,2023:21) the reflective reports indicate that the students’ IC gain was at a perfunctory level. Whilst there were references to ‘a sense of belonging, ‘pride in representing my country’, ‘developing friendships’, ‘international mentors’ enthusiasm’ this narrative indicates a more generic learning gain that is known to help students acquire dispositions to stay and to succeed at university (Harding and Thompson, 2011). The coursework brief fell short of addressing the call ‘to transform engineering education curricula and learning approaches to meet the challenges of the SDGs’ (UNESCO,2021:125). Indeed, as a provocateur pedagogy, ‘ESD recognises that education in its current form is unsustainable and requires radical change’ (Vogel et al ,2023, 4).
Given the above it is clear that the coursework requirement for peer collaboration and reflective practice aligns to three of the eight key competencies (collaboration, self-awareness, critical thinking) for sustainability (UNESCO, 2017:10). Scudamore (2013:26) notes the importance of these competencies when she refers to engaging home and international students in dialogue- ‘the inevitable misunderstandings, which demand patience and tolerance to overcome, form an essential part of the learning process for all involved’. Moreover, Beagon et al (2023) have acknowledged the importance of interpersonal competencies to prepare engineering graduates for the challenges of the SDG’s. Thus, the revised coursework brief prompts students to journey ‘through the mirror’ and to reflect on how gaining IC can assist their knowledge of, and actions towards the SDG’s.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving, Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Authentic assessment; Active pedagogies and mindset development. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It may also be of interest for students practising lifelong learning to articulate and explore how their learning translates into competency development as they embark on their careers.
Premise:
Today we know that how we engineer is changing – and this change is happening at a quicker pace than in previous decades. The decisions engineers make throughout their careers shape the world we all inhabit. Consequently, the education of engineers has a profound impact on society. Ensuring our degrees are up to date is of pressing importance to prepare all future practitioners and professionals. Arguably, it is especially important for engineers to act sustainably, ethically and equitably.
How do engineers understand their roles when sustainability becomes a key driver in the context of their work? What does sustainability look like in learning journeys, and how can it be incorporated into assessments? This article does not advocate for simply adding ‘sustainability’ to degrees; rather, it encourages the connection between sustainability competencies and engineering assessments.
Developing 21st-century engineers
Choosing to become an engineer is a great way to be useful to society. Studying an engineering degree can develop what people can do (skills), what they know (knowledge) and how they think (mindset), as well as open up a diverse range of career opportunities.
The path to becoming an engineer can start at university (though there are other routes in). Weaving in a focus on globally responsible engineering throughout a degree course is about embracing the need to develop a broader set of competencies in engineers and expand the types of projects they practise on during their degree to reflect the problems they may encounter during their career.
This doesn’t mean that engineering degrees as they are aren’t valuable or useful. It’s about strengthening the building blocks of degrees to ensure that 21st-century engineers have space to play their role in addressing 21st-century societal challenges. These building blocks are what learning outcomes are prioritised, what pedagogies are used, the types of projects students work on, who they work with and the way we assess learning. All of these elements can be aggregated to develop competence in sustainable engineering practice.
What are sustainability competency frameworks saying?
There are many frameworks exploring what are the competencies most needed today (such as UNESCO Education for Sustainable Development competencies, EU GreenComp, Inner Development Goals). Many frameworks are calling for similar things that allow us to shift focus, attention and energy onto how to truly develop a person over the three to five plus years of experience they might gain at university.
By designing education to meet learning outcomes, you build and evidence a range of competencies, including developing the mindsets of learners. Practically, it is the use of different competency frameworks, and the associated updates to learning outcomes, and how we deliver education and assessment that really matters. The table below, in the second column, synthesises various competency frameworks to clearly articulate what it means a learner can then do. Rather than argue different frameworks, focusing on what a student can do as a result is really key.
By reading through this table, you can see that this is more than just about ‘sustainability’ – these are useful things for a person to be able to do. Ask yourself, what if we don’t develop these in our graduates? Will they be better or worse off?
Graduates can then build on this learning they have had at university to continue to develop as engineers working in practice. The Global Responsibility Competency Compass for example points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. It is made up of 12 competencies and is organised around the four guiding principles of global responsibility – Responsible, Purposeful, Inclusive and Regenerative.
What needs to shift in engineering education?
The shifts required to the building blocks of an engineering degree are:
To adapt and repurpose learning outcomes.
To integrate more real-world complexity within project briefs.
To be excellent at active pedagogies and mindset development.
To ensure authentic assessment.
To maximise cross-disciplinary experience and expertise.
All of the above need to be designed with mechanisms that work at scale. Let’s spotlight two of these shifts, ‘to adapt and repurpose learning outcomes’ and ‘to integrate authentic assessment’ so we can see how sustainability competence relates.
Adapt and repurpose learning outcomes.
We can build on what is already working well within a degree to bring about positive changes. Many degrees exhibit strengths in their learning outcomes such as, developing the ability to understand a concept or a problem and apply that understanding through a disciplinary lens focused on simple/complicated problems. However, it is crucial to maintain a balance between addressing straightforward problems and tackling more complex ones that encourage learners to be curious and inquisitive.
For example, a simple problem (where the problem and solution are known) may involve ‘calculating the output of a solar panel in a community’. A complex problem (where the problem and solution are unknown) may involve ‘how to improve a community’s livelihood and environmental systems, which may involve exploring the interconnectedness, challenges and opportunities that may exist in the system.
Enhancing the learning experience by allowing students to investigate and examine a context for ideas to emerge is more reflective of real-world practice. Success is not solely measured by learners accurately completing a set of problem sets; rather, it lies in their ability to apply concepts in a way that creates a better, more sustainable system.
See how this rebalancing is represented in the visual below:
Figure 2. Rebalancing learning within degrees to be relevant to the future we face. Source: Engineers Without Borders UK.
Keeping up to date and meeting accreditation standards is another important consideration. Relating the intended learning outcomes to the latest language associated with accreditation requirements, such as AHEP4 (UK), ABET (US) or ECSA (SA), doesn’t mean you have to just add more in. You can adapt what you’ve already got for a new purpose and context. For instance, the Engineering for One Planet framework’s 93 (46 Core and 46 Advanced) sustainability-focused learning outcomes that hundreds of academics, engineering professionals, and other key stakeholders have identified as necessary for preparing all graduating engineers — regardless of subdiscipline — with the skills, knowledge, and understanding to protect and improve our planet and our lives. These outcomes have also been mapped to AHEP4.
Integrate authentic assessment:
It is important that intended learning outcomes and assessment methods are aligned so that they reinforce each other and lead to the desired competency development. An important distinction exists between assessment of learning and assessment as or for learning:
Assessment OF learning e.g. traditional methods of assessment of student learning against learning outcomes and standards that typically measure students’ knowledge-based learning.
Assessment AS/FOR learning e.g. reflective and performance-based (e.g. self-assessments, peer assessments and feedback from educators using reflective journals or portfolios) where the learning journey is part of the assessment process that captures learners’ insights and critical thinking, and empowers learners to identify possibilities for improvement.
Assessment should incorporate a mix of methods when evaluating aspects like sustainability, to bring in authenticity which strengthens the integrity of the assessment process and mirrors how engineers work in practice. For example, University College London and Kings College London both recognise that critical evaluation, interpretation, analysis, and judgement are all key skills which will become more and more important, and making assessment rubrics more accessible for students and educators. Authentic assessment can mirror professional practices, such as having learners assessed within design reviews, or asking students to develop a portfolio across modules.
Engineers Without Borders UK | Assessing competencies through design challenges:
Below is an example of what Engineers Without Borders UK has done to translate competencies into assessment through our educational offerings. The Engineering for People Design Challenge (embedded in-curriculum focuses on placing the community context at the heart of working through real-world project-based learning experiences) and Reshaping Engineering (a co-curricular voluntary design month to explore how to make the engineering sector more globally responsible). The competencies in the Global Responsibility Competency Compass are aligned and evidenced through the learning outcomes and assessment process in both challenges.
Please note – the Global Responsibility Competency Compass points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves.
For educators looking to keep curriculum and learning outcomes relevant, the Compass provides a useful framing to inform learning outcomes throughout the curriculum that encourages lifelong learning for emerging engineers or supports the reskilling of engineering professionals (to pursue topics that may have been absent from the user’s formal education), and constantly evolving their competency through educational activities.
For students, this may be of interest as you begin your journey as future engineering professionals and student members of professional engineering institutions exploring what continued professional development you wish to pursue in your careers.
See below an example of the logic behind translating competencies acquired by participants to assessment during the design challenges.
Figure 3. Example of the logic behind translating the Global Responsibility Competency Compass to assessment during the design challenges. Source: Engineers Without Borders UK.
The Competencies developed through the educational offering are orientated around the Global Responsibility Competency Compass to align with the learning journey from undergraduate to practising globally responsible individuals in learners’ future careers.
We then align learning outcomes to the competency and purpose of the design challenge using simple and concise language.
a. Useful resources that were used to help frame, align and iterate the learning outcomes and marking criteria are shared at the end of this article.
The Marking Criteria draws on the assessment methods previously mentioned under ‘Assessment OF’ and ‘Assessment AS/FOR’ while aligning to the context of intended learning i.e. design focussed, individual journals reflecting on the learning journey, and collaborating in teams.
We frame and align key action words from Competency to learning outcome to marking criteria using Bloom’s taxonomy (in Figure 2) to scale appropriately, the context of learning and what the intended outcome of learning/area of assessment would be.
Conclusions:
How your students think matters. How they engage in critical conversations matters. What they value matters. How we educate engineers matters.
These may feel like daunting shifts to make but developing people to navigate our future is important for them, and us. Sustainability competencies are actually about competencies that are useful – the label ‘sustainability’ may or may not help but it’s the underlying concepts that matters most. The interventions that we make to instil these competencies in the learning journeys of future engineers are required – so degrees can be continuously improved and will be valuable over the long term. Making assessment mirror real practice helps with life-long learning. That’s useful in general, not just about sustainability. This is a major opportunity to attract more people into engineering, keep them and enable them to be part of addressing urgent 21st century challenges.
“Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.”
2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course)
Useful resources:
There are some excellent resources out there that help us understand and articulate what sustainability competencies and learning outcomes look like, and how to embed them into teaching, learning and assessment. Some of them were used in the example above. Here are some resources that we have found useful in translating the competencies in the Compass into learning outcomes in our educational offerings:
Bloom’s Taxonomy: a hierarchical model that categorises learning objectives into levels of complexity is a useful model to explore the proficiency of learning outcomes (and used in many of the resources in this list). You can use the verbs outlined in Bloom’s Taxonomy to modify or scale up the proficiency of your learning outcomes within the context of the programme and accreditation requirements. This is useful if you are unable to replace or introduce new learning outcomes into your module or programme.
Engineering for One Planet Framework and guide to teaching core learning outcomes: contains a curated list of core and advanced sustainability-focused student learning outcomes to help educators embed sustainability into engineering education, which can be adapted as needed to the context of learning.
Engineers Professors Council Ethics Toolkit Using a constructive alignment tool to plan ethics teaching: a tool to reinforce the ethical dimension of engineering and encourages the ethical development of engineer used at Aston University and endorsed by the CDIO.
UNESCO’s Education for Sustainable Development Goals 2017: emphasises that to develop competencies in sustainable development, education needs to transition to learning that is ‘action-orientated and supports self-directed learning, participation and collaboration, problem-orientation, inter-and transdisciplinarity, and links formal and informal learning together’.
UNESCO’s Engineering for Sustainable Development 2021: describes how the Cynefin framework is a useful way of understanding how teaching and learning methods are combined with the increasing need to understand complexities that nurture different competencies.
The World Economic Forum Future of Skills Report 2020 and 2023: highlights the skills needed for 2025 including creativity, critical thinking and navigating complexity.
Redman et al. (2021) Current practice of assessing students’ sustainability competencies: a review of tools (2021): explores tools are currently used for assessing students’ sustainability competencies and provides guidance to sustainability (science) instructors, researchers, and program directors who are interested in using competencies assessment tools in more informed ways.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Ema Muk-Pavic, FRINA SHEA (University College London)
Topic: Links between sustainability and EDI
Tool type: Guidance.
Relevant disciplines: Any.
Keywords: Sustainability; AHEP; Programmes; Higher education; EDI; Economic Growth; Inclusive learning; Interdisciplinary; Global responsibility; Community engagement; Ethics; Future generations; Pedagogy; Healthcare; Health.
Sustainability competency: Self-awareness; Normative; Collaboration; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: All 17.
Reimagined Degree Map Intervention: Active pedagogies and mindset development; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for: This article should be read by educators at all levels in Higher Education who wish to understand how engineering practice can promote sustainable and ethical outcomes in equality, diversity, and inclusion.
Supporting resources:
Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB)
The role of engineering is to enhance the safety, health and welfare of all, while protecting the planet and reversing existing environmental damage by deploying engineering solutions that can meet urgent global and local needs across all sectors (Engineering Council, 2021). The socioeconomic and environmental problems are strongly linked and finding responsible solutions is of imminent urgency that requires a holistic interdisciplinary perspective.
Sustainability and Equality, Diversity and Inclusion (EDI):
Equality, diversity, and Inclusion are interlinked concepts that emphasise equal opportunities, the inclusion of underrepresented groups, and the benefits that derive from diverse perspectives within the engineering field. Because sustainability is a global phenomenon, achieving the objective of “providing for all” should be a priority for all engineering professionals to ensure solutions are developed that benefit all (Jordan et al., 2021). To address sustainability challenges, engineers need to keep in mind that some communities are disproportionately impacted by climate change and environmental harm. It is essential to empower these communities to create systematic change and advocate for themselves.
A strategic pedagogical approach to sustainability and EDI:
A variety of pedagogical strategies can be applied to incorporate diversity and inclusion perspectives into sustainability engineering. Rather than adopting an “add-on” approach to the existing programmes it is recommended to fully embed inclusive and sustainable perspectives in the existing curriculum. These perspectives should be incorporated following a learning path of the students, from the beginning of the programme in the engineering fundamentals, starting with raising awareness and understanding of these perspectives and gradually improving student knowledge supported by evidence and further to implementing and innovating in engineering practice and solutions. By the end of the programme, diversity and inclusion and sustainability perspectives should be fully incorporated into the attitude of the graduates so that they will consider this when approaching any engineering task. This approach would go hand-in-hand with incorporating an ethics perspective.
Some practical examples of implementation in the programme and gradually deepening student learning are:
1. Awareness and understanding:
a. Define sustainability and its relation to EDI.
b. Engage with practical examples in modules that can be considered and discussed from EDI, ethical, and sustainability perspectives (e.g. present a product related to the subject of a class; in addition to discussing the product’s engineering characteristics, extend the discussion to sustainability and diverse stakeholders perspective – who are the end users, what is the affordability, where does the raw material comes from, how could it be recycled etc.)
2. Applying and analysing:
Seek out case studies which can expose the students to a range of EDI issues and contexts, e.g.:
a. Examples of “sustainable” engineering solutions aimed toward “wealthy” users but not available or suitable for the “poor”. Question if EDI was considered in stakeholder groups (who are the target end users, what are their specific needs, are the solutions applicable and affordable for diverse socioeconomic groups (e.g. high-tech expensive sophisticated medical devices, luxury cars).
b. Examples of product design suffering from discriminatory unconscious bias (e.g. medical devices unsuitable for women (Phillips SP, 2022); “affordable housing projects” being unaffordable for the local community, etc.).
c. Positive examples of sustainable engineering solutions with strong EDI perspectives taken that are also financially viable (e.g. sustainable water and sanitation projects, seaweed farming for food security and climate change mitigation (Sultana F, 2023), sustainable gem production (Center for Responsible Business (CRB), 2023) etc.)
3. Implementing, evaluating, and creating:
a. Use existing scenario-based modules to focus on finding solutions for the sustainability problems that will improve socioeconomic equality, access to water, improvement of healthcare, and reduction of poverty. This will guide students to implement sustainability principles in engineering while addressing social issues and inequalities.
b. In project-based modules, ask students to link their work with a specific UNSDG and evidence an approach to EDI issues.
4. Provide visibility of additional opportunities:
Extracurricular activities (maker spaces, EWB UK’s Engineering for People Design Challenge, partnership with local communities, etc.) can represent an additional mechanism to bolster the link between sustainable engineering practice and EDI issues. Some of these initiatives can even be implemented within modules via topics, projects, and case studies.
A systematic strategic approach will ensure that students gain experience in considering the views of all stakeholders, and not only economic and technical drivers (Faludi, et al., 2023). They need to take account of local know-how and community engagement since not all solutions will work in all circumstances (Montt-Blanchard, Najmi, & Spinillo, 2023). Engineering decisions need to be made bearing in mind the ethical, cultural, and political questions of concern in the local setting. Professional engineers need to develop a global mindset, taking into account diverse perspectives and experiences which will increase their potential to come up with creative, effective, and responsible solutions for these global challenges. (Jordan & Agi, 2021).
Leading by example:
It is of paramount importance that students experience that the HE institution itself embraces an inclusive and sustainable mindset. This should be within the institutional strategy and policies, everyday operations and within the classroom. Providing an experiential learning environment with an inclusive and sustainable mindset can have a paramount impact on the student experience and attitudes developed (Royal Academy of Engineering, 2018).
Conclusion:
Engineering education must prepare future professionals for responsible and ethical actions and solutions. Only the meaningful participation of all members of a global society will bring us to a fully sustainable future. Thus, the role of engineering educators is to embed an EDI perspective alongside sustainability in the attitudes of future professionals.
References:
Burleson, G., Lajoie, J., & et al. (2023). Advancing Sustainable Development: Emerging Factors and Futures for the Engineering Field.
Center for Responsible Business (CRB). (2023). Case study: Sustainability initiatives by a gemstone manufacturing organisation: community engagement, decent work and gender empowerment. New Delhi: Center for Responsible Business (CRB).
Engineering Council. (2021). Guidance on Sustainability. London: Engineering Council UK.
Faludi, J., Acaroglu, L., Gardien, P., Rapela, A., Sumter, D., & Cooper, C. (2023). Sustainability in the Future of Design Education. The Journal of Design, Economics and Innovation, 157-178.
Jordan, R., & Agi, K. (2021). Peace engineering in practice: A case study at the University of New Mexico. Technological Forecasting and Social Change, 173.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Emma Crichton CEng MICE and Dr Jonathan Truslove MEng PhD (Engineers Without Borders UK).
Topic: How to talk about sustainability in engineering education.
Tool type: Guidance.
Relevant disciplines: Any.
Keywords: Advocacy; Collaboration; Global responsibility; Sustainability; Systems change; Climate change; AHEP; Higher education; Pedagogy.
Sustainability competency: Self-awareness; Strategic; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who should read this article? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It’s especially useful in helping educators, heads of departments and deans to engage in a constructive or uncomfortable conversation if you don’t see yourself as a sustainability expert.
Premise:
“To not have conversations because they make you uncomfortable is the definition of privilege. Your comfort is not at the centre of this discussion. That’s not how it works. We have to be able to choose courage over comfort, we have to be able to say, ‘Look, I don’t know if I’m going to nail this but I’m going to try because I know what I’m sure as hell not going to do is stay quiet.’” Brene Brown
Some of the best conversations you can have in life are not comfortable to initiate:
Saying “I love you” for the first time to someone you don’t know will say it back.
Asking for a pay rise for the first time and having to describe why you are valuable.
Saying “I don’t know” when you’ve positioned yourself as an expert.
Talking about your grief. Talking about life. Talking about death.
Talking about the future. Talking about the past.
Think about a time you’ve participated in a meaningful conversation. These are not easy conversations, but they can also be the ones we look back to as very powerful, even if they took courage to initiate. And sometimes in a conversation, especially a constructive conversation, people disagree. People debate. People have different perspectives. And that’s the beauty of conversation and the beautiful rich diversity of people. It would be so boring if we all had the same life experiences, expertise and thoughts. If we only wanted to hear our own perspective, you can do that in a voice note to yourself, in your journal or by talking to the mirror.
There can also be different conversations depending on the values of those having the conversation. What they see as important, scary or what environment they live in helps form their core understanding. But despite our differences, humans are hard-wired for connection, to listen and talk with others. We discuss ideas in order to find common ground, and/or to learn about an experience we didn’t have ourselves. Difficult, constructive conversations build relationships, while avoiding them leads to a less deep connection.
Why talk about sustainability?
Educators,you have permission to start and facilitate a conversation about something you don’t know much about or are not an expert in. Just be honest about what you know and be driven to learn more.
This relates to conversations around the topic of sustainability. When we talk about how we can live within our planetary limits, whilst meeting the needs of all people, questions about justice, inequality and fairness often crop up. We don’t have one right answer here, we don’t have a magic fix or one person to blame. No one is an expert here. Sure, some know more about the science, others more about people’s lived experiences and others can feel they don’t know enough. But we all have a right to participate in conversations about our collective humanity. For example, conversations you could have with students about sustainability could cover:
Views on a particular podcast, TED talk or news article.
Think of a community you love. What would you like life there to be like in 2050?
What sustainability-related questions or topics would you like to explore?
What do the Sustainable Development Goals mean to you? How might they connect to community-driven initiatives?
What does the future of work look like for engineering?
How do we all acknowledge the burden of shifting the norm in engineering to address sustainability challenges?
Is there an extra pressure on future engineering generations? How does that feel?
How might we recognise that those who are most impacted by the climate crisis may not be the ones whose actions are responsible for it?
After all, sustainability is about imagining our future: One where we have less impact on our safe climate and biodiversity and less inequality. But we may see that future world differently. We may worry about the impact any change might have on our lives and the things we value most. Some may struggle with the idea of repurposing golf courses to address our housing crisis, others may struggle with the idea of policies stopping people from flying frequently (but they might be okay with this being imposed on those with private jets). Others may despair at the slow levels of change, where we don’t move from our default trajectory and risk climate breakdown.
On our current trajectory, we are looking at living in a world where our climate exceeds 1.5 degrees of warming, where there is mass migration, sea level rise, etc. This world may be worse, where more people suffer. But would you change how we engineer to make it better or play a role in another way to shift our trajectory?
How to initiate conversations about sustainability in engineering education:
To not have these important conversations means we don’t see any role for ourselves or the organisations we work for in creating change – and that’s not true, since sustainability requires systemic change to how we engineer AND to how we educate. For example, we asked hundreds of engineering educators and educationalists what they hope to see as the future of engineering education. Their responses are visualised below:
Discussing your opinions about these responses could be one way to start a conversation with a colleague.
It is also really important to engage in regular conversations about sustainability with students as a feature of their university education. Be a role model for how to participate in constructive conversations respectfully. Help them practise how to hold and present themselves in these spaces.
So, with this in mind, what can you do?
Initiate the conversation. Prepare to do so. Here are some tips and tricks.
Open questions are generally your friend; avoid yes/no questions that don’t allow the responder to share their insights.
Have clarity on what you will do if you don’t know the answer. Could a person in the room go away, research and come back with a more informed response?
Create a space for people to open up.
Bring in people who can facilitate this type of environment and learn from them. It is not incumbent on individual educators to create all learning content and deliver that to students.
Be humble! Learning from others is key. Degrees can be designed so that students can frequently hear and learn about different perspectives and develop the ability to speak with economists, social scientists, scientists, humanities experts, ecologists, and those with expertise gained through lived experience. Be willing to learn from others and acknowledge that it’s okay they don’t have all the answers either. In our experience, students usually respect this attitude of humility.
It can be helpful to work with those with experience. Recognise who is leading changes and creating ways for educators to feel safe in leading and making change. Sometimes all it takes is the offer of a coffee with a colleague to form a connection and get a shared understanding of how to move forward.
Seek (and give) advice and share your experience. Share resources, barriers, insights and position initiatives to support in an organised and collaborative way.
Work in partnership with students. Students also have a critical role to play in this shift, not just because they are increasingly demanding to see more sustainability in the curriculum. For many emerging students, sustainability is the topic of their lifetime. Listen to the perspectives of international students, who can bring more diverse perspectives on global responsibility.
“Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course)
Useful resources to get talking:
There are some excellent resources out there that can help us get started framing and having conversations about sustainability with others:
1. The Talk Climate Changecampaign tracks climate discussions to share messages and inspire others around the world. It provides advice, conversation starters and allows you to add your discussions with family, friends, and communities about sustainability to their interactive map and explore conversations submitted by others.
2. Listen to podcasts such as the Liberating Sustainabilitypodcast by Students Organising for Sustainability UK (SOSUK) who bring together leaders from student liberation movements and academia to deconstruct the exclusivity of sustainability activism and education, orAn Idiot’s Guide to Saving the World which dives into each of the Sustainable Development Goals and focuses in on ‘who is affected?’, ‘What are solutions on a global scale?’, and ‘what can I as an individual do?’.
3. Watch the presentation on ‘Imagining 2050’ from James Norman, a current educator (who will be 72 years old in 2050) and Cleo Parker, an engineering student (who will be 49 in 2050) during the Institution of Structural Engineers Annual Academics Conference 2022. You can also read the main learning points from the conference in this blog post.
4. The World Café methodology is an example of creating a space for collaborative dialogue around questions that matter and sharing insights and lessons learned. You can see an example of this by the UK Green Building Council (UKGBC) who run Collaboration Cafes on Climate Resilience, here.
5. Watch the TED talksplaylists on sustainability covering key questions and visionary ideas on the question of our generation.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Ethical issues: Sustainability; Respect for the environment; Future generations; Societal impact; Corporate Social Responsibility.
Professional situations: EDI; Communication; Conflicts with leadership/management; Quality of work; Personal/professional reputation.
Educational level: Intermediate.
Educational aim: Practising Ethical Analysis: engaging in a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.
Learning and teaching notes:
This case involves an early-career consultant engineer working in the area of sustainable construction. She must negotiate between the values that she, her employer, and her client hold in order to balance sustainability goals and profit. The summary involves analysis of personal values and technical issues, and parts one and two bring in further complications that require the engineer to decide how much to compromise her own values.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
analyse the values that underlie professional and ethical stances;
gain knowledge about mass timber construction and its connection to sustainability goals;
articulate their own position about what they would do in a similar situation;
explore life cycle and Corporate Social Responsibility issues related to construction;
practise different types of professional communication.
Teachers have the opportunity to:
introduce technical content related to structural analysis and/or timber construction;
introduce or reinforce content related to leadership and global responsibility in engineering;
informally evaluate critical thinking and communication skills.
Learners and teachers might benefit from pre-reading the above resources about EDI and enacting global responsibility, as well as introductory material on construction with mass timber such as information from Transforming Timber or the “How to Build a Wood Skyscraper” video.
Summary:
Originally from rural Pakistan, Anika is a construction engineer who has recently finished her postgraduate degree, having been awarded a fully funded scholarship. During her studies, Anika was introduced to innovative projects using mass timber and off-site methods of construction. After completing her studies, she was inspired to start her own consultancy practice in the UK, aiming to promote the use of sustainable materials within the construction industry.
James is the director of a well-established, family-owned architectural firm, originally started by his great-grandfather who was also a prominent societal figure. In the last year, James and his colleagues have sought to develop a sustainability policy for the firm. A key feature of this new policy is a commitment to adopt innovative, sustainable construction solutions wherever possible. James has been contacted by an important client who wants to commission his firm to work on a new residential development.
James first met Anika at university when they were both studying for the same postgraduate degree. Having a high regard for Anika’s capability and professionalism, James contacts Anika to propose working together to develop a proposal for the new residential development.
James hopes that Anika’s involvement will persuade the client to select construction solutions that are aligned with the new sustainability policy adopted by his firm. However, the important client has a reputation for prioritising profit over quality, and openly admits to being sceptical about environmental issues.
Anika schedules a meeting with the client to introduce herself and discuss some initial ideas for the project.
Optional STOP for questions and activities:
1. Discussion: Personal values – What are the different personal values for Anika, James, and the client? How might they conflict with each other?
2. Activity: Professional communication – Elevator pitch activity part 1 – Working in groups of 2-3 and looking at the three different stakeholders’ personal values, each group will create a persuasive pitch of 1 minute used by Anika to convince the client to focus on sustainability.
3. Activity: Technical Analysis – Assemble a bibliography of relevant projects using mass timber and off-site methods of construction, and identify the weaknesses and strengths of these projects in terms of sustainability and long- and short-term costs and benefits.
4. Activity: Professional communication – Elevator pitch activity part 2 – After conducting your technical analysis, work in groups of 2-3 to revise your elevator pitch and role play the meeting with the client. How should Anika approach the meeting?
Dilemma – Part one:
After the first meeting, the client expresses major concerns about Anika’s vision. Firstly, the client states that the initial costings are too high, resulting in a reduced profit margin for the development. Secondly, the client has serious misgivings about the use of mass timber, citing concerns about fire safety and the durability of the material.
Anika is disheartened at the client’s stance, and is also frustrated by James, who has a tendency to contradict and interrupt her during meetings with the client. Anika is also aware that James has met with the client on various occasions without extending the invitation to her, most notably a drinks and dinner reception at a luxury hotel. However, despite her misgivings, Anika knows that being involved in this project will secure the future of her own fledgling consulting company in the short term – and therefore, reluctantly, suspects she will have to make compromises.
Optional STOP for questions and activities:
1. Discussion: Leadership and Communication – Which global responsibilities does Anika face as an engineer? Are those personal or professional responsibilities, or both? How should Anika balance her ethical duties, both personal and professional, and at the same time reach a decision with the client?
2. Activity: Research – Assemble a bibliography of relevant projects where mass timber has been used. How might you design a study to evaluate its structural and environmental credentials? What additional research needs to be conducted in order for more acceptance of this construction method?
3. Activity: Wider impact – Looking at Anika’s idea of using mass timber and off-site methods of construction, students will work in groups of 3-4 to identify the values categories of the following capital models: Natural, Social, Human, Manufactured and Financial.
4. Activity: Equality, Diversity, and Inclusion – Map and analyse qualities and abilities in connection with women and how these can have a positive and negative impact in the construction industry.
5. Discussion: Leadership and Communication – Which are the competitive advantages of women leading sustainable businesses and organisations? Which coping strategy should Anika use for her working relationship with James?
Dilemma – Part two:
Despite some initial misgivings, the client has commissioned James and Anika to work on the new residential development. Anika has begun researching where to locally source mass timber products. During her research, Anika discovers a new off-site construction company that uses homegrown mass timber. Anika is excited by this discovery as most timber products are imported from abroad, meaning the environmental impact can be mitigated.
Optional STOP for questions and activities:
1. Activity: Environmental footprint – Research the Environmental Product Declaration of different construction materials and whole life carbon assessment.
2. Discussion: Is transportation the only benefit of using local resources? Which other values (Natural, Social, Human, Manufactured and Financial) can be maximised with the use of local resources? How should these values be weighted?
3. Discussion: Professional responsibility – How important is Corporate Social Responsibility (CSR) in Construction? How could the use of local biogenic materials and off-site methods of construction be incorporated into a strategic CSR business plan?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr. Natalie Wint (UCL).
Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.
Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering.
Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment.
Professional situations: Whistleblowing; Company growth; Communication; Public health and safety.
Educational level: Intermediate.
Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others.
Learning and teaching notes:
This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.
This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibilityand environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.
This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise as an engineer versus a business;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches that resolve interpersonal and/or professional conflict;
integrate technical content on materials design and chemistry;
informally evaluate students’ critical thinking and communication skills.
Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.
Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health.
Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products.
Optional STOP for questions and activities:
1. Discussion:Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?
2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.
3. Activity: Technical integration– Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.
4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?
Dilemma – Part two:
Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.
Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.
“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.”
Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.
Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”
Optional STOP for questions and activities:
1. Discussion: Personal values– What competing personal values or motivations might trigger an internal conflict for Alex?
2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case?
3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities.
4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important?
5. Discussion: How do you think the issue of microplastics should be controlled?
6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?
7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex?
8. Activity: Technical integration related to calculations or experiments on microplastics.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Defending a profit-driven business versus a non-profit-driven business.
Author: Dr Sandhya Moise (University of Bath).
Overview:
This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Session structure:
1. As pre-class work, the students can be provided the case study in written format.
2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):
An introduction to Ethics in Engineering
Professional Code of Ethics and their relevance to engineering situations
Refers to strategies that a company develops and executes as part of its corporate governance to ensure the company’s operations are ethical and beneficial for society.
Can be categorised as Environmental, Human rights, Philanthropic and Economic responsibility.
Also benefits the organisation by strengthening their brand image and reputation, thereby increasing sales and customer loyalty, access to funding and reduced regulatory burden.
ESG Mandate Resources:
In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:
In 2006, the ESG mandate was set up by a group of investors to create a more sustainable financial system for companies to operate in, and to use as part of their annual reporting of performance indicators.
In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?
Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.
Background on Maria: CTO; lead inventor; electrical and electronics engineer; lives in the UK; hails from a lower socioeconomic background (UK); dislikes perpetuating economic disparity.
Technology developed: Devices that detect water leaks early, lowering the risk of damage to infrastructure that impacts local communities; also saves corporations millions each year by detecting low-level water loss that currently remains undetected.
Hydrospector’s Business goal: Secure contracts for their new business; find customers.
Group activity 1:
Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.
Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).
Ask the students to consider discussing Maria’s personal values which might be causing the internal conflict.
Should she involve her personal experiences/values in a business decision making process? If Maria was from an affluent area/background, how may this have affected her perspective?
Ask the students to assess how the Professional Bodies’ Codes of Conduct are applicable to this scenario and how would they inform the decision making process.
Ask the students to consider the wider impact of the business decision (beyond the business itself) and if focusing on profit alone is morally inferior to prioritising ESG.
Pros and Cons of each approach:
Group 1: Defend a profit-driven business model:
Advantages and ethical impact:
Will improve the company’s market and profits; quicker adoption of technology which will benefit employees, open up more job opportunities and benefit local society and industries.
Disadvantage and ethical impacts:
Will benefit those in affluent areas without helping those in disadvantaged socioeconomic regions, thereby exacerbating societal inequalities.
Does not align with ESG mandate of operating as a more sustainable business.
Group 2: Defend a non-profit driven business:
Advantages and ethical impact:
Aligns strongly with Maria’s personal values, so could potentially affect her future loyalty and performance within the company.
Abides by Professional Bodies Codes of Conduct.
Disadvantage and ethical impacts:
Maria’s personal values, without sufficient evidence to show that they will also improve the business, might cause conflict later regarding her leadership approach. Would she have behaved differently had she been from an affluent background and unaware of the impact of societal inequalities?
Could lead to failure of the company due to reduced profits, and lack of adoption of technology, which in turn will affect the organisation’s employees.
Relevant ethical codes of conduct examples:
Royal Academy’s Statement of Ethical Principles:
“Engineering professionals work to enhance the wellbeing of society.”
“Leadership and communication: Engineering professionals have a duty to abide by and promote equality, diversity and inclusion.”
Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.
Discussion and summary:
This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.
If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.
However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.
If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.