Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Research, Collaborating with industry for teaching and learning, Graduate employability and recruitment

Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)

Keywords: Transformational Change, Industry-Education Partnerships, Educational Research, Scholarship

Abstract: The ‘Transforming Tomorrow’ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to ‘hit the ground running’ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.

 

Introduction

WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Department’s experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.

The ‘Transforming Tomorrow’ Project is about taking a holistic view of the Department’s educational provision in order to understand the effectiveness of the provision from students’ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we  better meet the needs of industry. This paper reports the first part of the Project.

Context

For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and  online learning; five key themes were identified:

  1. The need to adopt  a design approach to curriculum development
  2. The quality of the student experience
  3.  Student engagement
  4. The challenges and benefits of blended learning
  5. Student and academic perceptions of online learning

Each of these themes have in common the fact that the virtual learning approaches analysed and  discussed were developed over a significant period of time.   

Method and Findings

A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on students’ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown. 

The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least,  engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.

 

Figure 1: First Year Engineering Students’ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)

 

In looking at the above table one thing that immediately drew colleagues’ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested  a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.

For the academic staff, a survey conducted at the same time sought to determine colleagues’ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questions…

 

 

 

This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future).  With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.

Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st Century Industry

Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.

The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics:  

1. Teaching to Meet the Challenges of Industry

2. Student-Centred Active Learning

3. Growing independent learners

4. Levelling the Playing Field

5. Re-Designing what we do

6. Engineering  an environment for learning

Conclusion

In conclusion, society is entering what has been termed ‘the new normal’; for WMG, there is nothing ‘normal’ about what we do. We are entering a ‘Transformational Time’; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt  the ‘new normal’. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge. 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange, Research, Graduate employability and recruitment

Authors: Steve Jones (Siemens), Associate Prof David Hughes (Teesside University), Prof Ion Sucala (University of Exeter), Dr Aris Alexoulis (Manchester Metropolitan University) and Dr Martino Luis (University of Exeter)

Keywords: Digitalisation, Partnership, Collaboration, Network

Abstract: Siemens have worked together with university academics from 10 institutions to develop and implement holistic digitalisation training and resources titled the “Connected Curriculum”. The collaboration has proved hugely successful for teaching, research and knowledge transfer. This model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners.

 

Collaboration between academic institutions and industry is a core tenet of all Engineering degrees; however its practical realisation is often complex. Academic institutions employ a range of strategies to improve and embed their relationships with industry. These approaches are often institution specific and do not translate well across disciplines. This leaves industries with multiple academic partnerships, all operating differently and a constant task of managing expectations on both sides. The difference about Siemens Connected Curriculum is that it is an industry-led engagement which directly seeks to address and resource these challenges.

In 2019 Siemens developed the “Connected Curriculum”, a suite of resources (see fig1) to support and enable academic delivery around the topic of ‘Industry 4’. A novel multi-partner network was formed between Siemens, Festo Didactic and universities to develop and deliver the curriculum using real industrial hardware and software. Siemens is uniquely positioned to support on Industry 4 because it is one of the few companies that has a product portfolio that spans the relevant industrial hardware and software. As a result, Siemens is more able to bring together the cyber-physical solutions that sit at the heart of Industry 4.

 

 

 

Figure 1 – Core resources of Siemens Connected Curriculum

Connected Curriculum Aims

The scheme set out with a number of designed aims for the benefit of both Siemens and the partner universities.

Connected Curriculum Implementation

In 2019, four universities agreed with Siemens to create a pilot programme with a common vision for where Siemens could add value, how the university partners could collaborate, and how the network could scale. The initial pilot programme included Manchester Metropolitan University (MMU), The University of Sheffield (UoS), Middlesex University (Mdx), and Liverpool John Moores University (LJMU). Since the success of its pilot programme, as of Jan 2022 Connected Curriculum now has ten UK university partners with the addition of Teesside University, Coventry University, Exeter University, Salford University, Sheffield Hallam University and The University West of England. The consortium continues to grow and is now expanding internationally. The university academics and the Connected Curriculum team at Siemens have worked together to develop holistic digitalisation training and resources.

Siemens developed a specific team to resource Connected Curriculum, which now includes a full-time Connected Curriculum lead and two Engineering support staff. In addition to the direct team, the initiative also relies on input from a range of experts across the multiple Siemens business units.

The collaboration between multiple institutions and Siemens has proved hugely successful for teaching, research and knowledge transfer. We feel this model and collaboration is an excellent example of industry informed curriculum development and the translational benefits this can bring for all partners. Evidential outcomes of these benefits are demonstrated through the following examples.

Multi-disciplinary delivery

In 2020 Teesside University’s School of Computing, Engineering and Digital Technologies completed a module review including the embedding of digitalisation, resourced through Connected Curriculum, across its Engineering degrees. A discipline specific, scaffolded approach was developed, enabling students to build on previous learning. This includes starting at a component level and building towards fully integrated cyber-physical systems and plants. Connected Curriculum resources are used to inform and resource new modules including Robotics Design and Control and Process Automation. Due to the inherent need for multi-disciplinary working on digitalisation projects many of these have been structured as shared modules. As Siemens work across such a broad range of industries we are able to embed case studies and tasks which are relevant and foster collaborative working. The need for these digital skills and collaborative approaches has been highlighted by a number of studies including the joint 2021 IMechE/IET survey report: The future manufacturing engineer – ready to embrace major change?

Impact on Industry

In May 2021, Exeter’s Engineering Management group and a manufacturer of electric motors, generators, power electronics, and control systems (located in Devon, UK) collaborated to create digital twins for the assembly line of the Internal Permanent Magnet Motor.  With the support from Siemens, we implemented Siemens Tecnomatix Plant Simulation to develop the models. The aim was to optimise assembly line performance of producing the Internal Permanent Magnet Motor such as cycle time, resource utilisation, idle time, throughput and efficiency. What-if scenarios (e.g. machine failure, various material handling modes, absenteeism, bottlenecks, demand uncertainty and re-layout workstations) were performed to build resilient, productive and sustainable assembly lines. Two MSc students were closely involved in this collaborative project to carry out the modelling and the experiments.  Our learners have experienced hands-on engineering practice and action-oriented learning to implement Siemens plant simulation in industry.

Industrially resourced project-based learning

In 2020 Siemens was involved in the Ventilator Challenge UK (VCUK) consortium that was formed in response to the COVID-19 pandemic. VCUK was tasked with ramping up production of ventilators from 10/week to 1500/week to produce a total of 13500 in just 12 weeks. Inspired by this very successful project, academics at MMU approached the Connected Curriculum team asking if the project could be replicated with a multidisciplinary group of 2nd year Engineering students. MMU Academics and Engineers from Siemens codeveloped a project pack using an open-source ventilator design from Medtronic. The students were tasked with designing a manufacturing process that would produce 10000 ventilators in 12 weeks. The students had 6 weeks to learn how to use the industry standard tools required for plant simulation (Siemens Tecnomatix) and to carry out the project successfully. The project attracted media attention and was featured in articles 1 and 2.

Keys to Success

So, what made the Connected Curriculum so successful? Digitalisation is clearly a current trend and so timing has played an important role. One of the most significant reasons is that Siemens not only led the scheme but resourced it. This has been key to supporting the rapidly growing need for relevant academic expertise. The on-going support from Siemens is also key for issue resolution and to support implementation for universities in adopting new curriculum. Engaging academic partners early in the process was key to ensuring the content was relevant and appropriately pitched.

Siemens breadth and depth of technological expertise across numerous technologies has been a key factor in the success of this initiative. Combined with its global engineering community, this has facilitated a rich integrated curriculum approach which covers a range of aligned technologies. Drawing on internal experts across its global community has allowed the initiative to benefit from a wealth of existing knowledge and resources. Having reached critical mass the initiative is now financially self-sustaining. Without reaching this milestone continued engagement would have been impossible.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

In September 2015 the first university-business co-developed Degree Apprenticeship programmes were launched – having been designed and eligible for funding under the government’s new model for apprenticeship training (Apprenticeship Standards), and expected to be resourced via the so called “apprenticeship Levy”.

Whilst still at a relatively small scale and early stage, as at March 2016, Apprenticeship Standards are ‘ready for delivery’ at the Degree Apprenticeship level in three discipline areas – two of which are engineering-related.  A further seven are awaiting approval, five of which are engineering-related.

Some toolkit content is available to members only. For best results, make sure you’re logged in.

Contents:

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

In Northern Ireland, the term “Higher level apprenticeships (HLAS)” covers what are known in England as Degree Apprenticeships and offer on-the-job training and off-the-job learning at higher levels, including Foundation Degrees (level 5), Honours Degrees (Level 6), and post-graduate awards (Level 7-8).  NB they include Level 8 (PhD) which they explicitly do not in England.

Pilot activity is currently underway with 50 employers in the following priority sectors:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

The different higher education fee levels in Wales make the situation somewhat different to England.

It appears that apprenticeships are not funded for Wales and the only relevance thus appears to be for Welsh students pursuing an apprenticeship in England.

Read more: https://www.gov.wales/apprenticeships

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

In Scotland, Degree Apprenticeships are part of the Modern Apprenticeship framework and are known as Graduate Level Apprenticeships.

More information: https://www.skillsdevelopmentscotland.co.uk/what-we-do/our-products/graduate-level-apprenticeships/

They will be available from 2016 and will focus initially on ICT/Digital, Civil Engineering and Engineering.

Contact for further information: https://www.skillsdevelopmentscotland.co.uk/contact-us

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a list of FAQs regarding degree and higher apprenticeships.

One of the key recent changes in the apprenticeships landscape has been the announcement by government of a new ‘apprenticeships Levy’ which all employers (with a pay bill above £3m PA) will be required to pay.  Current plans are that from April 2017  employers will pay an apprenticeships levy of 0.5% of pay bill (less£10,000) to be held in a dedicated training account for them to use to offset against the costs of providing apprenticeship training ( excluding  apprentice salaries)

Although only a relatively small proportion of businesses will be required pay this levy, given their scale and the number of employees and trainees involved – these larger employers are likely to be the most important organisations with whom an HEI is likely to need to engage with when considering developing or delivering higher and/or degree apprenticeship training.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a list of FAQs regarding degree and higher apprenticeships.

The main difference for HE providers is that funding for apprenticeships in England is managed by the Skills Funding Agency rather than HEFCE – with very different processes and requirements

There is also an HE specific funding guide [Apprenticeship funding and performance-management rules for training providers, May 2017 to March 2018] available at

Crucially, it is an expectation of any Apprenticeship that the employer rather than Apprentice/Student pays any costs.  Universities cannot charge student fees for Apprenticeship provision, and these programmes are ineligible for Student Loan support

The funding for apprenticeships has two main components – A contribution from Government and an employer contribution (of at least 1/3rd of total cost).  Going forwards, the employer contribution may be drawn from a mandatory employer apprenticeship levy described subsequently.

Additionally, the Government has provided (via HEFCE) funding for the development of the educational components of new degree apprenticeships by HE providers.   An initial tranche of £8M was announced for 2016-17 with further funding likely to be available for future years.

Part of the process for approval of an apprenticeship under the new standards is that the government (via SFA) agrees the maximum rate which it is prepared to contribute to delivery. This is done by allocating the apprenticeship to a series of funding bands which set a cap on the total amount of funding that can be claimed ( via Government and/or employer Levy pot).  This covers the full costs of delivering the apprenticeship training and NOT just any educational qualification component. These currently range from £3000 to a maximum of £27,000 of which the maximum government contribution is 2/3rds of the costs

There is nothing in principle to stop an HEI charging an employer a higher level of fee than that agreed in the Apprentice Standard – but the full additional cost would then be borne by the employer.    In practise, this is becoming a cost competitive market and employers are increasingly shopping around to find the best deal they can get – in contracting with education providers to deliver the education elements of their Apprenticeship Programmes.   The cost cap in the Apprenticeship standard covers the full apprenticeship programme including any training elements delivered by the employer, so employers may have an incentive to drive the rate charged to HE providers to below the maximum allowed level.  It is probable that the FE sector might enter this market at lower rates than universities can offer and the government would welcome a competitive market place of this sort.    The longevity of any contract might therefore be an important consideration when deciding whether to develop degree apprenticeship provision.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a list of FAQs regarding degree and higher apprenticeships.

The terminology around apprenticeships is somewhat complex – due to the wide range of types and levels of training and skills that they encompass, and the changing political landscape in which they sit

The first set of terminology used in apprenticeships relates to level.  Apprenticeships are described in terms of education levels (even where no educational qualification is included!), with apprenticeships currently offered from level 2 (GCSE equivalent) to levels 6 and 7 (degree and master’s degree respectively).  The different levels of apprenticeships are termed ‘intermediate’ apprenticeships at Level 2, ‘Advanced Apprenticeships’ at Level 3, ‘Higher Apprenticeships’ at levels 4 and above, and Degree Apprenticeships in the case of Apprenticeships at levels 6 and 7 which lead to an undergraduate or Master’s degree as part of the apprenticeship training. It should be noted that these ‘degree apprenticeships’ are the only apprenticeships which mandate an educational qualification within them.

Apprenticeships classified as providing training equivalent to Levels 4 and above but which do not lead to a Bachelors or Master’s degree are termed Higher Apprenticeships.  These include apprenticeships with no formal qualifications as well as Apprenticeships leading to qualifications such as HNC, HND and Foundation degree.  Again it is important to note that the educational qualification here is a means to an end (in terms of developing and demonstrating competence some of in the skills required for the apprenticeship) rather than the end in itself

One significant potential source of confusion is that there are still legacy apprenticeships being delivered /offered under the systems that predated the current apprenticeship model.    Particular care is needed to make the distinction between new ‘Apprentice Standards’ and old style ‘Apprentice Frameworks’ which were also known as ‘Modern Apprenticeships’.

The Apprenticeships ‘Frameworks’ and ‘Standards’ are essentially the documents that define the design and content of the two types of apprenticeships developed pre and post 2014 and are significantly different.

Confusingly some of the old framework documents use the term framework and standard interchangeably.   Given that the old style apprenticeships will still be around for some time it is useful to be aware of them, even if only to avoid getting them mixed up with the new style apprenticeships standards and trailblazers which are described in more detail under FAQ’s 5 and 6

These old Apprenticeship Frameworks are currently being phased out (last starters on the old style apprenticeships summer 2017) and superseded by the new ‘Apprenticeship Standards’.  (https://www.gov.uk/government/publications/removal-of-apprenticeship-frameworks ) but will still be in existence with apprentices on them for several years to come. Some useful sources of information on these legacy arrangements can be found at

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website