James, where did your passion for this issue originate and how can the resources available for information literacy be put to use both by faculty and students?
We live in a time marked by an unprecedented deluge of information, where distinguishing reliable and valuable content has become increasingly difficult. My concern was to help engineering educators meet the critical challenge of fostering ethical behaviour in their students in this complex world. Students are in real need of an ethical compass to navigate this information overload, and the digital landscape in particular. They need to acquire what we call ‘information and digital literacy’, specifically, learning how to research, select and critically assess reliable data. This is both a skill and a practice.
For students, how does this skill relate to the engineering workplace?
From observing professional engineers, it’s clear they require comprehensive insights and data to resolve problems, complete projects, and foster innovation. This necessitates extensive research, encompassing case studies, standards, best practices, and examples to validate or refute their strategies. Engineering is a profession deeply rooted in the analysis of failures in order to prevent avoidable mistakes. As a result, critical and unbiased thinking is essential and all the more so in the current state of the information landscape. This is something Knovel specifically strives to improve for the communities we serve.
Knovel – a reference platform I’ve significantly contributed to – was initially built for practising engineers. Our early realisation was that the biggest obstacle for engineers in accessing the best available information wasn’t a lack of resources, but barriers such as insufficient digitalisation, technological hurdles, and ambiguous usage rights. Nowadays, the challenge has evolved: there’s an overload of online information, emerging yet unreliable sources like certain chatbots, and a persistently fragmented information landscape.
How is Knovel used in engineering education? Can you share some insights on how to make the most of it?
Knovel is distinguished by its extensive network of over 165 content partners worldwide, offering a breadth of trusted perspectives to meet the needs of a range of engineering information challenges. It’s an invaluable tool for students, especially those in project-based learning programs during their Undergraduate and Master’s studies. These students are on the cusp of facing real-world engineering challenges, and Knovel exposes them to the information practices of professional engineers.
The platform is adept at introducing students to the research methodologies and information sources that a practising engineer would utilise. It helps them understand how professionals in their field gather insights, evaluate information, and engage in the creative process of problem-solving. While Knovel includes accessible introductory content, it progressively delves into more advanced topics, helping students grasp the complexities of decision-making in engineering. This approach makes Knovel an ideal companion for students transitioning from academic study to professional engineering practice.
How is the tool used by educators?
For educators, the tool offers support starting in the foundational years of teaching, covering all aspects of project-based learning and beyond. It is also an efficient way for faculty to remain up-to-date with the latest information and data on key issues. Ultimately, it is educators who have the challenge of guiding students towards reputable, suitable, traceable information. In doing so, educators are helping students to understand that where they gather information, and how they use it, is in itself an ethical issue.
Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.
46% of EPC members already have access to Knovel. To brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com.
Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel
Get Knovel to accelerate R&D, validate designs and prepare technical professionals. Innovate in record time with multidisciplinary knowledge you can trust: Knovel: Engineering innovation in record time
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords:Information literacy; digital literacy; misleading information; source and data reliability; ethical behaviour; sustainability.
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate technical information literacy into the engineering and design curriculum or module design. It will also help to provide students, particularly those embarking on Bachelor’s or Master’s research projects, with the integrated skill sets that employers are looking for, in particular, the ability to critically evaluate information.
Introduction:
In an era dominated by digital information, engineering educators face the critical challenge of preparing students not just in technical skills, but in navigating the complex digital landscape with an ethical compass. This article explores how integrating information and digital literacy into engineering education is not only essential for fostering ethical behaviour but also crucial for ensuring sustainability in engineering practices.
The intertwined nature of information and digital literacy in engineering is undeniable. Engineering practitioners need to be able to select and critically assess the reliability of the information sources they use to ensure they comply with ethical practice. The Engineering Council and Royal Academy of Engineering’s Joint Statement of Ethical Principles underscores the need for accuracy and rigour, a core component of these literacies. Faculty members play a pivotal role in cultivating these skills, empowering students and practitioners to responsibly source and utilise information.
The challenge of information overload:
One of the challenges facing trained engineers, engineering faculty and students alike is that of accessing, critically evaluating, and using accurate and reliable information.
A professional engineer needs to gather insights and information to solve problems, deliver projects, and drive innovation. This involves undertaking as much research as possible: looking at case-studies, standards, best practices, and examples that will support or disprove what they think is the best approach. In a profession where the analysis of failures is a core competence, critical, dispassionate thinking is vital. In fact, to be digitally literate, an ethically responsible engineer must know how to access, evaluate, utilise, manage, analyse, create, and interact using digital resources (Martin, 2008).
Students, while adept at online searching, often struggle with assessing the credibility of sources, particularly information gleaned on social media, especially in their early academic years. This scenario necessitates faculty guidance in discerning reputable and ethical information sources, thereby embedding an ethical approach to information use early in their professional development.
Accuracy and rigour:
Acquisition of ‘information literacy’ contributes to compliance with the Statement of Ethical Principles in several ways. It promotes the ‘accuracy and rigour’ essential to engineering. It guarantees the basis and scope of engineering expertise and reliability so that engineers effectively contribute to the well-being of society and its safety and understand the limits of their expertise. It also contributes to promoting ‘respect for the environment and public good’, not just by ensuring safety in design, drawing up safety standards and complying with them, but also by integrating the concept of social responsibility and sustainability into all projects and work practices. In addition, developing students’ capacity to analyse and assess the accuracy and reliability of environmental data enables them to recognise and avoid ‘green-washing’, a growing concern for many of them.
Employability:
In the workplace, the ability to efficiently seek out relevant information is invaluable. In a project-based, problem-solving learning environment students are often confronted with the dilemma of how to refine their search to look for the right level of information from the very beginning of an experiment or research project. By acquiring this ‘information literacy’ competence early on in their studies they find themselves equipped with skills that are ‘workplace-ready’. For employers this represents a valuable competence and for students it constitutes an asset for their future employability.
Tapping into specialised platforms:
In 2006 the then-CEO of Google, Eric Schmidt famously said “Google is not a truth machine”, and the recent wave of AI-powered chatbots all come with a stark disclaimer that they “may display incorrect or harmful information”, and “can make mistakes. Consider checking important information.” Confronted with information overload and the difficulty of sifting through non-specialised and potentially unreliable material provided by major search engines, students and educators need to be aware of the wealth of reliable resources available on specialised platforms. For example, Elsevier’s engineering-focused, purpose-built platform, Knovel, offers trustworthy, curated engineering content from a large variety of providers. By giving students access to the same engineering resources and tools as professionals in the field it enables them to incorporate technical information into their work and provides them with early exposure to the industry standard. For educators, it offers support for the foundational years of teaching, covering all aspects of problem-based learning and beyond. It is also an efficient way of remaining up-to-date with the latest information and data on key issues. The extensive range of information and data available equips students and engineers with the ability to form well-rounded, critical perspectives on the various interests and power dynamics that play a role in the technical engineering challenges they endeavour to address.
Conclusion:
By embedding information and digital literacy into the fabric of engineering education (such as by using this case study), we not only promote ethical behaviour but also prepare students for the challenges of modern engineering practice. These skills are fundamental to the ethical and sustainable advancement of the engineering profession.
Knovel for Higher Education is an Elsevier product. As a publisher-neutral platform, Knovel helps engineering students explore foundational literature with interactive tools and data.
46% of EPC members already have access to Knovel. If you don’t currently have access but would like to try Knovel in your teaching or to brainstorm how you can make the best use of Knovel in your classroom, please contact: Susan Watson, susan.watson@elsevier.com. Check out this useful blog post from James Harper on exactly that topic here.
Faculty and students can check their access to Knovel using their university email address at the following link: Account Verification – Knovel
References:
Martin, A. (2008). Digital Literacy and the “Digital Society”. In C. Lankshear, & M. Knobel (Eds.), Digital Literacies: Concepts, Policies, and Practices (pp. 151-176). New York: Peter Lang.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Prompts to facilitate discussion activities.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Case Summary – Discussion prompts:
1. Professional Contexts. The question listed in the case study is meant to elicit students’ consideration of working as an engineer in a professional culture different from the one they are familiar with. To answer this question, educators could have students reflect quietly and make notes for a few minutes, or discuss with a partner before sharing with the class. If students are hesitant to engage in questions of cultural differences, they could be prompted to examine why they have that discomfort. Educators might also want to prepare for conversations like this by reviewing the guidance article Tackling tough topics in discussion.
2. Meeting Preparation. The question listed in the case study focuses on the choices that engineers make when presenting data; that is, should they show managers a complete or incomplete picture of the situation in question? What implications does that have in terms of managers’ ability to make decisions? The question also is meant to help students consider aspects of professional communication. Students could be tasked with actually doing a version of the meeting preparation as pairs in the classroom, or they could do this as a reflective exercise as well.
Dilemma – Part one – Discussion prompts:
1. Personal and Professional Responsibility. Here, students are being asked to explore their own personal responses to the informal housing situation outside the factory and interrogate whether or not that response could or should affect their professional actions. The question also investigates the scope of professional responsibility, and at what point an engineer has fulfilled this or fallen short. To engage students in this discussion, educators could split the class in half, with half the room discussing the position that Yasin does NOT have a responsibility, and why; and the other half discussing the position that Yasin DOES have a responsibility and why. Alternatively, students could be asked to write down their own answer to this question along with reasoning why or why not, and then the educator could ask volunteers to share responses in order to open up the discussion.
2. Economic Contexts. Students can use this question to expand on question 1 of this section, and in fact they may already have drawn cost into their reasoning. One way to open up this discussion is to think of the broader costs, meaning: is there a social or environmental cost that the company externalises through its polluting activities? Another way into the question is to go back to the question of responsibility, because engineers are routinely responsible for making budgets and judgements related to costs. Through this financial activity, are they able to advocate for more ethical practices, and should they?
Dilemma – Part two – Discussion prompts
1. Job Offer. This question is meant to point to the issue of bribery, and have students wrestle with the situations presented in the case. Educators could have students review various definitions of bribery, including the one in the RAEng’s Statement of Ethical Principles. They could compare this with the Engineering Council of India’s Code of Ethics. What do these two codes say about Yasin’s case? If they don’t give clear guidance, what should Yasin do? Students could discuss why or why not they think this is bribery in small or large groups, and could debate what Yasin’s action should be and why.
2. External Reporting. This question addresses whistleblowing, and what responsibilities engineers have for reporting unethical actions to professional or legal entities. Students could be asked individually to answer the question and give reasons why, based on the codes of ethics relevant to the case. They could also answer the question based on their own personal values. Then they could discuss their responses in small groups and interrogate whether or not the codes conflict with their values. Educators could at this point raise the question of whether or not there may be different cultural expectations in this area that Yasin might have to navigate, and if so, if this should make any difference to the action he should take. Students could also be asked to chart out the personal and professional repercussions Yasin could experience for either action. This discussion could be good preparation for activity #5, the debate.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Prompts to facilitate discussion activities.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. The discussion prompts for Dilemma Part three are already well developed in the case study, so this enhancement focuses on expanding the prompts in Parts one and two.
Dilemma Part one – Discussion prompts:
1. Legal Issues. Give students ten minutes to individually or in groups do some online research on GDPR and the Data Protection Act (2018). In either small groups or as a large class, discuss the following prompts. You can explain that even if a person is not an expert in the law, it is important to try to understand the legal context. Indeed, an engineer is likely to have to interpret law and policy in their work. These questions invite critical thinking and informed consideration, but they do not necessarily have “right” answers and are suggestions that can help get a conversation started.
a. Are legal policies clear about how images of living persons should be managed when they are collected by technology of this kind?
b. What aspects of these laws might an engineer designing or deploying this system need to be aware of?
c. Do you think these laws are relevant when almost everyone walking around has a digital camera connected to the internet?
d. How could engineers help address legal or policy gaps through design choices?
2. Sharing Data. Before entering into a verbal discussion, either pass out the suggested questions listed in the case study on a worksheet or project on a screen. Have students spend five or ten minutes jotting down their personal responses. To understand the complexity of the issue, students could even create a quick mind map to show how different entities (police, security company, university, research group, etc.) interact on this issue. After the students spend some time in this personal reflection, educators could ask them to pair/share—turn to the person next to them and share what they wrote down. After about five minutes of this, each pair could amalgamate with another pair, with the educator giving them the prompt to report back to the full class on where they agree or disagree about the issues and why.
3. GDPR Consent. Before discussing this case particularly, ask students to describe a situation in which they had to give GDPR consent. Did they understand what they were doing, what the implications of consent are, and why? How did they feel about the process? Do they think it’s an appropriate system? This could be done as a large group, small group, or through individual reflection. Then turn the attention to this case and describe the change of perspective required here. Now instead of being the person who is asked for consent, you are the person requiring consent. Engineers are not lawyers, but engineers often are responsible for delivering legally compliant systems. If you were the engineer in charge in this case, what steps might you take to ensure consent is handled appropriately? This question could be answered in small groups, and then each group could report back to the larger class and a discussion could follow the report-backs.
4. Institutional Complexity. The questions listed in the case study relate to the fact that the building in which the facial recognition system will be used accommodates many different stakeholders. To help students with these questions, educators could divide the class into small groups, with each group representing one of the institutions or stakeholder groups (college, hospital, MTU, students, patients, public, etc.). Have each group investigate whether regulations related to captured images are different for their stakeholders, and debate if they should be different. What considerations will the engineer in the case have to account for related to that group? The findings can then be discussed as a large class.
Dilemma Part two – Discussion prompts:
The following questions relate to macroethical concerns, which means that the focus is on wider ethical contexts such as fairness, equality, responsibility, and implications.
1. Benefits and Burdens. To prepare to discuss the questions listed in the case study, students could make a chart of potential harms and potential benefits of the facial recognition system. They could do this individually, in pairs or small groups, or as a large class. Educators should encourage them to think deeply and broadly on this topic, and not just focus on the immediate, short-term implications. Once this chart is made, the questions listed in the case study could be discussed as a group, and students asked to weigh up these burdens and benefits. How did they make the choices as to when a burden should outweigh a benefit or vice versa?
2. Equality and Utility. To address the questions listed in the case study, students could do some preliminary individual or small group research on the accuracy of facial recognition systems for various population groups. The questions could then be discussed in pairs, small groups, or as a large class.
3. Engineer Responsibility. Engineers are experts that have much more specific technical knowledge and understanding than the general public. Indeed, the vast majority of people have no idea how a facial recognition system works and what the legal requirements are related to it, even if they are asked to give their consent. Does an engineer therefore have more of a responsibility to make people aware and reassure them? Or is an engineer just fulfilling their duty by doing what their boss says and making the system work? What could be problematic about taking either of those approaches?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Defending a profit-driven business versus a non-profit-driven business.
Author: Dr Sandhya Moise (University of Bath).
Overview:
This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Session structure:
1. As pre-class work, the students can be provided the case study in written format.
2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):
An introduction to Ethics in Engineering
Professional Code of Ethics and their relevance to engineering situations
Refers to strategies that a company develops and executes as part of its corporate governance to ensure the company’s operations are ethical and beneficial for society.
Can be categorised as Environmental, Human rights, Philanthropic and Economic responsibility.
Also benefits the organisation by strengthening their brand image and reputation, thereby increasing sales and customer loyalty, access to funding and reduced regulatory burden.
ESG Mandate Resources:
In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:
In 2006, the ESG mandate was set up by a group of investors to create a more sustainable financial system for companies to operate in, and to use as part of their annual reporting of performance indicators.
In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?
Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.
Background on Maria: CTO; lead inventor; electrical and electronics engineer; lives in the UK; hails from a lower socioeconomic background (UK); dislikes perpetuating economic disparity.
Technology developed: Devices that detect water leaks early, lowering the risk of damage to infrastructure that impacts local communities; also saves corporations millions each year by detecting low-level water loss that currently remains undetected.
Hydrospector’s Business goal: Secure contracts for their new business; find customers.
Group activity 1:
Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.
Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).
Ask the students to consider discussing Maria’s personal values which might be causing the internal conflict.
Should she involve her personal experiences/values in a business decision making process? If Maria was from an affluent area/background, how may this have affected her perspective?
Ask the students to assess how the Professional Bodies’ Codes of Conduct are applicable to this scenario and how would they inform the decision making process.
Ask the students to consider the wider impact of the business decision (beyond the business itself) and if focusing on profit alone is morally inferior to prioritising ESG.
Pros and Cons of each approach:
Group 1: Defend a profit-driven business model:
Advantages and ethical impact:
Will improve the company’s market and profits; quicker adoption of technology which will benefit employees, open up more job opportunities and benefit local society and industries.
Disadvantage and ethical impacts:
Will benefit those in affluent areas without helping those in disadvantaged socioeconomic regions, thereby exacerbating societal inequalities.
Does not align with ESG mandate of operating as a more sustainable business.
Group 2: Defend a non-profit driven business:
Advantages and ethical impact:
Aligns strongly with Maria’s personal values, so could potentially affect her future loyalty and performance within the company.
Abides by Professional Bodies Codes of Conduct.
Disadvantage and ethical impacts:
Maria’s personal values, without sufficient evidence to show that they will also improve the business, might cause conflict later regarding her leadership approach. Would she have behaved differently had she been from an affluent background and unaware of the impact of societal inequalities?
Could lead to failure of the company due to reduced profits, and lack of adoption of technology, which in turn will affect the organisation’s employees.
Relevant ethical codes of conduct examples:
Royal Academy’s Statement of Ethical Principles:
“Engineering professionals work to enhance the wellbeing of society.”
“Leadership and communication: Engineering professionals have a duty to abide by and promote equality, diversity and inclusion.”
Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.
Discussion and summary:
This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.
If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.
However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.
If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Technical integration – Practical investigation of electrical energy.
Author: Mr Neil Rogers (Independent Scholar).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 1 section of the case: “Technical integration – Undertake an electrical engineering technical activity related to smart meters and the data that they collect.”
This activity involves practical tasks requiring the learner to measure parameters to enable electrical energy to be calculated in two different scenarios and then relate this to domestic energy consumption. This activity will give technical context to this case study as well as partly address two AHEP themes:
AHEP: SM1m – A comprehensive knowledge and understanding of scientific principles and methodology necessary to underpin their education in their engineering discipline, and an understanding and know-how of the scientific principles of related disciplines, to enable appreciation of the scientific and engineering context, and to support their understanding of relevant historical, current and future developments and technologies.
AHEP: EA1m – Understanding of engineering principles and the ability to apply them to undertake critical analysis of key engineering processes.
This activity is in three parts. To fully grasp the concept of electrical energy and truly contextualise what could be a remote and abstract concept to the learner, it is expected that all three parts should be completed (even though slight modifications to the equipment list are acceptable).
Learners are required to have basic (level 2) science knowledge as well as familiarity with the Multimeters and Power Supplies of the institution.
Learners have the opportunity to:
solve given technical tasks relating to the operation of electronic circuits (AHEP: SM1m);
assess the performance of a given electronic circuit (AHEP: EA1m).
Teachers have the opportunity to:
introduce concepts related to electrical circuit theory;
develop learners’ practical abilities and confidence in the use of electronic equipment;
develop learners’ mathematical skills in a practical context.
Suggested pre-reading:
To prepare for these practical activities, teachers may want to explain, or assign students to pre-read articles relating to electrical circuit theory with respect to:
Voltage and Current Power
Energy
Learning and teaching resources:
Bench Power Supply Unit (PSU) & multimeters;
High intensity LEDs and incandescent lamps (and associated data-sheets);
Energy monitor/plug in Power Meter (240V) and stopwatch;
Access to a kettle, fan heater and dishwasher or washing machine.
Activity: Practical investigation of electrical energy:
Task A: Comparing the energy consumed by incandescent bulbs with LEDs.
1. Power in a circuit.
By connecting the bulbs and LEDs in turn to the PSU with a meter in series:
a. Compare the wattage of the two devices.
b. On interpretation of their data sheets compare their luminous intensities.
c. Equate the quantity of each device to achieve a similar luminous intensity of approximately 600 Lumens (a typical household bulb equivalent).
d. now equate the wattages required to achieve this luminous intensity for the two devices.
2. Energy = Power x Time.
The units used by the energy providers are kWh:
a. Assuming the devices are on for 6 hours/day and 365 days/year, calculate the energy consumption in kWh for the two devices.
b. Now calculate the comparative annual cost assuming 1 kWh = 27p ! (update rate).
3. Wider implications.
a. Are there any cost-benefit considerations not covered?
b. How might your findings affect consumer behaviour in ways that could either negatively or positively impact sustainability?
c. Are there any ethical factors to be considered when choosing LED lightbulbs? For instance, you might investigate minerals and materials used for manufacturing and processing and how they are extracted, or end-of-life disposal issues, or fairness of costs (both relating to production and use).
Task B: Using a plug-in power meter.
1. Connect the power meter to a dishwasher or washing machine and run a short 15/30 minute cycle and record the energy used in kWh.
2. Connect the power meter to a ½ filled kettle and turn on, noting the instantaneous power (in watts) and the time taken. Then calculate the energy used and compare to the power meter.
3. Connect the power meter to the fan heater and measure the instantaneous power. Now calculate the daily energy consumption in kWh for a fan heater on for 6 hours/day.
4. Appreciation of consumption of electrical energy over a 24 hour period (in kWh) is key. What are the dangers in reading instantaneous energy readings from a smart meter?
Task C: Calculation of typical domestic electrical energy consumption.
1. Using the list of items in Appendix A, calculate the typical electrical energy usage/day for a typical household.
2. Now compare the electrical energy costs per day and per year for these three suppliers, considering how suppliers source their energy (i.e. renewable vs fossil fuels vs nuclear etc).
Standing charge cost / day
Cost per kWh
Cost / day
Cost / year
A)
48p
28p
B)
45p
31p
C)
51p
27p
3. Does it matter that data is collected every 30 minutes by your energy supplier? What implications might changing the collection times have?
4. With reference to Sam growing marijuana in the case, how do you think this will show up in his energy bill?
Appendix A: Household electrical devices power consumption:
Typical power consumption of electrical devices on standby (in Watts).
Wi-Fi router
10
TV & set top box
20
Radios & alarms
10
Dishwasher
5
Washing machine
5
Cooker & heat-ring controls
10
Gaming devices
10
Laptops x2
10
Typical consumption of electrical devices when active (in Watts) and assuming Gas central heating.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Chike Oduoza (University of Wolverhampton); Emma Crichton (Engineering Without Borders UK); Professor Mike Sutcliffe (TEDI-London); Dr Sarah Junaid (Aston University); Isobel Grimley (Engineering Professors’ Council).
Topic: Monitoring and resolving industrial pollution.
Engineering disciplines: Chemical engineering; Civil engineering; Manufacturing; Mechanical engineering.
Ethical issues: Environment, Health, Public good.
Professional situations: Bribery, Whistleblowing, Corporate social responsibility, Cultural competency.
Educational level: Advanced.
Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action.
Learning and teaching notes:
This case requires an engineer to balance multiple competing factors including: economic pressure, environmental sustainability, and human health. It introduces the perspective of corporate social responsibility (CSR) as a lens through which to view the dilemma. In this case study, the engineer must also make decisions that will affect their professional success in a new job and country.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
practise preparing for a business presentation;
engage in problem definition in order to elicit ethical components of an issue;
investigate technical components of pipeline design and groundwater pollution;
evaluate CSR motivations and practices;
consider risks and obligations related to whistleblowing.
Teachers have the opportunity to:
highlight professional situations related to working in new countries or companies;
evaluate students’ ability to present and defend technical decisions;
address business approaches to CSR;
integrate technical content on pipelines and flow.
Yasin is a pipeline design engineer who has been employed to manage the wastewater pipeline for MMC Textile Company in Gujarat. The company has a rapidly growing business contributing to one of India’s most important industries for employment and export. Yasin was hired through a remote process during the pandemic – he had never been to the industrial site or met his new colleagues in person until he relocated to the country. For 10 years, Yasin worked for the Water Services Regulation Authority in the UK as a wastewater engineer; this is the first time he has been employed by a private company and worked within the textile industry.
The production of textiles results in highly toxic effluent that must be treated and disposed of. A sludge pipeline takes wastewater away from MMC’s factory site and delivers it to a treatment plant downstream. On arrival at MMC, Yasin undertakes an initial inspection of the industrial site and the pipeline. He conducts some testing and measurements, then reviews the company’s documents and specifications related to the pipeline. This pipeline was built 30 years ago when MMC first began operations. In the last five years, MMC has partnered with a fast fashion chain and invested in advanced production technologies, resulting in a 50% increase in its yearly output. Yasin soon realises that as production has increased, the pipeline sometimes carries nearly double its registered capacity. Yasin was hired because MMC’s managers were aware that the pipeline capacity might be stretched and needed his expertise to develop a solution. However, Yasin suspects they are unaware of the real extent of the problem, and is nervous about how they will react to confirmation of this suspicion. Yasin is due to provide an informal verbal report on his initial inspection to the factory managers. This will be his first official business meeting since arriving in India.
2. Discussion: What preparation does Yasin need to make for this informal meeting? What data or evidence should he present?
3. Activity: Role-play Yasin’s first meeting with the factory managers.
4. Activity: Research the environmental effects of textile production and / or India’s policies on textile waste management.
Dilemma – Part one:
At the meeting, Yasin is tasked with developing a menu of proposals to mitigate the problem. The options he puts forward include retrofitting the original pipeline, replacing it with a new one, eliminating the pipeline entirely and focusing on on-site water treatment technology, as well as other solutions. He is directed to consider the risks and benefits of the alternatives. These include the economic burdens, both the cost of the intervention as well as the decline in production necessitated while the intervention takes place, and the environmental consequences of action or inaction.
During his research, Yasin discovers that informal housing has sprung up in the grey zone between the area’s formal zoned conurbation and the MMC industrial site. This is because there is little local regulation or enforcement as to where people are allowed to erect temporary or permanent dwellings. He estimates that there are several thousand people living in impoverished conditions on the edges of MMC’s property. Indeed, many of the people living in the informal settlement work in the lowest-skilled jobs at the textile factory. The informal settlement is located around a well that Yasin suspects may be polluted by effluent that seeps into the soil and groundwater when the pipeline overflows. He can find no information in company records about data related to this potential pollution.
Optional STOP for questions and activities:
1. Discussion: Does Yasin have a responsibility to do anything about the potential groundwater pollution at the informal settlement?
2. Discussion: Should Yasin advocate for the solution with the lowest cost?
3. Activity: Practise problem definition. What are the parameters and criteria Yasin should use in defining the issues at stake? What elements of the problem is he technically or ethically obligated to resolve? Why?
4. Activity: Create a tether diagram mapping the effects of each potential solution on the company, the local people, and the environment.
5. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering related to groundwater pollution.
Dilemma – Part two:
As Yasin learns more about MMC, he discovers that as the company grew rapidly in the last five years, and has boosted its CSR initiatives, MMC started a programme to hire and upskill local labourers and began a charitable foundation to make donations to local schools and charities. For these activities, MMC has recently received a government commendation for its community commitments. Yasin is concerned about how to make sense of these activities on the one hand, and the potential groundwater contamination on the other. He speaks to his supervisor about MMC’s CSR initiatives and learns that company directors believe that their commendation will pave the way for an even better relationship with the government and perhaps enable a favourable decision on a permit to build another textile factory site nearby. At the end of the conversation, his supervisor indicates that if a new factory is built, it will need a chief site engineer. “That position would be double your current salary,” the supervisor says, “a good job on fixing this pipeline situation would make you look like a very attractive candidate.” Yasin is due to formally present his proposal about the pipeline next week to the factory manager and company directors.
Optional STOP for questions and activities:
1. Discussion: How should Yasin respond to the suggestion of a job offer?
2. Discussion: Should Yasin report any of MMC’s actions or motivations to an external authority?
3. Activity: Research CSR and its ethical dimensions, both in the UK and in India.
4. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering, related to pipeline design and flow rates.
5. Activity: Debate whether or not Yasin should become a whistleblower, either about the groundwater pollution or the job offer.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Nicola Whitehead (University of Wales Trinity Saint David); Professor Sarah Hitt (NMITE); Emma Crichton (Engineers Without Borders UK); Dr Sarah Junaid (Aston University); Professor Mike Sutcliffe (TEDI-London), Isobel Grimley (Engineering Professors’ Council).
Topic: Development and use of a facial recognition system.
Professional situations: Rigour, Informed consent, Misuse of data, Conflicts with leadership / management.
Educational level: Advanced.
Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action.
Learning and teaching notes:
This case involves an engineer hired to manage the development and installation of a facial recognition project at a building used by university students, businesses and the public. It incorporates a variety of components including law and policy, stakeholder and risk analysis, and both macro- and micro-ethical elements. This example is UK-based: however, the instructor can adapt the content to better fit the laws and regulations surrounding facial recognition technology in other countries, if this would be beneficial.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this study to AHEP outcomes specific to a programme under these themes, access AHEP4here and navigate to pages 30-31 and 35-37.
This case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two (focusing on the wider ethical context of the case) and Part three (focusing on the potential actions the engineer could take)develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
apply their ethical judgement to a case study relating to privacy and consent;
judge the societal impact of a technical solution to a complex problem;
make and justify an ethical decision;
analyse risks associated with micro-ethical and macro-ethical concerns;
communicate these risks and judgements to both technical and non-technical audiences.
Teachers have the opportunity to:
highlight a range of ethical considerations within the scope of a complex engineering project;
introduce methods for risk analysis and ethical decision-making;
evaluate critical thinking, argumentation, and communication skills;
Metropolitan Technical University (MTU), based in the UK, has an urban campus and many of its buildings are located in the city centre. A new student housing development in this area will be shared by MTU, a local college, and medical residents doing short rotations at the local hospital. The building has a public café on the ground floor and a couple of classrooms used by the university.
The housing development sits alongside a common route for parades and protests. In the wake of demonstrations by Extinction Rebellion and Black Lives Matter, students have raised concerns to the property manager about safety. Despite an existing system of CCTV cameras and swipe cards, the university decides to install an enhanced security system, built around facial recognition technology that would enable access to the building and cross-reference with crime databases. To comply with GDPR, building residents will be required to give explicit consent before the system is implemented. Visitors without a student ID (such as café customers) will be buzzed in, but their image will be captured and cross-referenced before entry. A side benefit of the system is that MTU’s department of Artificial Intelligence Research will help with the installation and maintenance, as well as studying how it works, in order to make improvements.
Dilemma – Part one:
You are an engineer who has been hired by MTU to take charge of the facial recognition system installation project, including setting policies and getting the system operational. With your background in AI engineering, you are expected to act as a technical advisor to MTU and liaise with the Facilities, Security and Computing departments to ensure a smooth deployment. This is the first time you have worked on a project that involves image capture. So as part of your preparation for the project, you need to do some preliminary research as to what best practices, guidance, and regulations apply.
Optional STOP for questions and activities:
1. Discussion: What are the legal issues relating to image capture? Images allow for the identification of living persons and are therefore considered as personal data under GDPR and theData Protection Act (2018).
2. Discussion: Sharing data is a legally and ethically complex field. Is it appropriate to share images captured with the police? If not the police, then whose crime database will you use? Is it acceptable to share the data with the Artificial Intelligence Research group? Why, or why not?
3. Discussion: Under GDPR, individuals must normally consent to their personal data being processed. How should consent be handled in this case?
4. Discussion: Does the fact that the building will accommodate students from three different institutions (MTU, the local college, and the hospital) complicate these issues? Are regulations related to students’ captured images different than those related to public image capture?
5. Activity: Undertake a technical activity that relates to how facial recognition systems are engineered.
Dilemma – Part two:
The project has kicked off, and one of its deliverables is to establish the policies and safeguards that will govern the system. You convened a meeting of project stakeholders to determine what rules need to be built into the system’s software and presented a list of questions to help you make technical decisions. The questions you asked were:
Should students be able to opt in or out of image capture?
Should visitors be told that their image will be captured?
What happens if a student living in the housing development decides that they no longer wish to take part in the image recognition project?
What you had thought would be a quick meeting to agree basic principles turned out to be very lengthy and complex. You were surprised at the variety of perspectives and how heated the discussions became. The discussions raised some questions in your own mind as to the risks of the facial recognition system.
Optional STOP for questions and activities:
The following activities focus on macro-ethics. This seeks to understand the wider ethical contexts of projects like the facial recognition system.
1. Activity: Stakeholder mapping – Who are all the stakeholders and what might their positions and perspectives be? Is there a difference between the priorities of the different stakeholders?
2. Activity: There are many different values competing for priority here. Identify these values, discuss and debate how they should be weighed in the context of the project.
3. Activity: Risks can be understood as objective and / or subjective. Research the difference between these two types of risk, and identify which type(s) of risks exist related to the project.
4. Discussion: Which groups or individuals are potentially harmed by the technology and which potentially benefit? How should we go about setting priorities when there are competing harms and benefits?
5. Discussion: Does the technology used treat everyone from your stakeholders’ list equally? Should the needs of society as a whole outweigh the needs of the individual?
6. Activity: Make and defend an argument as to the appropriateness of installing and using the system.
7. Discussion: What responsibilities do engineers have in developing these technologies?
Dilemma – Part three:
A few days later, you were forwarded a screenshot of a social media post that heavily criticised the proposed facial recognition system. It was unclear where the post had originated, but it had clearly been shared and promoted among both students and the public raising concerns about privacy and transparency. Your boss believes this outcry endangers the project and has requested that you make a public statement on behalf of MTU, reaffirming its commitment to installing the system.
You share the concerns, but have been employed to complete the project. You understand that suggesting it should be abandoned, would most likely risk your job. What will you tell your boss? How will you prepare your public statement?
Optional STOP for questions and activities:
Micro-ethics concerns individuals and their responses to specific situations. The following steps are intended to help students develop their ability to practise moral analysis by considering the problem in a structured way and work towards possible solutions that they can analyse critically.
1. Discussion: What are the problems here?
You are an employee of MTU and have a responsibility to be a representative for its interests. However, you can see that the university’s actions create significant problems relating to privacy and consent and may be ethically or legally questionable.
2. Discussion: What are the possible courses of action you can take as an employee?
Students can be prompted to consider what different approaches they might adopt, such as the following, but can also develop their own possible responses.
You could take the university line and refuse to consider any compromise. After all, you have a duty of care towards the students.
You could act as a whistleblower and contact the Information Commissioner’s Office,or the press, with the university’s plans.
You could look for changes in the hardware setup for the system. Can the cameras be placed so that they only capture people coming into the building without recording anyone else?
You could look for changes in the software setup for the system. What level of accuracy is needed to declare a match between the image and the reference image before the doors will open?
You could look to make changes in the data management processes. How long will the data be stored? Which database(s) will images be checked against? What are the data security implications of implementing this system?
Are there other alternatives available to you?
3. Discussion: Which is the best approach and why? – Interrogate the pros and cons of each possible course of action including the ethical, practical, cost, local relationship and the reputational damage implications. Students should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options. The students may wish to consider this from other perspectives, such as:
What would the best outcome be if cost was no object?
What course of action would be taken if different perspectives were chosen as the priority. For example, if the personal privacy perspective was the main priority, what action would be taken, compared with action taken if the cost to the university were the main priority?
What are the wider implications of the use of image recognition in public spaces and how can these be mitigated?
Are there any other technologies that would solve the security problem without the ethical implications?
What are the possible solutions open to you?
Are there any short-term solutions versus longer-term solutions?
4. Activity: Public Communication – Students can practise writing a press release, giving an interview, or making a public statement about the case and the decision that they make.
5. Activity: Reflection – Students can reflect on how this case study has enabled them to see the situation from different angles. Has it motivated them to understand the ethical concerns and to come to an acceptable conclusion.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Sarah Junaid (Aston University); Emma Crichton (Engineers Without Borders UK); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Johnny Rich (Engineering Professors’ Council); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).
Topic: Ethical entrepreneurship in engineering industries.
Engineering disciplines: Mechanical engineering, Electrical and electronic engineering, Chemical engineering.
Ethical issues: Justice, Corporate social responsibility, Accountability.
Professional situations: Company growth, Communication, Public health and safety.
Educational level: Beginner to advanced.
Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action.
Learning and teaching notes:
This case involves the CEO of Hydrospector, a newly formed company that makes devices detecting water leaks. The CEO has been working hard to secure contracts for her new business and has a personal dilemma in structuring her business model. She must balance the need to accelerate growth by working with high revenue global corporations, with her desire to bring a positive impact to the communities with greatest need. By working with less wealthy local authorities, the company risks slower business growth.
This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering: corporate responsibility in perpetuating inequity versus closing the inequality gap; and sustainability in terms of the local socioeconomic system.
There is also a clear cultural context in this case study that provides an opportunity to develop cultural awareness when addressing engineering problems. Through this lens, this case can be structured to emphasise the need to engage with local communities and stakeholders – such as a UK company choosing to engage with its local community first. Or it can be framed to emphasise global responsibility whereby the CEO of a UK company chooses to address water shortages in South Africa.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The case study is presented in three parts. Part one introduces the case and discusses personal and corporate ethical dilemmas, with an emphasis on ethical awareness. Pre-reading may be needed on the environmental, social, and governance (ESG) mandate and / or corporate social responsibility (CSR). Part two expands on Part one to bring in the socio-political elements of corporate responsibility. For Part three, instructors or programme directors could incorporate this exercise in projects that involve product development, with students working through Part one and two as examples. This part aims to encourage ethical action on the part of students who are developing their own products, so that they can consider aspects of justice, responsibility, and sustainability in their engineering solutions. This case also allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise as an engineer versus a business owner;
explore how a business model operates with its potential impact on society and the local / global economy;
practise stakeholder mapping;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches that resolve interpersonal and / or professional conflict;
integrate technical content on fluid mechanics (such as conservation of mass, systems engineering] or content on electronics [such as developing a sensor for water flow detection);
integrate engineering content with business and entrepreneurial leadership;
informally evaluate students’ critical thinking and communication skills.
In the last few years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:
In 2006, theESG mandate was set up by a group of investors to create a more sustainable financial system for companies to operate in, and to use as part of their annual reporting of performance indicators.
In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. See the article:A Moment for Change?
Part one:
Maria is a young co-founder and technical lead (CTO) living in the UK looking at the business development of her newly-formed transnational company, Hydrospector, based in Johannesburg (Joburg), South Africa, where her co-founder/CEO is located. The company makes devices that detect water leaks and the small team has been working hard to secure contracts for their new business. Maria is an electrical and electronics engineer by training and was the lead inventor for this technology. She has proven her technology works in detecting leaks early and at low levels, lowering the risk of damage to infrastructure that impacts local communities. The technology will also save companies millions each year by detecting low-level water loss that currently remains undetected. Her company is now in a position where they need to find customers.
Targeting big corporations will mean her technology will get out much more quickly and be a huge economic benefit to surrounding industries and society. Maria comes from a lower socioeconomic background in Lancashire (UK) and her personal experience of the economic disparity between the different areas she has lived in, means she feels strongly about not wanting to perpetuate this norm. She feels that Hydrospector’s business growth model needs to have a more active approach in preventing the widening of the socioeconomic gap. In Joburg, where the company is based, there are stark differences in the affluence of neighbouring communities. Should she focus on working with poorly-funded local authorities to help ensure their product gets to the places most in need, rather than prioritise projects that will be more lucrative and accelerate the business more quickly?
Optional STOP for questions and activities:
1. Discussion: Personal values – what personal values are causing the internal conflict for Maria? Does her own background make a difference to the issues at stake? If Maria was from an affluent area / background, how may this have affected her perspective?
2. Discussion: Professional values – what ethical principles and codes of conduct are applicable to this scenario?
3. Discussion: Wider impact – is focusing on profit alone morally inferior to prioritising ESG?
5. Activity: Technical integration – undertake a technical activity in the areas of mechanical, electrical and / or chemical engineering related water flow detection sensors.
Foreword and pre-reading for Part two:
It is useful to learn more about the context (geographical, political, social and cultural) of this case study in order to gain a deeper understanding of the nuances that each scenario brings. The following section outlines the local problems with water supply and misuse in South Africa compared to the UK. The links below are starting points to explore these challenges further and carry out research when working on projects as an engineer. They represent perspectives from news, government, and industry sources.
The CEO and Operations Manager of Hydrospector is Maria’s friend and co-founder, Lucy, who grew up in Joburg. Like Maria, Lucy grew up experiencing the socioeconomic disparity in her area. Lucy’s passion for bringing benefits to disadvantaged communities makes their collaboration an ideal partnership. The company started trading in South Africa where there is a particular interest fromJohannesburg Water, the main local water supply company. Water supply shortages in the region have badly affected the country in recent years. Hydrospector has successfully won a bid with a venture capitalist based in South Africa and has rolled out the sensors in Makers Valley, Joburg, a region that has developed economically in recent years. Soon after, the company also won a contract to install sensors in the Merseyside region of the UK in a trial project co-funded by the local council andUnited Utilities.
Scenario A – Environmental impact:
Hydrospector’s components are sourced in South Africa with both manufacturing and assembly carried out locally in Joburg. It has taken Lucy and her team a year to develop supply and manufacturing operations to run smoothly and economically. To ship to the UK would be a financially better deal for the company than to source and manufacture the product locally in the UK. However, the impact of the carbon footprint would not help their ESG goals. Lucy will have to decide whether to ship the product from South Africa or produce the product locally and therefore set up another operations team in the UK. Setting up in the UK will cost the company more due to component pricing, but would support the local economy. The company could potentially afford to set up UK operations, but this will impact heavily on their financial profit forecast in the first couple of years.
Optional STOP for questions and activities:
1. Discussion: What should Lucy decide? What considerations does she need to make for supply chain management, when considering local customers compared to global ones?
2. Discussion: What could be the unintended consequences of her decision? Consider this question from the following points of view: environmental, economic and social – the public view.
Scenario B – Unintended outcomes:
After six months’ post-installation work in inner-city Bertrams, Makers Valley, Johannesburg Water has contacted Hydrospector about the illegal tapping of its pipes. They suspect water is being stolen from these settlements according to data from the installed sensors. Furthermore, engineers from Johannesburg Water carrying out maintenance work have found some of the sensors have been deliberately damaged, which they suspect has been done so that illegal tapping goes undetected. Johannesburg Water wants to prosecute those responsible and has contacted Lucy to provide all the data logged from the sensors and the time/date stamps to identify specific details about damage. Lucy, however, is aware of cases where funds intended to be used to improve infrastructure for low-income households such as electricity, water supply and sanitation, have sometimes been poorly managed and at worse embezzled so that the communities are left worse off, with ageing pipes and infrastructure. She realises that some illegal tapping may have been done in order to provide for these communities.
Several weeks after this discovery, United Utilities in Merseyside has been in touch about local individuals and companies illegally accessing water from hydrants that are found in street drains for their own usage. These companies have mobile trucks and so have been difficult to find and prosecute. United Utilities would like Hydrospector’s full co-operation in providing the logging data needed, as well as installing sensors at targeted locations where they suspect misuse is happening. Lucy’s research has found that 99% of leakages in the UK are not illegally sourced but rather are due to poor pipe networks. In fact, 20% of water supply loss in the UK is due to leaks and paid for by the customer (domestic users).
Optional STOP for questions and activities:
1. Discussion: How should Hydrospectorrespond to the two requests? Should the response be the same or different? If the same, why? If different, what makes the two cases different?
2. Discussion: Should water supply companies ultimately be responsible for water leakages? If so, why are they charging domestic users for the 20% water loss? What are the environmental implications of this business decision?
3. Discussion: Maria and Lucy are also concerned that, if these cases were to be picked up by the media, there might be a reputational risk for the company and their ability to achieve their business vision and goals. The co-founders are worried about their product’s unintended consequences., They feel that it could be misused, potentially exacerbate socio-economic inequality further and go against the intended use of the product. Are they right to be concerned? Are they responsible for unintended outcomes?
4. Activity: What role should engineers have in shaping public policy? Often laws and regulations related to policy are dependent on technical knowledge, but some engineers believe it is not their role or responsibility to help shape policy. Debate this issue, or research the relationship between engineering and policy.
Scenario C – Public trust:
Hydrospector has been involved in a project where it surveyed and identified significant leakages and damage to the water supply system in one of the communities in Joburg. The company has been asked by the local authorities not to disclose this information to other parties, particularly media outlets, due to the security risks, including potential terrorism. However, this will affect the transparency of the project, which is publicly funded. In addition, reporting these findings could help resolve the problems found, for example, supply and construction companies may be willing to step up to help.
The company suspects that the local authorities are seeking to avoid a public outcry for the sake of impact scores on customer satisfaction. However, without public knowledge, change to improve the situation is likely to be slow.
Optional STOP for questions and activities:
1. Discussion: Should the company keep the data unpublished or report the data? What ethical reasons can you identify for either choice?
2. Discussion: Should transparency be prioritised over public trust every time? Why or why not?
3. Activity: Debate the above questions by splitting up the students and having each group / individual represent the potential perspectives of United Utilities, Johannesburg Water and Maria / Lucy.
4. Discussion: What guidelines should companies be given for releasing publicly funded data and data misuse?
Foreword and pre-reading for Part three:
This exercise can be supported by technical and non-technical sessions such as business models,SWOT analysis, project management and risk.
Part three:
First, introduce Parts one and two of this case study to inform the exercise as part of a student project, such as a final year capstone.
Design a business growth model for an engineered product, identifying the potential socioeconomic impact, providing a viable profitable forecast and a life cycle sustainability assessment. Explore the ESG indicators andRaworth’s Doughnut of social and planetary boundaries as starting points.
Optional STOP for questions and activities:
1. Discussion and activity: Is impact your main priority? What type of impact are you looking to gain for your business? Consider economic, personal, social and environmental impacts – such as research exercise.
2. Discussion: What risks and opportunities can be identified (SWOT) for the different growth models that could be used to achieve the impact you desire?
3. Activity: Create a business growth model and plan based on your critical research.
4. Activity: Draft a CSR plan for this business.
5. Activity: Speak to people in non-engineering fields that can review and help develop your model.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Professor Mike Sutcliffe (TEDI-London); Professor Mike Bramhall (TEDI-London); Prof Sarah Hitt SFHEA (NMITE); Johnny Rich (Engineering Professors’ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).
Topic: Smart meters for responsible everyday energy use.
Engineering disciplines: Electrical engineering
Ethical issues: Integrity, Transparency, Social responsibility, Respect for the environment, Respect for the law
Professional situations: Communication, Privacy, Sustainability
Educational level: Beginner
Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action.
Learning and teaching notes:
This case is an example of ‘everyday ethics’. A professional engineer must give advice to a friend about whether or not they should install a smart meter. It addresses issues of ethical and environmental responsibility as well as public policy, financial burdens and data privacy. The case helps to uncover values that underlie assumptions that people hold about the environment and its connection to human life and services. It also highlights the way that those values inform everyday decision-making.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in three parts that build in complexity. If desired, a teacher can use Part one in isolation, but Part two and Partthree develops and complicates the concepts presented in Part one in order to provide additional learning. The case allows teachers the opportunity to stop at various points to pose questions and/or set activities.
Learners have the opportunity to:
reflect on the norms, codes, and virtues inherent in everyday ethics;
consider how they would act in an ethical situation;
weigh burdens and benefits of an ethical choice;
explore technical aspects of smart meter function and data;
examine industry and policy perspectives on responsible energy.
Teachers have the opportunity to:
introduce aspects of professional responsibility;
integrate technical content about energy and / or smart meters;
address approaches to resolve interpersonal conflict;
informally evaluate students’ research and / or critical thinking skills.
Sam and Alex have been friends since childhood. As they have grown older, they have discovered that they hold very different political and social beliefs, but they never let these differences of opinion get in the way of a long and important friendship. In fact, they often test their own ideas against each other in bantering sessions, knowing that they are built on a foundation of respect.
Sam works as an accountant and Alex has become an environmental engineer. Perhaps naturally, Alex often asks Sam for financial advice, while Sam depends on Alex for expert information related to sustainability and the environment. One day, knowing that Alex is knowledgeable about the renewable energy industry and very conscious of the impact of energy use at home, Sam messages Alex to say he is getting pressure from his energy company to install a smart meter.
Sam has been told that smart metering is free, brings immediate benefits to customers by helping them to take control of their energy usage, and is a key enabler for the transition away from fossil fuels use and towards the delivery of net zero emissions by 2050. Smart meters give consumers near real-time information on energy use, and the associated cost, enabling them to better manage their energy use, save money and reduce emissions. A further benefit is that they could charge their electric car far more cheaply using a smart meter on an overnight tariff.
Yet Sam has also read that smart meters ‘go dumb’ if customers switch providers and, as a pre-payment customer, this option may not be available with a smart meter. In addition, Sam suspects that despite claims that the smart meter roll out is free, the charge is simply being passed on to customers through their energy bills instead. Alex tries to give Sam as much good information as possible, but the conversation ends with the decision unresolved.
Optional STOP for questions and activities:
1. Discussion and activity: Personal values – We know that Sam and Alex have different ideas and opinions about many things. This probably stems from a difference in how they prioritise values. For instance, valuing transparency over efficiency, or sustainability over convenience. Usingthis values activity as a prompt, what personal values might be competing in this particular case?
2. Discussion and activity: Everyday ethics – Consider what values are involved in your everyday choices, decisions, and actions. Write a reflective essay on three events in the past week that, upon further analysis, have ethical components.
3. Discussion: Professional values – Does Alex, as an environmental engineer, have a responsibility to advocate installing smart meters? If so, does he have more responsibility than a non-engineer to advocate for this action? Why, or why not?
4. Discussion: Wider impact – Are there broader ethical issues at stake here?
5. Activity: Role-play a conversation between Sam and Alex that includes what advice should be given and what the response might be.
Dilemma – Part two:
After getting more technical information from Alex, Sam realises that, with a smart meter, data on the household’s energy usage would be collected every 30 minutes. This is something they had not anticipated, and they ask a number of questions about the implications of this. Furthermore, while Sam has already compared tariffs and costs as the main way to choose the energy provider, Alex points out that different providers use different energy sources such as wind, gas, nuclear, coal, and solar. Sam is on a tight budget but Alex explains that the cheaper solution is not necessarily the most environmentally responsible choice. Sam is frustrated: now there is something else to consider besides whether or not to install the smart meter.
2. Activity: Research what happens with the data collected by a smart meter. Who can access this data and how is privacy protected? How does this data inform progress towards the energy transition from fossil fuels?
3. Activity: Research different energy companies and their approach to responsible energy sourcing and use. How do these companies communicate that approach to the public? Which company would you recommend to your friend and why?
4. Activity: Cost-benefit analysis – Sometimes the ethical choice is the more expensive choice. How do you balance short- and long-term benefits in this case? When, if ever, would it be ethically right to choose energy from non-renewable sources? How would this choice differ if the context being considered was different? For example, students could think about responsible energy use in industrialised economies versus the developing world and energy justice.
Dilemma – Part three:
Following this exchange with Sam, Alex becomes aware that one of the main obstacles in energy transition concerns communication with the public. Ideally, Alex wants to persuade family and other friends to make more responsible choices; however, it is clear that there are many more factors involved than can be seen in one glance. This includes what kinds of pressure is put on consumers by companies and the government. Alex begins to reflect on how policy drives what engineers think and do, and joins a new government network onEngineering in Policy.
Alex and Sam meet up a little while later, and Sam announces that yes, a smart meter has been installed. At first Alex is relieved, but then Sam lets it slip that they are planning to grow marijuana in their London home. Sam asks whether this spike in energy use will be picked up as abnormal by a smart meter and whether this would lead to them being found out.
Optional STOP for questions and activities:
1. Discussion: Personal values – What are the ethics involved in trying to persuade others to make similar choices to you?
2. Discussion and activity: Legal responsibility – What should Alex say or do about Sam’s disclosure? Role-play a conversation between Sam and Alex.
3. Discussion: Professional responsibility – What role should engineers play in setting and developing public policy on energy?
4. Activity: Energy footprint – Research which industries use the most energy and, on a smaller scale, which home appliances use the most energy.
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.