“A new report from the National Engineering Policy Centre about resource efficiency and demand reduction for critical materials to support the UK’s existing Net Zero Strategy.

This report provides an overview of the underutilised policy options for achieving reductions in demands for critical materials and dependency on imports of scarce materials.

It presents a range of policy and engineering interventions around three main areas of demand-side resource management. These include: infrastructure and technology planning, design and design skills and circular economy.

The report concludes with 25 recommendations for policymakers which will help the UK cut its critical material footprint. Lead recommendations from the report call for: an integrated materials strategy, a National Materials Data Hub, infrastructure planning for material sustainability, and a new target to halve the UK’s material footprint.

The report also makes specific recommendations for targeted action, such as committing to the ban on single-use vapes, and improving repair and recycling of electronics to reduce e-waste.

Without intervention, the UK risks not achieving its Net Zero strategy and exposure to future economic uncertainty.” – The Royal Academy of Engineering

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Mark J. Heslop (University of Strathclyde). 

Topic: ESD in Chemical Engineering projects. 

Tool type: Guidance. 

Relevant disciplines: Chemical. 

Keywords: Problem-based learning; Education for sustainable development; Circularity; Circular economy; Assessment; AHEP; Sustainability; Higher education; Design; Data; Pedagogy. 
 
Sustainability competency: Systems-thinking; Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 2 (Zero hunger); SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 12 (Responsible consumption and production); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Authentic assessment; More real-world complexity.

Who is this article for? This article should be read by Chemical Engineering educators in higher education who are seeking to integrate sustainability in their project modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

The design project (DP) is considered to be the major focus of the CE curriculum, where students work in groups to design a complete chemical process – feeds, products process routes, energy requirements, financial aspects and emissions.  It is considered challenging for various reasons including the following: the requirement to recall and combine knowledge covered previously in taught classes (some of which may have been forgotten), dealing with a huge corpus of data (unavailability, uncertainty, some being in conflict and some being superfluous) and all the design decisions that need to be made from many options.  This is a major contrast with standard taught modules where all the data required is normally provided in advance.  Just making decisions is not enough – they need to be timely and justified otherwise the project may be rushed and may not complete by the deadline.  This is why the DP is valued by employers.  Furthermore, if Education for Sustainable Development (ESD) is embedded in the design project, it is more likely that students will take forward sustainability into the workplace. Figure 1 illustrates Chemical processes and the design project.   

 

1. Subject (CE) and DP pictorial representations:

Part (a) is a generic representation of a chemical process and shows the input-output nature of chemical processes.  A chemical process takes a feed and converts it to useful products (the process shown has two equipment units and four streams). Part (b) is a representation of the design project, where the specification (or brief) is provided to groups at the start (DSpec) and the final submission (or solution) is the information in part (a).  Part (c) shows that specifications can be product-based (the top two) or feed-based (the bottom two).  The dashed lines indicate specifications where the flowrate and composition of the feed/product is subject to design choice – a typical factor that will extend the design procedure and require more decision-making. 

 

 2. Inclusion of sustainability in the project topic and communication with students:

This is fairly straightforward in CE design projects, because of the circular economy and the associated waste minimisation.  So, from Figure 1, a feed-based (rather than product-based) specification can be employed.  Topics that have been used at Strathclyde in recent years have been the utilisation of coffee grounds, food waste and (in 2024) green and garden waste. It is helpful that such topics can be linked to many of the UN SDGs. Furthermore, waste products are often complex with many components, and one of the characteristics of chemical engineering is the various separation techniques. These two factors should be communicated to students to improve engagement.   

 

3. Inclusion of sustainability as an ESD activity to be carried out by groups:

One of the complicating factors about the UN SDGs is that there are so many, meaning that there is the possibility of a chemical process having both positive and negative impacts on different SDGs. This means that groups really need to consider all of the SDGs.  This might be conveniently demonstrated as per Table 1.  Certainly, it would be hoped that there are more ticks in column 2 than in column 3.  Column 4 corresponds to minimal change, and column 5 where there is not enough information to determine any impact. 

 

Table 1: Sustainability rating form for design project submissions   

As an example, consider a design project which is based on better utilisation of green waste.  Let us say that this results in less greenhouse gas emissions, as well as there being less need to plant and harvest plants.  This will result in positive outcomes for SDG12 and SDG13.  There are also positive effects because more land can be used for crops, and there will be higher plant coverage during the year.  It could be argued then that there are minor positive effects om SDG2 and SDG3.  The subsequent SDG profile in Table 1 shows two major impacts and two minor impacts – this might be typical for DPs.  

 

4. Assessment of sustainability in the design project:

Table 2 shows the typical sections in a DP submission.  For convenience these are shown as having equal 20-mark contributions.  One way of determining marks is to divide these sections into a number of dimensions, for example: use of the literature, technical knowledge, creativity/innovation and style/layout.  Sustainability could then be included as a fifth dimension.  It is then a case of determining the sustainability dimension for each of the marking sections.  It could be argued that sustainability is particularly important at the start of the project (when feeds and amounts are being decided) and at the end (when the final process is being assessed).  This explains the larger weightings in Table 2. Coherence refers to how well the submission reads in terms of order and consistency and is thus independent of sustainability.  The weightings are subject to debate, but they do at least give the potential for consistent (and traceable) grading between different assessors.        

 

Table 2: Design project assessment now including ESD   

References: 

Byrne, E.P. (2023) “The evolving engineer; professional accreditation sustainability criteria and societal imperatives and norms”, Education for Chemical Engineers 43, pp. 23–30  

Feijoo, G., Moreira, M.T. (2020) “Fostering environmental awareness towards responsible food consumption and reduced food waste in chemical engineering students”, Education for Chemical Engineers 33, pp. 27–35  

IChemE (2021), “Accreditation of chemical engineering programmes: a guide for education providers and assessors” 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Theme: Universities’ and business’ shared role in regional development; Collaborating with industry for teaching and learning; Knowledge exchange; Research; Graduate employability and recruitment.

Author: Prof Matt Boyle OBE (Newcastle University).

Keywords: Electrification; Collaboration Skills; Newcastle.

Abstract: Driving the Electric Revolution is led by Newcastle and is a collaborative R&D project to build supply chains in Power Electronics Machines and Drives. The University led the bid and as we amass supply chain capability we will generate £ Billions in GVA.

 

Newcastle University has been embedded in the academic and industrial development of the North East of England since 1834. Recently, one of its core competencies, Machines and Drives research, has been used to attract investment to the region from Industry and Government helping to increase the economic prospects for the North East region.

Newcastle University is the national lead organisation for Driving the Electric Revolution Industrialisation Centres an Industrial Strategy Challenge Fund Wave 3 competition. The centres serve two purposes,

  1. A focal point for development of manufacturing processes in Power Electronics, Machines and Drives (PEMD) through investment in cutting edge manufacturing equipment.
  2. The training of researchers, students, employees of industrial partners on these important new processes.

The Driving the Electric Revolution (DER) Industrialisation Centres (DERIC) project aims to accelerate UK industrialisation of innovative and differentiated PEMD manufacturing and supply chain solutions. They are doing this by creating a national network to coordinate and leverage the capabilities of 35 Research and Technology Organisations (RTO) and academic establishments, based within four main centres.  Supported by 166 industrial partners it represents the largest coordinated industrialisation programme the UK PEMD sector has ever seen.

Newcastle University has, in living memory, always been at the forefront of Electric Machines and Drives innovation globally. It was inevitable that Newcastle would lead the DER project given its pedigree, reputation and the fact that it was supported by several companies in several sectors, Automotive, Aerospace and domestic products who undertake product research in the North East and who seek to manufacture in the UK if possible.

Newcastle did recognise however that it couldn’t deliver the government programme alone. There were four institutions which formed a consortium to bid into the competition, Newcastle University, University of Strathclyde, Warwick Manufacturing Group and the Compound Semiconductor Applications Catapult in Newport South Wales. Over time they have been joined by University of Nottingham, University of Birmingham, Swansea University and University of Warwick. Letters of support were received from 166 Industry partners, 27 FE and HE organisations expressed support as did 13 RTOs. Although the national bid was led by Newcastle, it took a more North East regional view in development of its delivery model.

Therefore, in addition to this national work, Newcastle extended their DERIC application beyond Newcastle to Sunderland where they worked with Sunderland council to establish a DERIC research facility in the area. Sunderland city council worked with Newcastle to acquire, fit out and commission the lab which received equipment from the project and is due to open in 2022.

Nationally the primary outcome is the establishment of the Driving the Electric Revolution Industrialisation Centres and the network.

The four DERIC act as focal points for the promotion of UK PEMD capabilities. They design develop and co-sponsor activities at international events. They send industrial representatives to meet with clients and research partners from UK, Europe and Asia, as well as developing a new UK event to attract leading PEMD organisations from around the globe.

In Newcastle the university’s sponsorship of both the national project as well as the DERIC in the North East is helping attract, retain and develop local innovation and investment. The equipment granted by the DER Challenge to the centre includes a Drives assembly line as well as an advanced Machines line. The DERIC is focused primarily in the development of manufacturing processes using the granted equipment. The equipment was selected specifically with these new processes in mind. The success of the DERIC program already means that the country and the region have attracted substantial inward investment.

Investments by three companies came to the North East because of the capability developed in the region. They have all agreed partnerships with the university in the process of establishing, acquiring and investing in the North East. The three companies are:

  1. British Volt mission is to accelerate the electrification of society. They make battery cells. Their Gigaplant in Northumberland will be the second Gigaplant in the UK. They are investing £1Bn into the region creating around 5,000 jobs both at the plant and in the supply chain.
  2. Envision also make batteries. Unlike British volt the Envision cell is a Gel pack. Envision has the first Gigaplant in the UK at Sunderland. They are investing a further £450M to expand the plant in Sunderland and potentially another £1.8Bn by 2030.
  3. Turntide Technologies invested £110M into the region acquiring three businesses. These have all in some fashion been supported by and supportive of the PEMD capability at Newcastle over the past six decades.

The university has worked tirelessly to help create an ecosystem in the region for decarbonisation and electrification.

The last stage of this specific activity is the creation of the trained employees for this new North East future. The university, collaborating across the country with DER partners, is embarking on an ambitious plan to help educate, train and upskill the engineers, scientists and operators to support these developments. It is doing this by collaborating, for the North East requirement, with the other universities and further education colleges in the region. Industry is getting involved by delivering a demand signal for its requirements. The education, training and up skilling of thousands of people over the next few years will require substantial investments by both the educators in the region as well as industry.

As the pace of electrification of common internally combusted applications accelerates the need for innovation in the three main components of electrification, power source, drive and machine will grow substantially. The country needs more electrification expertise. The North East region has many of the basic building blocks for a successful future in electrification. Newcastle University and its Academic and Industrial partners have shown the way ahead by collaborating, leading to substantial inward investment which will inevitably lead to greater economic prosperity for the region. Further information is available from the Driving the Electric Revolution Industrialisation Centres website. In addition, there are annual reports and many events hosted, sponsored or attended by the centres.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Research, Collaborating with industry for teaching and learning, Graduate employability and recruitment

Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)

Keywords: Transformational Change, Industry-Education Partnerships, Educational Research, Scholarship

Abstract: The ‘Transforming Tomorrow’ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to ‘hit the ground running’ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.

 

Introduction

WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Department’s experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.

The ‘Transforming Tomorrow’ Project is about taking a holistic view of the Department’s educational provision in order to understand the effectiveness of the provision from students’ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we  better meet the needs of industry. This paper reports the first part of the Project.

Context

For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and  online learning; five key themes were identified:

  1. The need to adopt  a design approach to curriculum development
  2. The quality of the student experience
  3.  Student engagement
  4. The challenges and benefits of blended learning
  5. Student and academic perceptions of online learning

Each of these themes have in common the fact that the virtual learning approaches analysed and  discussed were developed over a significant period of time.   

Method and Findings

A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on students’ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown. 

The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least,  engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.

 

Figure 1: First Year Engineering Students’ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)

 

In looking at the above table one thing that immediately drew colleagues’ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested  a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.

For the academic staff, a survey conducted at the same time sought to determine colleagues’ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questions…

 

 

 

This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future).  With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.

Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st Century Industry

Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.

The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics:  

1. Teaching to Meet the Challenges of Industry

2. Student-Centred Active Learning

3. Growing independent learners

4. Levelling the Playing Field

5. Re-Designing what we do

6. Engineering  an environment for learning

Conclusion

In conclusion, society is entering what has been termed ‘the new normal’; for WMG, there is nothing ‘normal’ about what we do. We are entering a ‘Transformational Time’; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt  the ‘new normal’. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge. 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a checklist of things for university departments to consider when proposing to get involved in degree apprenticeships.  It’s still evolving so please do contact us if you have experience or advice you would like to add.

 

A key difference between conventional courses and degree apprenticeships is that the latter are intended to be employer led, and developed to meet explicit employer needs, with the university effectively acting as suppliers to the employer “customer”.

Nevertheless, as with any new development, it is essential that those universities and HEIs considering developing degree apprenticeship programmes do a full market research and consultation exercise with likely and potential employers. This exercise has the purpose of:

There is also a major engagement effort required with schools and sixth form colleges in order to present what is proposed as a real alternative to post 18 entry to work or mainstream university study.

These programmes open up a whole new “market” for universities and so can’t really be evaluated in the same way as new proposal for a more traditional degree.  The potential to open up wider relationship opportunities than might not immediately arise from “standard” degree offerings need to be taken into account too, for example.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The Recruitment and Admissions Toolkit has not been updated as yet but has been left here for archive purposes.

Some toolkit content is available to members only. For best results, make sure you’re logged in.

The following provides links to a range of resources and information to help university admissions tutors and those working in recruitment and admissions roles.

And each year, in November, the Engineering Professors’ Council organises a Recruitment and Admissions Forum so that all of those involved in the recruitment and admission of students to engineering programmes in UK higher education have the opportunity to get together and share experiences and best practice, as well as hear the latest from policy makers, the funding agencies and Government.  We also provide feedback to members from the annual early enrolments survey, which provides an indication of student numbers compared with the prior year for both undergraduate and postgraduate (taught) students.

Don’t forget to check out the Tomorrow’s Engineers programme website which offers a wide range of resources to assist schools, prospective students and their advisers.  The latest range, including a leaflet entitled ‘Make a Difference to the World: Engineering at University’ may be found here.

And do take a look at this set of films, produced by the 2014 winner of the EPC’s Engaging in Engineering awards, Dr Emma Carter of the University of Sheffield – aimed at 8 to 15 year olds, their particularly useful for schools outreach activity.

If you can’t find what you’re looking for on this page, why not ask a colleague by starting a discussion?  Or feel free to drop us a line directly.

Contents:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The Recruitment and Admissions Toolkit has not been updated as yet but has been left here for archive purposes.

 

The EPC reviews and reports on graduate engineers’ ability to gain employment on leaving university.  The latest information may be accessed by members in our Data explorer.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website