Keywords: Water and sanitation; Infrastructure; Community sustainability; Health; Government policy; Social responsibility; AHEP; Higher education; Sustainability; Project brief; Water quality control.
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 hereand navigate to pages 30-31 and 35-37.
Related SDGs: SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 8 (Decent work and economic growth).
Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This is an example project that could be adapted for use in a variety of contexts. It asks students to devise a “sustainability dashboard” that can not only track indicators of river system sustainability through technical means, but also communicate the resulting data to the public for the purpose of policy decisions. Teachers should ideally select a local river system to focus on for this project, and assign background reading accordingly.
Learners have the opportunity to:
Investigate the links between history, politics, and engineered systems;
Research existing data sources;
Devise a technical solution for community impact.
Teachers have the opportunity to:
Showcase real-world implications of the SDGs;
Integrate technical learning with sustainability issues;
Emphasise the importance of the engineer’s role in public life.
Two vital and unique resources for the planet are water and air. Any alterations in their composition can have detrimental effects on humans and living organisms. Water uses across New Mexico are unsustainable. Reduced precipitation and streamflows cause increased groundwater use and recharge. Serious omissions in state water policy provide no protection against complete depletion of groundwater reserves.
The water governance status quo in New Mexico will result in many areas of New Mexico running out of water, some sooner, some later, and some already have. Because Water is Life, water insecurity will cause economic insecurity and eventual collapse.
Water resources, both surface and groundwater, and total water use, determine the amount of water use that can be sustained, and then reduce total water use if New Mexico is to have water security. The public must therefore recognise that action is required. Availability of compiled, accessible data will lead to and promote our critical need to work toward equitable adaptation and attain sustainable resiliency of the Middle Rio Grande’s common water supply and air quality.
A data dashboard is needed to provide on-line access to historical, modern, and current perspectives on water, air quality, health, and economic information. A dashboard is needed to help inform the public about why everyone and all concerned citizens, institutions and levels of government must do their part!
Project brief:
The Middle Rio Grande region of New Mexico has particular sustainability and resilience requirements and enforceable legal obligations (Rio Grande Compact) to reduce water depletions of the Rio Grande and tributary groundwater to sustainable levels. However, there is a lack of accessible depictions of the Middle Rio Grande’s water supply and demand mismatch. Nothing publicly accessible illustrates the surface water and groundwater resources, water uses, and current water depletions that cannot be sustained even if water supplies were not declining. Therefore, there is a corresponding lack of public visibility of New Mexico’s water crisis, both in the Middle Valley and across New Mexico. Local water institutions and governments are siloed and have self-serving missions and do not recognise the limits of the Middle Valley’s water resources.
A water data dashboard is needed to provide online open access to historical, modern, and current perspectives on water inflows, outflows, and the change in stored surface and groundwater. This dashboard should inform the public about why everyone and all water institutions and levels of government must do their part!
Given:
Data from numerous on-line and paper or spreadsheet data sources
Law of the Rio Grande
The 2004 water budget components and historical information.
Objectives:
Engage data providers to cooperatively secure access to the public data they collect and maintain.
Create one website Dashboard to present the relevant water data of the Middle Rio Grande.
Demonstrate the function and form of the Water Data Dashboard to illustrate the value of simplified presentation of aggregated data.
Illustrate the value of creating procedures for data aggregation and presentation in simplified, accessible formats so that the prototype dashboard is taken over by an institution with the resources to build and maintain an improved second-generation version.
Provide selected water data sets as set forth in 2019 Water Data Act standards and procedures to the NM Water Data Initiative.
Find a long-term home for the dashboard project with a government agency or Middle Rio Grande water institution.
Acknowledgements: The 2023 Peace Engineering summer cohort of Argentine Fulbright Scholars who analysed the Middle Rio Grande Case Study concluded that water in the Middle Rio Grande is a community problem that requires a community driven solution.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving; Collaboration.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: All.
Reimagined Degree Map Intervention: Adapt learning outcomes; Active pedagogies and mindsets; More real-world complexity; Cross-disciplinarity; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Projects, and thus project-based learning, offer valuable opportunities for integrating sustainability education into engineering curricula by promoting active, experiential learning through critical and creative thinking within problem-solving endeavours and addressing complex real-world challenges. Engaging in projects can have a lasting impact on students’ understanding and retention of knowledge. By working on projects related to sustainability, students are likely to internalise key concepts and develop a commitment to incorporating sustainable practices into their future engineering endeavours.
Building a brief:
Project briefs are a powerful tool for integrating sustainability into engineering education through project-based learning. They set the tone, define the scope, and provide the parameters for students to consider sustainability in their engineering projects, ensuring that future engineers develop the knowledge, skills, and mindset needed to address the complex challenges of sustainability.
To ensure sustainability has a central and/or clear role within an engineering project, consider the following as you develop the brief:
1. Sustainability as part of goals, objectives, and requirements. By explicitly including sustainability objectives in the project brief, educators communicate the importance of considering environmental, social, and economic factors in the engineering design and implementation process. This sets the stage for students to integrate sustainability principles into their project work.
2.Context: Briefs should always include the context of the project so that students understand the importance of place and people to an engineered solution. Below are aspects of the context to consider and provide:
What is the central problem for the project?
Where is the problem/project located? What data will be given to students to describe the context of the problem? Why is the context important and how does it relate to expectations of solving of the problem or the project solution
Who are the people directly impacted by the scenario and central to the context? What is the problem that they face and why? How are they associated with the project and why do they need to be considered?
When in time does this scenario/context exist? How does the data or information re. the context support the time of the scenario?
3. Stakeholders: Sustainability is intertwined with the interests and needs of various stakeholders. Project briefs can include considerations for stakeholder engagement, prompting students to identify and address the concerns of different groups affected by the project. This reinforces the importance of community involvement and social responsibility in engineering projects. Below are aspects of the stakeholders to consider and provide:
Who are the main stakeholders (i.e. users) and why are they important to the context? (see above) What are their needs and what are their power positions
Who else should be considered stakeholders in the project? How do they influence the project by their needs, interest and power situations?
Have you considered the earth and its non-human stakeholders, its inhabitants or its landscape?
Do you want to provide this information to the students or is this part of the work you want them to do within the project?
4.Ethical decision-making: Including ethical considerations related to sustainability in the project brief guides students in making ethical decisions throughout the project lifecycle. The Ethics Toolkit can provide guidance in how to embed ethical considerations such as:
Explicitly state ethical expectations and frame decisions as having ethical components.
Prompt and encourage students to think critically about the consequences of their engineering choices on society, the environment, and future generations.
5. Knowns and unknowns: Considering both knowns and unknowns is essential for defining the project scope. Knowing what is already understood and what remains uncertain allows students to set realistic and achievable project goals. Below are aspects of considering the knowns and unknowns aspects of a project brief to consider and provide:
What key information needs to be provided to the students to address the problem given?
What is it that you want the students to do for themselves in the early part of the project – i.e. research and investigation and then in the process of their problem solving and prototyping/testing and making?
6. Engineering design process and skills development: The Project Brief should support how the educator wants to guide students through the engineering design cycle, equipping them with the skills, knowledge, and mindset needed for successful problem-solving. Below are aspects of the engineering design process and skills development to consider and provide:
What process will the students follow in order to come to a final output or problem solution? What result is required of the students (i.e. are they just coming up with concepts or ideas? Do they need to justify and thus technical argue their chosen concept? Do they need to design, build/make and test a prototype or model to show their design and building/making skills as well? Do they need to critically analyse it using criteria based on proof of concept or sustainability goals – ie. It is desirable? Viable? Responsible? Feasible?)
What skills should students be developing through the project? Some possibilities are (depending on how far they expect students to complete the solution), however the sustainability competencies are relevant here too:
a. Research – investigate,
b. Creative thinking – divergent and convergent thinking in different parts of the process of engineering design,
c. Critical thinking – innovation model analysis or other critical thinking tools,
d. Decision making – steps taken to move the project forward, justifying the decision making via evidence,
e. Communication, collaboration, negotiation, presentation,
f. Anticipatory thinking – responsible innovation model AREA, asking in the concept stages (which ideas could go wrong because of a double use, or perhaps thinking of what could go wrong?),
g. Systems thinking.
7.Solution and impact: Students will need to demonstrate that they have met the brief and can demonstrate that they understand the impact of their chosen solution. Here it would need to be clear what the students need to produce and how long it is expected to take them. Other considerations when designing the project brief to include are:
Is the brief for a module or a short activity? What is the ideal number of students in a team? Is it disciplinary-based or interdisciplinary (and in this case – which disciplines would be encouraged to be included).
We would want the students to understand and discuss the trade-offs that they had to consider in their solution.
Important considerations for embedding sustainability into projects:
1. Competences or content?
Embedding and/or developing competences is a normal part of project work. When seen as a set of competences sustainability is crosscutting in the same way as other HE agendas such as employability, global citizenship, decolonisation and EDI. See the Global Responsibility competency compass for an example of how competencies can be developed for engineering practice.
Embedding sustainability content often requires additional material, even if it is only in adapting one of the project phases/outcomes to encourage students to think through sustainable practice. For more guidance on how to adapt learning outcomes, see the Engineering for One Planet Framework (aligned to AHEP4).
2. Was any content added or adapted?
Was any content adapted to include sustainability awareness?
– What form of content, seminars, readings, lectures, tutorials, student activity
Were learning objectives changed?
Did you have to remove material to fit in the new or adapted content?
Were assessments changed?
3. Competencies
UNESCO has identified eight competencies that encompass the behaviours, attitudes, values and knowledge which facilitate safeguarding the future. These together with the SDGs provide a way of identifying activities and learning that can be embedded in different disciplinary curricula and courses. For more information on assessing competences, see this guidance article.
Did you map the competences that you already support before changing anything?
What kind of activities did you add to support the development of the competences you wish to target?
Did you explain to the students that these were the competences that you were targeting and that they are considered necessary for all who go on to work and live in a warming world?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Decarbonisation, Housing, Built environment; Net zero, Carbon emissions; Energy efficiency; Sustainable energy; Local community; Curriculum; Higher education; Sustainability; Assessment.
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Self-awareness; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 7 (Affordable and clean energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 11 (Sustainable cities and communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindsets; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner.
Learning and teaching notes:
The purpose of this exercise is to encourage students to think in a socio-technical perspective of delivering extreme low carbon housing (e.g. Passivhaus), in order to support the occupants in adapting to new technologies and low-carbon lifestyle, shifting the paradigm from building isolated energy efficient homes to forming low-carbon communities.
Learners have the opportunity to:
Practice stakeholder engagement;
Consider physiological and ecological effects of engineering design and technology;
Practice communication in multiple modes;
Teachers have the opportunity to:
Integrate technical learning on energy-efficient buildings such as emerging technologies and sustainability analysis;
Highlight the effects that engineering design and technology has on human behaviour;
Informally evaluate collaboration, critical thinking, and communication.
Before beginning the activity, teachers and learners will want to become familiar with the following concepts.
Performance gap:A performance gap is a disparity that is found between the energy use predicted and carbon emissions in the design stage of buildings and the energy use of those buildings in operation.
Rebound effect: The rebound effect deals with the fact that improvements in efficiency often lead to cost reductions that provide the possibility to buy more of the improved product or other products or services (Thiesen et al., 2008).
Adaptive comfort:The adaptive approach to thermal comfort recognises that people are not passive with regard to their thermal environment, but actively control it to secure comfort. Thermal comfort can thus be seen as a self-regulating system, incorporating not only the heat exchange between the person and the environment but also the physiological, behavioural and psychological responses of the person and the control opportunities afforded by the design and construction of the building (Humphreys & Nicol, 2018).
Energy behaviour: Energy behaviour denotes behaviour or behavioural patterns related to energy use. Research has stressed the important role occupants play in determining the energy use of buildings (Janda, 2011).
Usability and control: This presents how accessible and user-friendly the control systems are in a building. For instance, where the control panels are located, how easy it is to open a window, or to understand the control panel. (Stevenson et al., 2013).
Resident engagement plan:A resident engagement plan or strategy maps out a path to communicate and support residents for general or specific tasks. Examples can be found here (Home Upgrade Hub, 2022 p20 and p30; Social Housing Retrofit Accelerator, n.d.)
Activity overview:
Students will role-play the post occupancy stage of inhabiting a Passivhaus home by playing different characters with different priorities (and personalities). Students will need to learn what new technologies and features are included in Passivhaus and what difficulties/problems the residents might encounter, and at the same time familiarise themselves with contemporary research on energy behaviour, performance gap, rebound effect, as well as broader issues in decarbonisation transition such as social justice and low carbon community building. Through two community meetings, the community manager needs to resolve the residents’ issues, support the residents in learning and adapting their behaviours, and devising an engagement plan to allow the residents to form a self-governed low-carbon community.
Step one: Preparation prior to class:
Provide a list of reading materials on ‘performance gap’, ‘rebound effect’, ‘adaptive comfort’, energy behaviour, usability and control literature, as well as on Passivhaus and examples of low-carbon features and technologies involved to get a sense of what difficulties residents might encounter.
To prepare for the role-play activity, assign students in advance to take on different roles (randomly or purposefully), or let them self-assign based on their interests. They should try to get a sense of their character’s values, lifestyle, priorities, abilities. Where no information is available, students can imagine the experiences and perspectives of the residents. Students assigned to be community managers or building associations will prepare for the role-play by learning about the Passivhaus system and prepare ways to support occupants’ learning and behaviour adaptation. The goal is to come up with an engagement plan, facilitate the residents to form their own community knowledge base and peer support. (Considering 1. Who are you engaging (types of residents and their characteristics); 2. How are you engaging (level of engagement, types of communication; 3. When are you engaging (frequency of engagement)
Step two: In class, starting by giving prompts for discussions:
Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Discuss what support the residents might need in post occupancy stage? Who should provide (/pay for) the support? For how long? Any examples or best practice that they might know? Does support needs to be tailored to specific groups of people? (see extra prompts at the end for potential difficulties)
Discuss what the risks are involved in residents not being sufficiently supported to adapt their behaviour when living in a low-carbon house or Passivhaus? (reflect on literature)
Discuss what are the barriers to domestic behaviour change? What are the barriers to support the residents in changing behaviour and to build low-carbon community?
Step three: Class 1 Role Play
Prior to the Role Play, consider the following prompts:
Consider the variety of residents and scenarios:
Their varying demographics, physical and mental abilities, lifestyle and priorities. The following characters are examples. Students can make up their own characters. Students can choose scenarios of
1) social housing or;
2) private owner-occupier
Social housing tenants will likely have a more stretched budget, higher unemployment rate and a bigger proportion of disabled or inactive population. They will have different priorities, knowledge and occupancy patterns than private owner-occupier, and will be further disadvantaged during decarbonisation transition (Zhao, 2023). They will need different strategies and motivations to be engaged. The characters of residents could be chosen from a variety of sources (e.g. RIBA Brief generator), or based on students’ own experiences. Each character needs to introduce themselves in a succinct manner.
Other stakeholders involved include:
Developer/ housing association/ council
Passivhaus designer/architect
Engineer
Community/property manager
They are role-specific characters that don’t necessarily need a backstory. They are there to listen, take notes, give advice and come up with an engagement plan.
Consider the post occupancy in different stages:
Prior to move-in
Move-in day
The initial month
Change of season
Quarterly energy audit meeting
Consider the difficulties the residents might encounter:
Where is the thermostat?
Where is the radiator?
How do I increase the temperature in the room?
It’s very stuffy and hot in the south-facing bedroom
What does the MVHR do?
Why is the MVHR so noisy?
Does PV panel supply electricity to my washing machine? When should I put my washing on?
Do I get paid from the electricity generated from the PV panel?
Why is my energy bill higher than expected?
Consider the different engagement levels of the residents:
20-60-20: 20% very engaged, 60% follows, 20% not engaged
How do you ensure the maximum level of satisfaction from all residents, including the ones not so engaged?
How to encourage the residents to take ownership and responsibility?
The role-play consists of two community meetings over two classes. The first meeting is held at two weeks after move-in date. The second meeting at 6 months of occupancy. The meeting should include a variety of residents on one side, and the ‘chair’ of the meeting on the other. (Consider the accessibility and inclusivity of the meetings as when and where those will be held). In the first meeting, residents will get to know each other, ask questions about house-related problems occurred in the first two weeks, voice concerns. Community managers/council members will chair the meeting, take notes and make plans for support. The teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the ‘chair’ of the meeting. The ‘chair’ of the meeting will open the meeting with the purpose of the meeting – to support the residents and facilitate a self-governed low carbon community. They then ask the residents to feedback on their experience and difficulties. At the end of the first meeting, the group of students will need to co-design an engagement plan, including setting agendas for the second meeting in a 6-month interval (but in reality will happen in the second class) and share the plan with the residents and the class. The teacher and class will comment on the plan. The group will revise the plan after class so it’s ready for the second meeting.
Step four: Homework tasks: Revising the plan
The students will use the time before the second class to revise the plan and prepare for challenges, problems occurred over the 6-months period.
Optional wild cards could be used as unpredictable events occur between the first and second meeting. Such events include:
Energy price dramatically increase (or decrease)
Heat wave
Heavy rain for three months (no solar gain)
Whole grid decarbonisation (might affect occupants with gas central heating)
Step five: Class 2 Role play
The second meeting in the second class will either be chaired by community managers/council members, or be chaired by a few residents, monitored by community managers/council members. The second meeting begins the same way. The students playing residents should research/imagine problems occurred during the 6 months period (refer to literature), and what elements of the engagement plan devised at the end of the first meeting worked and what hasn’t worked. The ‘chair’ of the meeting will take notes, ask questions or try to steer the conversations. At the end of the second meeting, the ‘chair’ of the meeting will reflect on the support and engagement plan, revise it and make a longer-term plan for the community to self-govern and grow. At the end of this class, the whole class could then engage in a discussion about the outcome of the meetings. Teachers could focus on an analysis of how the process went, a discussion about broader themes of social justice, community building, comfort, lifestyle and value system. Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the meeting.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Normative; Self-awareness; Strategic; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation, and infrastructure), SDG 12 (Responsible consumption and production); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Active pedagogies and mindset development. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational aim: The objective of this activity is to provide students with an understanding of the complexity of technology development and different considerations that need to be made by stakeholders in the design and implementation of a technology. The activity is set up as a role-play where students are assigned different roles as members of an expert panel providing feedback on the use of E-Scooters on a college campus.
Educational level: Beginner.
Learning and teaching notes:
Learners have the opportunity to:
Consider sustainability issues related to the design and use of devices and technology.
Discuss concerns related to safety and accessibility, that can be overlooked or not attended to when technology is developed under time pressure and when developers lack resources – human and material.
Practice a variety of communication modes.
Engage in research and reflection.
Teachers have the opportunity to:
Highlight issues revealing the intricate links between digital technology and the environment.
Demonstrate the value of perspective-taking and stakeholder engagement in technology development.
Reveal the ethical and accessibility aspects of technology development.
Informally evaluate critical thinking and communication skills.
Supporting resources:
Several different ethical frameworks, codes, or guidelines can be provided to students to prepare for the discussion or to reflect upon during their discussion depending on the students’ disciplinary composition. Here are a few examples:
One of the goals of this exercise is to motivate students to undertake their own research on the topic to prepare for the activity. But it is important to provide them with preliminary material to start their own research. Here are a few useful resources for this case:
Each student is assigned a role a week before the discussion.
Students assigned to the role of Eva Walker serve as the moderator and lead the conversation based on the script below.
The script provided below is there to guide the discussion, but you should leave room for the conversation to flow naturally and allow everyone to contribute.
One way to ensure students are prepared for the discussion is to assign a few questions from the script as a pre-discussion assignment (short answers). Similarly, to ensure students reflect on the discussion, they can be assigned the last question from the script as a post-discussion exercise. They can also be asked specifically about frameworks and concepts related to sustainability.
Role-play scenario narrative and description of roles:
Eva Walker recently started reporting about on-campus traffic issues for the student newspaper. She would have preferred to do more human-interest stories, but as a new member of the staff who had just moved from intern to full-time, she was happy to get whatever opportunity she could. Eva was studying both journalism and creative writing, and this was her dream on-campus job. She also realised that, even though many stories at first didn’t appear to her as though she would be interested in them, as she dug deeper she eventually found an angle with which she could strongly relate.
One weekday morning, Eva was working on yet another story on parking woes when Amina Ali, one of the editorial staff members, texted her to say that there had been an accident on campus; she just passed it at the intersection of the library and the recreation building, and it might be worth covering. Eva was at the library, and within no time, reached the spot of the accident.
When Eva arrived, a police vehicle, an ambulance, and a fire engine were all present at the scene, and near the accident site, an e-scooter lay smashed into a tree. It looked like the rider was sitting in the ambulance and was being treated by the medical staff. A little further away, Eva noticed the police speaking to a young woman in a wheelchair. Although Eva’s first instinct was to try to talk to the police or the medical staff to ascertain what had happened, she realised this probably wasn’t the best moment and she would have to wait until later for the official version of the event.
She looked around and saw a group of four students leaning against a wall with drinks in their hands. A couple of them were vaping. Eva thought that they looked like they had been here for a while, and she walked over to ask them what had happened. From the account they gave her, it appeared as if the e-scooter rider was coming around the bend at some speed, saw the woman in the wheelchair a little too late to ride past her, and, to avoid hitting her, leapt off his e-scooter and let the vehicle hit the tree. Things happened very quickly and no one was exactly sure about the sequence of events, but this was the rough story she got.
Later, she called the police department on campus and was able to speak with one of the officers to get an official account. The story was very similar to what she already knew. She did find out that nobody was seriously hurt and that the only injuries were to the e-scooter rider and were taken care of at the scene by the medical staff. When she asked about who was to blame or if any legal action was expected, she was told that there were no laws around the use of helmets or speeding for e-scooters yet and that she should reach out later for more information. Eva wrote up what she had so far, sent it over to the editorial staff, and considered her work done.
But as she was walking back to her halls of residence that evening, her attention was drawn to the large number of e-scooters parked near the library. As she crossed the central campus, she noticed even more e-scooters lying about the intersections, and there was a litter of them around the residence hall. She wondered why she hadn’t noticed them before. Her attention was drawn today, she thought, because of the accident and also because she saw a good Samaritan remove an e-scooter from the sidewalk, as it was blocking the path of one of the self-driving food delivery robots. It’s a sign, Eva thought, this is what she needs to look for more in her next article, the use of e-scooters on campus.
Eva recognised that, to write a balanced and informative article, as she had been taught to do, she would have to look at many different aspects of the use of e-scooters as well as look broadly at mobility on campus and the use of battery powered vehicles. She had also recently seen e-bikes on campus and, in addition to the food delivery robots, service robots in one of the buildings that she assumed was either delivering paperwork or mail. The accident had also made her realise that, when it came to mobility, accessibility was something that never crossed her mind but that she now understood was an important consideration. She hoped to learn more about it as her research progressed.
As background research for the article, Eva started reading up on articles and studies published about e-scooters, e-bikes, and urban mobility and came across a range of concerns that had been raised beyond accessibility. First, there were reports that e-scooters are not as environmentally friendly as many service providers had made them out to be. This is related to the production of the battery as well as the short lifespan of the vehicles, and as of yet, there has been no procedure implemented to reuse them(Pyzyk, 2019). Second, there were reports of littering, where e-scooters are often left on sidewalks and other places where they restrict movement of other vehicles, pedestrians, and in particular, those in wheelchairs (Iannelli, 2021). Finally, it was also clear from the reports that accidents and injuries have increased due to e-scooters, especially since many riders do not wear safety gear and are often careless, even inebriated, as there were little to no regulations (2021). When she approached her editor with an outline for an article, she was advised to do some more reporting by talking with people who could shed more light on the issue.
After some research, Eva shortlisted the following experts across fields related to e-scooters for an interview, and once she spoke with them, she realised that it would help her if she could get them to have a dialogue and respond to some of the questions that were raised by other experts. Therefore, she decided to conduct a focus group with them so that she achieved her goal of a balanced article and did not misrepresent any expert’s point of view.
Experts/roles for discussion:
1. Bryan Avery is co-founder and chief technology officer (CTO) of RideBy, an e-scooter company. RideBy is one of the options available on campus. Born in a small town, Bryan used to ride his bicycle everywhere while growing up, and for him, founding and leading an e-scooter company provided a chance to merge his interests in personal transportation and new forms of energy. He was a chemical engineer by training, and at a time when most of his friends ended up working for big oil companies, Bryan decided to work on alternative fuels and found himself developing expertise and experience with batteries. For most of the software- and mobile device-related development, RideBy outsourced the work and utilised ready-to-configure systems that were available. By only keeping the core device and battery functionality in-house, they could focus on delivering a much stronger product. Overall, he is quite happy with the success of RideBy so far and can’t help but extol the difference it can make for the environment.
2. Abiola Abrams is a professor of transportation engineering and an expert on mobility systems. Her work combines systems engineering, computer science, and data analytics. Her recent research is on urban mobility and micro-mobility services, particularly e-bikes. In her research, Dr. Abrams has looked at a host of topics related to e-bikes, many of which are also applicable to e-scooters, including the optimisation of hubs for availability, common path patterns of users, subscription use models, and the e-waste and end of lifecycle for these vehicles. Increasingly, she has become concerned about the abuse of some of these services, especially in cities that attract a lot of tourists, and about the rough use of the vehicles, so much so that many do not even last for a month. In a new project, she is investigating the effect of e-vehicles on the environment and has found that there is mixed evidence for how much difference battery-operated vehicles will actually make for climate change compared to vehicles that use fossil fuels.
3. Marco Rodrigues works as transportation director for the local county government where the university is based. As part of a recent bilateral international exchange, he got the opportunity to spend time in different cities in Germany to learn about local transportation. He realised very quickly that local transportation was very different in Germany; residents had a range of public, shared options that were missing in the United States. However, he also realised that e-mobility services were being considered across both countries. He investigated this further and found that Germany waited until it could pass some regulations before allowing e-mobility operators to offer services; helmets were mandatory on e-scooters and e-bikes, and riders had to purchase a nominal insurance policy. He also learned that there were strict rules around the sharing of data generated by the vehicles as well as the apps used by riders.
4. Judy Whitehouse is director of infrastructure and sustainability on campus and responsible for planning the long-term development of the campus from a space perspective, but also increasingly from a sustainability dimension. As the number of students has increased, so has the need for more infrastructure, including classrooms and halls of residence. This has also resulted in greater distances to be traveled on campus. Judy regards e-mobility options as a necessary component of campus life and has been a strong supporter for them. Lately, she has been called into meetings with safety and emergency management people discussing the issue of increased accidents on campus and the littering of e-vehicles across the campus. Not only is it bad for living on campus, but it is also bad for optics. A recent photo featured in the campus newspaper was a stark reminder of just how bad it can look. She is further divided on the use of e-scooters due to misgivings about the sustainability of battery use, as new research suggests that manufacturing batteries and disposing them are extremely harmful for the environment.
5. Aaron Schneider heads Campus Mobility, a student interest group focused on autonomous vehicles development and use. The group members come from different degree programmes and are interested in both the technical dimensions of mobile solutions and the policy issues surrounding their implementation. Aaron himself is a computer science student with interests in data science, and with some of his fellow members from the policy school, he has been analysing a range of mobility-related datasets that are publicly available online. Of these, the data on accidents is quite glaring, as the number of accidents in which e-scooters are involved has gone up significantly. Aaron and his friends were intrigued by their findings and approached some of the companies to see if they would share data, but they were disappointed when they could not get access. Although the companies said it was due to privacy reasons, Aaron was not too convinced by that argument. He was also denied access to any internal reports about usage patterns of accidents. Ideally, he would have liked to know what algorithms were used for optimising delivery and access, but he knew he was not going to get that information.
6. Sarah Johnson is the head of accessibility services on campus and is responsible for both technology- and infrastructure-related support for students, faculty, and staff. The growth of the physical campus and the range of technological offerings has significantly increased the workload for her office, and they are really strained in terms of people and expertise. The emphasis from the university leadership is largely on web and IT accessibility, as teaching and other services are shifting quickly online, but Sarah realises that there is still an acute need to provide physical and mobility support to many members of the community. Although all the new buildings are up to code in terms of accessibility, there is still work to be done both for the older buildings and especially for mobility. Campus beautification does not always go along with access. She is also worried about access to devices, as taking part in any campus activity requires not just a computer, but also access to mobile devices that are out of reach economically for many and not easy to use.
Role-play script:
To help get the dialogues started and based on her prior conversation with the group, Eva has prepared some initial questions:
What role are you playing and, from your perspective, what do you see as the biggest pros of using e-vehicles, especially e-scooters on campus?
From your perspective, what do you see as the biggest downside of using e-vehicles, especially e-scooters on campus?
Can you confidently say that e-scooters are an environmentally friendly option?
What current accessibility accommodations would be impacted by the use of e-vehicles, and what new, potential accessibility accommodations might arise from increased use of e-vehicles?
Would we be better off waiting for more regulations to come before deploying these vehicles on campus and, if so, what should those regulations look like?
Should we use automatic regulation of speed on the vehicle based on where it is and/or inform authorities if it is violated?
Can we control where it can go or penalise if not put back?
What guidelines do you recommend for e-scooter usage on campus?
Authorship and project information and acknowledgements: The scenarios and roles were conceptualised and written by Aditya Johri. Feedback was provided by Ashish Hingle, Huzefa Rangwala, and Alex Monea, who also collaborated on initial implementation and empirical research. This work is partly supported by U.S. National Science Foundation Awards# 1937950, 2335636, 1954556; USDA/NIFA Award# 2021-67021-35329. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The research study associated with the project was approved by the Institutional Review Board at George Mason University.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr. Sarah Jayne Hitt Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Topic: Building sustainability awareness.
Tool type: Teaching.
Relevant disciplines: Any.
Keywords: Everyday ethics; Communication; Teaching or embedding sustainability; Knowledge exchange; SDGs; Risk analysis; Interdisciplinary; Social responsibility; AHEP; Sustainability; Higher education.
Sustainability competency: Systems thinking; Critical thinking; Self-awareness, Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: Many SDGs could relate to this activity, depending on what students focus on. Teachers could choose to introduce the SDGs and dimensions of sustainability prior to the students doing the activity or the students could complete part one without this introduction, and follow on to further parts after an introduction to these topics.
Reimagined Degree Map Intervention: Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner / Intermediate.
Learning and teaching notes:
This learning activity is designed to build students’ awareness of different dimensions of sustainability through reflection on their everyday activities.This activity is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. Educators could incorporate shorter or longer versions of the activity as fits their needs and contexts. This activity could be presented without a focus on a specific area of engineering, or, students could be asked to do this around a particular discipline. Another powerful option would be to do the activity once at the beginning of term and then again at the end of term, asking students to reflect on how their perceptions have changed after learning more about sustainability.
This activity could be delivered as an in-class small group discussion, as an individual writing assignment, or a combination of both. Students could even make a short video or poster that captures their insights.
Learners have the opportunity to:
Develop awareness around personal connections to sustainability issues;
Engage in reflection;
Undertake informal research;
Practice communication in multiple modes.
Teachers have the opportunity to:
Introduce topics of sustainable development the UNSDGs, and dimensions of sustainability;
Evaluate critical thinking and/or written and/or verbal communication skills;
Introduce or contextualise issues around materials, manufacturing, supply chain, energy/water consumption, and end-of-life.
Choose 3 activities that you do every day. These could be things like: brushing your teeth, commuting, cooking a meal, messaging your friends and family, etc. For each activity, consider the following as they connect to this activity:
Materials and energy required to do the activity;
Manufacturing and transportation required to enable you to do it;
Water consumed and waste generated for all of the above.
To help you consider these elements, list the “stuff” that is involved in doing each activity—for example, in the case of brushing your teeth, this would include the toothbrush, the toothpaste, the container(s) the toothpaste comes in, the sink, the tap, and the water.
What are the “ingredients” or materials that make up this stuff?
Where is this stuff made? If you don’t know, can you find out? If you can’t find out, why?
How did this stuff get to you? Can you uncover the “chain of custody” from where it was made to how it arrived in your possession? If not, what links in the chain are missing and what might that mean?
Where does it go when you are done with it, and whose responsibility is it? How circular is the waste disposal system related to this stuff?
Who besides you is involved in this process of supply, use, and disposal? This could include companies, government entities, and/or community and financial organisations.
Which engineering disciplines inform the creation, distribution, use, and disposal of this stuff?
Part two:
Teachers may want to preface this part of the activity through an introduction to the SDGs, or, they may want to allow students to investigate the SDGs as they are related to these everyday activities. Students could engage in the following:
Research and report on which SDG(s) are connected to this daily activity.
Compare and contrast how this daily activity is conducted in different countries—how do differences in policies and infrastructure affect how it is done, and how sustainable it is?
Suggest improvements to systems that would enable a more sustainable approach to this activity, from the perspective of design, manufacture, use, and disposal.
Debate the challenges, risks, and benefits to enacting these improvements.
Create a solution to an aspect of the activity that is not as sustainable as it could be.
Develop a campaign to influence a stakeholder to change a process in such a way that would make the activity more sustainable.
Acknowledgements: This activity is based on an Ethical Autobiography activity developed by Professor Sandy Woodson and other instructors of the “Nature and Human Values” module at the Colorado School of Mines.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief.
Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below.
Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate / Advanced.
Learning and teaching notes:
This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.
The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.
Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways:
Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4)
LO1: Describe the operation of electronic circuits and associated discrete components (AHEP4: SM1m).
LO2: Compare the operation principles of a variety of electronic sensors and actuators and apply them to a given task (AHEP4: EA2m).
LO3: Interpret how transistors and operational amplifiers function (AHEP4: EA4m).
LO4: Know how amplifiers operate and assess their performance for a given application (AHEP4: EA1m; EA2m).
LO5: Integrate the operation of an actuator, sensor, and power supply into a system for a given task (AHEP4: EA4m; EA6m).
In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification.
Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5)
LO1: communicate the primary challenges inherent in wireless communication (AHEP4: SM1m
LO2: devise solutions to a given design challenge (AHEP4: SM1m; SM3m) In this pathway, the project deliverable could be in the form of a Technical Report.
This project allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
analyse local environmental factors that affect river water levels,
appreciate local planning with respect to installing devices on or near a riverbank,
consider how to communicate with a variety of stakeholders,
undertake cost-benefit and value trade-off analysis in the context of using sustainable materials,
undertake cost-benefit and value trade-off analysis in the context of using renewable energy,
practise argument and reasoning related to sustainability dilemmas.
Teachers have the opportunity to:
introduce concepts related to climate change in the local environment,
introduce concepts related to environmental sensors,
introduce concepts related to renewable energy sources,
introduce concepts related to battery systems,
introduce concepts related to local planning laws,
informally evaluate students’ argument and reasoning skills,
integrate technical content in the areas of electrical or mechanical engineering related to water level monitoring,
authentically assess a team activity and individual work.
A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation.
Time frame & structure: This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.
It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem.
To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article: ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’
Context and Stakeholders:
Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered.
Pathway 1
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and doesit surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change?
Design Process:
To satisfy the learning outcomes identified above the following activities are suggested.
Assessment activity 1 – Physical artefact:
Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level.
b) It will integrate to appropriate Operational Amplifier circuitry.
c) The circuitry will control an output device or devices.
d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build).
The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements.
The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references).
Pathway 2
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.
You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity:Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.
Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town.
Design Process:
Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m.
Assessment activity – Technical report:
A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report:
Highlighting the benefits and drawbacks of each.
Explaining the inherent challenges in wireless communication that defined your selections
Design tools and problem-solving techniques should be used to define the product requirements and consequent component selection
The report shall be no more than 3000 words (plus illustrations and references)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Energy efficiency; Factories; Best practice; Eco-efficiency; Practice maturity model; AHEP; Student support; Sustainability.
Sustainability competency: Critical thinking; Integrated problem-solving. UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production).
Reimagined Degree Map Intervention: More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Learning and teaching notes:
The following are a set of use cases for a maturity model designed to improve energy and resource efficiency in manufacturing facilities. This guide can help engineering educators integrate some of the main concepts behind this model (efficient use of energy and resources in factories in the context of continuous improvement and sustainability) into student learning by showcasing case study examples.
Teachers could use one or all of the following use cases to put students in the shoes of a practicing engineer whose responsibility is to evaluate and improve factory fitness from a sustainability perspective.
Factory assessment in multiple assembly facilities for an aircraft manufacturer:
The assessment is part of the following use case on this industrial energy efficiency network (IEEN):
The company operates in the aerospace sector and runs 11 manufacturing sites that employ approximately 50000 people across 4 European countries. Most of the sites are responsible for specific parts of the aircraft i.e. fuselage, wings. These parts once manufactured are sent to two final assembly sites. Addressing energy efficiency in manufacturing has been a major concern for the company for several years.
It was not until 2006 that a corporate policy was developed that would formalize efforts towards energy efficiency and set a 20% reduction in energy by the year 2020 across all manufacturing sites. An environmental steering committee at board level was set up which also oversaw waste reduction and resource efficiency. The year 2006 became the baseline year for energy savings and performance measures. Energy saving projects were initiated then, across multiple manufacturing sites. These were carried out as project-based activities, locally guided by the heads of each division and function per site.
A corporate protocol for developing the business case for each project is an initial part of the process. It is designed to assign particular resources and accountabilities to the people in charge of the improvements. Up to 2012, improvement initiatives had a local focus per site and an awareness-raising character. It was agreed that in order to replicate local improvements across the plants a process of cross-plant coordination was necessary. A study on the barriers to energy efficiency in this company revealed three important barriers which needed to be addressed:
Lack of accountability: The site energy manager is responsible for reducing the site’s energy consumption but only has authority to act within a facility’s domain–that is, by improving facilities and services, such as buildings and switchgear. They are not empowered to act within a manufacturing operations parameter. Therefore, no one is responsible for reducing energy demand.
No clear ownership: Many improvements are identified but then delayed due to a lack of funding to carry out the works. This is because neither facilities nor manufacturing operations agree whether the improvement is inside their parameter: typically, facilities claim that it is a manufacturing process improvement, and operations claim that any benefit would be realized by facilities. Both are correct, hence neither will commit resources to achieve the improvement and own the improvement.
No sense of urgency: A corporate target exists for energy reduction–but the planned date for achieving this is 2020.
The solution that the environmental steering committee decided to support, was the creation of an industrial energy efficiency network (IEEN). The company had previously done something similar when seeking to harmonize its manufacturing processes through process technology groups (Lunt et al., 2015). This approach consists of each plant nominating a representative who is taking the lead and coordinating activities. It is expected that the industrial network would contribute to a significant 7% share out of the 20% energy reduction target for the year 2020 since its establishment as an operation in 2012.
The network’s operations are further facilitated with corporate resources such as online tools that help practitioners report and track the progress of current projects, review past ones, and learn about best-available techniques. This practice evolved into an intranet website that is further available to the wider community of practitioners and aims to generate further interest and enhance the flow of information back to the network. Additionally, a handbook to guide new and existing members in engaging effectively with the network and its objective has been developed for wider distribution. These tools are supported by training campaigns across the sites.
Most of the network members also act as boundary spanners (Gittell and Weiss, 2004) in the sense that they have established connections to process technology groups or they are members of these groups as well. This helps the network establish strong links with other informal groups within the organization and act as conductor for a better flow of ideas between these groups and the network. Potentially, network members have a chance to influence core technology groups towards energy efficiency at product level.
On average, a 5-10% work-time allocation is approved for all network members to engage with the network functions. In case a member is not coping in terms of time management there is the option of sub-contracting the improvement project to an external subcontractor who is hired for that particular purpose and the subcontractor’s time allocation to the project can be up to 100%.
“….by having the network we meet and we select together a list of projects that we want to put forward to access that central pot of money. So we know roughly how much will be allocated to industrial energy efficiency and so we select projects across all of the sites that we think will get funded and we put them all together as a group…so rather than having lots of individual sites making individual requests for funding and being rejected, by going together as a group and having some kind of strategy as well…”
Each dot on each of the model rows represents the relative efficiencies that a factory achieves in saving energy and resources through best practice (5 of 11 factories represented here, each delivering an aircraft part towards final assembly). The assessment allowed this network of energy efficiency engineers and managers to better understand the strengths and weaknesses in different factories and where the learning opportunities exist (and against which dimension of the model).
2. The perception problem in manufacturing processes and management practice:
The following assessment is performed in a leading aerospace company where two senior engineering managers (green and orange lines) find it difficult to agree on the maturity of different practices currently used at the factory level as part of their environmental sustainability strategy.
This assessment was part of the following use case:
The self-assessment was completed by the head of environment and one of his associates in the same function. These two practitioners work closely together and are based in the UK headquarters. Even though the maturity profiles do not vary significantly (1 level plus or minus) it is clear that there is very little overall agreement on the maturity levels in each dimension.
3. Using the maturity model as a consensus building tool in a factory:
Seven practitioners from different parts of the business (engineering, operations, marketing, health and safety etc.) were brought together to understand how they think the factory performs. The convergence between perceptions was very small and this would indicate high levels of resistance to change and continuous improvement. For example, if senior managers think they are doing really well, they will not invest time and effort in better practices and technologies.
A timeline (today +5years) was used to understand where they think they are today and where they want to be tomorrow.
This can be one of the ways of thinking about improvements that need to occur, starting with areas of interest that are underperforming and developing the right projects to address the gaps.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Relevant disciplines: Environmental; Civil; Systems engineering.
Keywords: Sustainability; Environmental justice; Water and sanitation; Community engagement; Urban planning; Waste management; Nigeria; Sweden; AHEP; Higher education.
Sustainability competency: Systems thinking; Integrated problem-solving competency; Strategic competency.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 6 (Clean Water and Sanitation); SDG 11 (Sustainable Cities and Communities); SDG 13 (Climate Action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner.
Learning and teaching notes:
This case study juxtaposes the waste management strategies of two cities: Stockholm, Sweden, renowned for its advanced recycling and waste-to-energy initiatives, and Lagos, Nigeria, a megacity grappling with rapid urbanisation and growing waste challenges. The contrast and comparison aim to illuminate the diverse complexities, unique solutions, and ethical considerations underlying their respective journeys towards sustainable waste management.
This case is presented in parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Understand the role of UNSDGs in urban planning and waste management policy.
Analyse and apply diverse waste management strategies considering socio-economic and cultural contexts.
Advocate for inclusive, equitable, and environmentally conscious waste management solutions.
Teachers have the opportunity to:
Introduce concepts relating to circularity
Link real-world and systemic engineering problems with SDGs
You are a renowned environmental engineer and urban planner, specialising in sustainable waste management systems. The Commissioner of Environment for Lagos invites you to analyse the city’s waste challenges and develop a comprehensive, adaptable roadmap towards a sustainable waste management future. Your mandate involves:
Assessing the current state of waste generation, collection, and disposal in Lagos.
Evaluating the exemplar Stockholm’s waste management strategies and identifying transferable best practices.
Examining the socio-economic and cultural context of Lagos and its specific waste management needs.
Devising a holistic waste management framework that prioritises environmental sustainability, social equity, and community engagement.
Optional STOP for questions and activities:
Discussion: Compare and contrast Lagos’s current waste management with Stockholm’s system, considering factors like efficiency, technology, and environmental impact.
Activity: Map the various stakeholders involved in Lagos’s waste management system, identifying potential partners and challenges for collaboration.
Discussion: Explore the social and economic dimensions of waste management in Lagos. How does waste affect different communities and individuals?
Part two:
As you delve deeper, you recognise the multifaceted challenges Lagos faces. While Stockholm boasts advanced technologies and high recycling rates, its solutions may not directly translate to Lagos’s context. Limited infrastructure, informal waste sectors, and diverse cultural practices must be carefully considered. Your role evolves from simply analysing technicalities and policies to devising a holistic strategy. This strategy must not only champion environmental sustainability but also champion social equity, respecting the unique socio-economic and cultural nuances of each urban setting. You must design a system that:
Promotes waste reduction and source separation at the community level.
Empowers and integrates the informal waste sector through training and formalisation
Ensures access to safe and efficient waste collection for all, particularly underserved communities.
Leverages sustainable technologies and practices (e.g., composting, biogas) while remaining adaptable to resource constraints.
Optional STOP for questions and activities:
Analysing existing waste management policies
City: [Choose Stockholm or Lagos]
Existing policy: [Specify the specific policy you are analysing]
Adaptability for diverse contexts:
Can this policy be easily adapted to other cities with different socio-economic and cultural contexts?
What are the key challenges and opportunities for adaptation?
What resources and support would be needed for successful adaptation?
What technical knowledge and skills are required to enact the policy? What local industries and partners will be critical to success?
Discussion prompts:
To what extent does the existing policy prioritise environmental sustainability, social equity, and economic feasibility?
What role can communities and diverse stakeholders play in shaping and implementing waste management policies?
Part three:
While implementing your strategy, you encounter enthusiasm from some sectors but also resistance from others, particularly informal waste workers and industries whose livelihoods may be impacted. Balancing immediate socio-economic concerns with long-term environmental benefits becomes crucial.
Optional STOP for questions and activities:
Discussion: Explore the ethical considerations of implementing a sustainable waste management system that might have short-term negative impacts on certain groups. How do you balance long-term benefits with potential immediate drawbacks?
Activity: Investigate real-world examples of cities transitioning to sustainable waste management and the strategies they used to mitigate negative socio-economic impacts.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts).
The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Recognise the significance of the SDGs in engineering solutions;
Enhance their skills in applying sustainable engineering practices in real-world scenarios.
Delve into the complexities of implementing off-grid solutions.
Navigate through the ethical considerations of deploying technologies in remote, often vulnerable, communities.
Engage in critical thinking to balance technological, societal, and environmental aspects.
Teachers have the opportunity to:
Highlight the importance of SDGs in engineering.
Facilitate discussions on ethical implications in technology deployment.
Evaluate learners’ ability to devise sustainable and ethical engineering solutions.
DGS; Planning and installing photovoltaic systems: A guide for installers, architects and engineers; ISBN: 978-1849713436; Planning and installing series.
In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions.
Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain.
Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002.
Part one: Household energy for Siwa Oasis
Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.
Data on Household Energy for Siwa Oasis:
Activities:
Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
Simulate daily energy usage patterns using smart meter data.
Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
Calculate appliance power consumption and estimate electricity costs.
Discussion:
a. How does this situation relate to SDG 7, and why is it essential for sustainable development?
b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages?
Part two: Power supply options
Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel).
Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations.
Fossil fuel: Briefly discuss diesel generators and their environmental impact.
The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis.
Optional STOP for questions and activities:
Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.
Part three: Community mini-grid via harnessing the desert sun
Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly.
Electrical components of a typical PV system can be classified into DC and AC.
DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.
The key DC components are:
PV cables and connectors: PV modules are usually delivered with a junction box and pre-assembled cables with single-contact electrical connectors. They enable easy interconnection of individual modules in strings. Solar cables are made of copper or aluminum (more cost-efficient).
Combiner boxes: Here, incoming strings are connected in parallel, and the resulting current is channeled through an output terminal to the inverter. A combiner box usually contains all required protection devices, disconnectors, and measuring equipment for string monitoring.
AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:
Transformers, to increase the inverter output voltage to the grid voltage level
AC cables, buried
Circuit breakers, switchgears, and protection devices, for large PV plants (MV/HV connection)
Electricity meters
Activities:
Research and discuss the safety precautions and regulations for working with DC systems.
Analyse the DC components of a typical PV system, including cables, connectors, and combiner boxes.
Calculate the voltage and current levels at different points in the DC circuit based on the system design.
Investigate the concept of power factor and its significance in grid stability and energy bills.
Analyse the power factor of common household appliances and discuss its impact on the mini-grid.
Propose strategies to improve the overall power factor of the mini-grid, such as using capacitors or choosing energy-efficient appliances.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Circular business models; Teaching or embedding sustainability; Plastic waste; Plastic pollution; Recycling or recycled materials; Responsible consumption; Teamwork; Interdisciplinary; AHEP; Higher education.
Sustainability competency: Integrated problem-solving; Collaboration; Systems thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 12 (Responsible consumption and production); SDG 13 (Climate action); SDG 14 (Life below water).
Reimagined Degree Map Intervention: More real-world complexity, Active pedagogies and mindset development, Authentic assessment, Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study is focused on the role of engineers to address the problem of plastic waste in the context of sustainable operations and circular business solutions. It involves a team of engineers developing a start-up aiming to tackle plastic waste by converting it into infrastructure components (such as plastic bricks). As plastic waste is a global problem, the case can be customised by instructors when specifying the region in which it is set. The case incorporates several components, including stakeholder mapping, empirical surveys, risk assessment and policy-making. This case study is particularly suitable for interdisciplinary teamwork, with students from different disciplines bringing their specialised knowledge.
The case study asks students to research the data on how much plastic is produced and policies for the disposal of plastic, identify the regions most affected by plastic waste, develop a business plan for a circular business focused on transforming plastic waste into bricks and understand the risks of plastic production and waste as well as the risks of a business working with plastic waste. In this process, students gain an awareness of the societal context of plastic waste and the varying risks that different demographic categories are exposed to, as well as the role of engineers in contributing to the development of technologies for circular businesses. Students also get to apply their disciplinary knowledge to propose technical solutions to the problem of plastic waste.
The case is presented in parts. Part one addresses the broader context of plastic waste and could be used in isolation, but parts two and three further develop and add complexity to the engineering-specific elements of the topic.
Learners have the opportunity to:
apply their ethical judgement to a case study focused on a circular technology;
understand the national and supranational policy context related to the production and disposal of plastic;
analyse engineering and societal risks related to the development of a novel technology;
develop a business model for a circular technology dealing with plastic waste;
identify the key stakeholder groups in the development of a circular business model;
reflect on how risks may differ for different demographic groups and identify the stakeholder groups most vulnerable to the negative effects of plastic waste;
develop an empirical survey to identify the risks that stakeholders affected by or working with plastic waste are exposed to;
develop a risk assessment to identify the risks involved in the manufacturing of plastic waste bricks;
provide recommendations for lowering the risks in the manufacturing of plastic bricks.
Teachers have the opportunity to include teaching content purporting to:
Physico-chemical properties of plastic waste;
Manufacturing processes of plastic products and plastic bricks;
Sustainable policies targeting plastic usage and reduction;
Climate justice;
Circular entrepreneurship;
Risk assessment tools such as HAZOP and their application in the chemical industry.
Plastic pollution is a major challenge. It is predicted that if current trends continue, by 2050 there will be 26 billion metric tons of plastic waste, and almost half of this is expected to be dumped in landfills and the environment (Guglielmi, 2017). As plastic waste grows at an increased speed, it kills millions of animals each year, contaminates fresh water sources and affects human health. Across the world, geographical regions are affected differently by plastic waste. In fact, developing countries are more affected by plastic waste than developed nations. Existing reports trace a link between poverty and plastic waste, making it a development problem. Africa, Asia and South America see immense quantities of plastic generated elsewhere being dumped on their territory. At the moment, there are several policies in place targeting the production and disposal of plastic. Several of the policies active in developed regions such as the EU do not allow the disposal of plastic waste inside their own territorial boundaries, but allow it on outside territories.
Optional STOP for activities and discussion
Conduct research to identify 5 national or international regulations or policies about the use and disposal of plastic.
Compare these policies by stating which is the issuing policy body, what is the aim and scope of the policy.
Reflect on the effectiveness of each policy and debate in class what are the most effective policies you identified.
Write a reflection piece based on a policy of your choice targeting the use or disposal of plastic. In this reflection, identify the benefits of the policy as well as potential limitations. You may consider how you would improve the policy.
Conduct research to identify how much plastic is produced and how much plastic waste is generated in your region. Identify which sectors are the biggest producers of waste. Conduct research on how much of this plastic waste is being exported and where is it exported.
Identify the countries and companies with the biggest plastic footprint. Discuss in the classroom what you consider to contribute to these rankings.
Research global waste trading and identify the countries that are the biggest exporters and importers of plastic waste. Discuss the findings in classroom and what you consider to contribute to these rankings. Discuss whether there are or should be any restrictions governing global waste trade.
Write a report analysing the plastic footprint of a country or company of your choice. Include recommendations for minimising the plastic footprint.
Impressed by the magnitude of the problem of plastic waste faced today, together with a group of friends you met while studying engineering at the Technological University of the Future, you want to set up a green circular business. Circular business models aim to use and reuse materials for as long as possible, all while minimising waste. Your concern is to develop a sustainable technological solution to the problem of plastic waste. The vision for a circular economy for plastic rests on six key points (Ellen McArthur Foundation, n.d.):
Elimination of problematic or unnecessary plastic packaging through redesign, innovation, and new delivery models is a priority
Reuse models are applied where relevant, reducing the need for single-use packaging
All plastic packaging is 100% reusable, recyclable, or compostable
All plastic packaging is reused, recycled, or composted in practice
The use of plastic is fully decoupled from the consumption of finite resources
All plastic packaging is free of hazardous chemicals, and the health, safety, and rights of all people involved are respected
Optional STOP for group activities and discussion
Read about the example of the Great Plastic Bake Off and their project focused on converting plastic waste into plastic bricks. Research the chemical properties of plastic bricks and the process for the manufacturing process. Present your findings on a poster or discuss it in class.
Develop a concept map with ideas for potential sustainable technologies for reducing or recycling plastic waste. You may use as inspiration the Circular Strategies Scanner (available here).
Select one idea that you want to propose as the focus of your sustainable start-up. Give a name to your startup!
Describe the technology you want to produce: what is its aim? What problem can it solve or what gap can it address? What are the envisioned benefits of your technology? What are its key features?
Map the key stakeholders of the technology, by identifying the decision-makers for this technology, the beneficiaries of the technology, as well as those who are exposed to the risks of the technology
Analyse the market for your technology: are there businesses with a similar aim or similar technology? What differentiates your business or technology from them?
Identify key policies relevant to your technology: are there any policies or regulations in place that you should consider? In your geographical area, are there any policy incentives for sustainable technologies or businesses similar to the one you are developing?
For your start-up, assign different roles to the members of your group (such as technology officer, researcher, financial officer, communication manager, partnership director a.s.o) and describe the key tasks of each member. Identify how much personnel you would need
Identify the cost components and calculate the yearly costs for running your business (including personnel).
Perform a SWOT analysis of the Strengths, Weaknesses, Opportunities and Threats for your business. You may use this matrix to brainstorm each component.
Part three:
The start-up SuperRecycling aims to develop infrastructure solutions by converting plastic waste into bricks. Your team of engineers is tasked to develop a risk assessment for the operations of the factory in which this process will take place. The start-up is set in a developing country of your choice that is greatly affected by plastic waste.
Optional STOP for group activities and discussion
Agree on the geographical location of the startup SuperRecycling and identify the amount of plastic waste that your region has to cope with, as well as any other relevant socio-economic characteristics of the region.
Identify the demographic categories that are most exposed to the risks of plastic waste in the region.
Research and analyse the situation of the informal plastic waste picking sector in the region: who is picking up the waste? How much do they earn for working with waste? Is this a regular form of income and who pays this income? What does it mean to be an “informal” worker? Are there any key insights about the characteristics of the plastic waste workers that you find interesting?
Based on research and your own reflections, write a report on the role and risks that the plastic waste pickers are exposed to in their work.
Create an empirical survey with the aim of identifying the risks the plastic waste pickers are exposed to, as well as the strategies they take to mitigate risks or deal with accidents.
Create an empirical survey with the aim of identifying the risks that the factory workers at SuperRecycling are exposed to, as well as the strategies they take to mitigate risks or deal with accidents.
Research the manufacturing process for developing plastic bricks and analyse the technical characteristics of plastic bricks, based on existing tests.
With the classroom split into 2 groups, argue in favour or against their use of plastic bricks in construction. One group develops 5 arguments for the use of plastic bricks in construction, while the other group develops 5 arguments against the use of plastic bricks in construction. At the end, the groups disperse and students vote individually via an anonymous online poll whether they are personally in favour or against the use of plastic bricks in construction.
Create a HAZOP risk assessment for the manufacturing processes of the factory where plastic waste is converted into plastic bricks.
Develop an educational leaflet for preventing the key injuries and hazards in the process of converting plastic waste into bricks, both for the informal waste pickers and the factory workers.
Acknowledgement: The authors want to acknowledge the work of Engineers Without Borders Netherlands and its partners to tackle the problem of plastic waste. The case is based on the Challenge Based Learning exploratory course Decision Under Risk and Uncertainty designed by Diana Adela Martin at TU Eindhoven, where students got to work on a real-life project about the conversion of plastic waste into bricks to build a washroom facility in a school in Ghana, based on the activity of Engineers Without Borders Netherlands. The project was spearheaded by Suleman Audu and Jeremy Mantingh.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.