Theme: Research, Collaborating with industry for teaching and learning, Graduate employability and recruitment

Authors: Associate Prof Graeme Knowles (Director of Education Innovation, WMG), Dr Jane Andrews (Reader in STEM Education Research) and Professor Robin Clark (Dean WMG)

Keywords: Transformational Change, Industry-Education Partnerships, Educational Research, Scholarship

Abstract: The ‘Transforming Tomorrow’ Project is an example of how educational research may be used to inform and underpin change in engineering education. Building on previous research, the project provides an example of how research and scholarship may be used to effect transformational change by linking industrial requirements with educational strategy and practice. Bringing together theoretically grounded curriculum design with two years of educational research, mainly conducted during the pandemic, the primary output thus far is the development of a series of professional development workshops. Such workshops are aimed at preparing engineering educators to make sure that as WMG emerges out of the pandemic and into a time of unprecedented uncertainty and change, we continue to produce high quality graduates able to ‘hit the ground running’ upon entering employment. This short paper summarises the background to the project, discussing the methodology and providing exemplar data whilst also outlining the content of the workshops.

 

Introduction

WMG has a strong history of providing both practically relevant education and producing graduates who are able to impact the companies they work for from the earliest point of employment. The Department’s experience, built up over many years, has come about through the development of strong relationships between WMG colleagues and industry, through mutual understanding and the co-creation of relevant courses. However, as with the whole of the Higher Education Sector, WMG cannot afford to stand still. With the ever-increasing and dynamic demands of the Engineering Sector there is a constant need to reflect and consider whether impactful outcomes are still being realised.

The ‘Transforming Tomorrow’ Project is about taking a holistic view of the Department’s educational provision in order to understand the effectiveness of the provision from students’ perspective, whilst also taking account of the views and experiences of staff and industry employers. With the research underway, a number of datasets collected and emergent findings analysed, WMG has the basis with which to begin to affect transformational change both in our educational offerings and also in how we  better meet the needs of industry. This paper reports the first part of the Project.

Context

For many, the pace of change since the onset of Covid19 has been challenging. In WMG, having to completely reconfigure what is an exceptionally industrially focused curriculum and teach online took many by surprise. At the beginning of the Pandemic a critical literature review was undertaken looking at blended and  online learning; five key themes were identified:

  1. The need to adopt  a design approach to curriculum development
  2. The quality of the student experience
  3.  Student engagement
  4. The challenges and benefits of blended learning
  5. Student and academic perceptions of online learning

Each of these themes have in common the fact that the virtual learning approaches analysed and  discussed were developed over a significant period of time.   

Method and Findings

A mixed methodological approach was utilised starting with a quantitative survey of first year students and staff. This first survey, which took place in October 2021, focused on students’ perceptions of what types of learning approaches and techniques they expected to encounter whilst at university. Comprising a mixture of Degree Apprentices and Traditional Engineering undergraduates, the cohort were unique in that they had spent a significant part of their pre-university education learning from home during the lockdown. 

The results of the survey are given below in Figure 1 and reveal that, during the Pandemic at least,  engineering undergraduate students start university with the perception that they will be spending much of their time working independently and learning online.

 

Figure 1: First Year Engineering Students’ Expectations of Learning and Teaching at University: Mid-Pandemic (October 2021)

 

In looking at the above table one thing that immediately drew colleagues’ attention was that only half of the students expected to frequently encounter active learning approaches, and just under two-fifths anticipated frequently engaging in real-life work-related activities. Having given considerable thought as to how to assure that learning through the Pandemic maintained high levels of both these activities, this took colleagues by surprise. It also suggested  a lack of preparedness, on behalf of the students, to proactively engage in practical engineering focused education.

For the academic staff, a survey conducted at the same time sought to determine colleagues’ preferences in terms of teaching approaches. Figures 2 and 3 below provide an overview of the answers to two key questions


 

 

 

This paper necessarily provides only a small insight into the research findings, in total over 1,300 undergraduate and postgraduate students and over 200 colleagues have participated in the research thus far. Analysing the findings and feeding-forward into the Education and Departmental Executive structures, the findings are being used to shape how education has continued under the lockdown (and will continue into the future).  With a firm-eye for the ever-changing requirements and expectations of industry, a series of pedagogical workshops grounded in the Project research findings have been developed. The aim of such workshops is to upskill academic colleagues in such a way so as to be able to guarantee that WMG continues to offer industrially relevant education as society moves out of the Pandemic and into an unknown future.

Moving Forward: Scholarship, Synergy & Transformational Change: Meeting the learning and teaching challenges of 21st Century Industry

Planning, the second stage of the Project has meant synthesizing the research findings with organisational strategy and industrial indicators to put in place a series of professional-development workshops for teaching colleagues. Each workshop focuses on a different area of educational practice and considers the needs of industry from a particular standpoint. Plans are underway to use the workshops themselves as opportunities to gather data using an Action Research Methodology and a Grounded Theory Philosophy. The Project is at best estimate, midway through its lifecycle, but may continue for a further two years depending on the Covid situation.

The planned workshops, which will be offered to colleagues throughout the Spring and Summer, 2022, will focus around six distinctive but interlinked topics:  

1. Teaching to Meet the Challenges of Industry

2. Student-Centred Active Learning

3. Growing independent learners

4. Levelling the Playing Field

5. Re-Designing what we do

6. Engineering  an environment for learning

Conclusion

In conclusion, society is entering what has been termed ‘the new normal’; for WMG, there is nothing ‘normal’ about what we do. We are entering a ‘Transformational Time’; a period when by completely changing and challenging our educational offerings and culture we will work with our industrial partners to purposefully disrupt  the ‘new normal’. In doing so we will continue to produce forward-thinking, flexible and synergetic learning experiences from which highly qualified graduates able to succinctly blend into the workplace will emerge. 

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Research, Graduate employability and recruitment

Authors: Alex Prince (Sheffield Hallam University) and Prof Wayne Cranton (Sheffield Hallam University)

Keywords: Innovation, SMEs

Abstract: The Sheffield innovation Programme led by Sheffield Hallam with the Growth Hub and the University of Sheffield, delivers bespoke R&D, consultancy and workshops, driving innovation in regional SMEs. In total, since 2016, our experts from across the University have supported over 400 projects with regional businesses, enabling them to grow, diversify and meet changing customer needs. Many projects lead to further collaborations such as KTPs and create new products, processes and market opportunities.

 

Background

The Sheffield Innovation Programme (SIP) was set up in 2016 to support small and medium sized enterprises (SMEs) from across the South Yorkshire region to access academic expertise, facilities and resources at Sheffield Hallam University and the University of Sheffield, to stimulate innovation and growth and to increase business competitiveness. The focus of this paper is on activities delivered by Sheffield Hallam University.

Sheffield Hallam University leads the programme, and with the ÂŁ3.1m second phase of the programme also introducing two Innovation Advisors working for the Growth Hub. The programme is jointly funded by; the European Regional Development Fund (ERDF), the universities, South Yorkshire Mayoral Combined Authority and the Higher Education Innovation Fund (HEIF), providing support at zero-cost to businesses. It runs until June 2023.

Activities

The programme has now reached a milestone of 400 projects with regional SMEs, enabling them to grow, diversify and meet changing customer needs. To date over 150 academics have worked with companies. Of these 76 staff who are based in Sheffield Hallam’s engineering research centres have worked with 85 companies. 

SIP supports time for academics to undertake work with clients. It uses funding to enable delivery of R&D consultancy services to the businesses, helping to establish new products or services, resolve problems or advise on appropriate routes forwards.

Outputs

The main output is ‘business assist’ interventions- a minimum of 12 hours of engagement.  These are delivered through bespoke R&D-based consultancy and workshops. The average intervention is approx. 7 days, recognising the potential time required to work with a client meaningfully.

Sheffield Hallam has implemented a light-touch internal approval process for clients where support may take more than 10 days of time. Such investment needs to demonstrate significant added value- for the client in terms of market opportunity or jobs created, or potentially for us also in terms of joint funding proposal development.

SIP has now resulted in 8 successful KTP applications for Sheffield Hallam with more in the pipeline, plus other Innovate UK and commercial consultancy activities, plus considerable reputational benefit regionally.

SIP, Innovation and Engineering expertise

SIP has developed a proven model for collaborating with SMEs, buying out the time of engineers and other academic experts so they can work with companies.

The core areas of academic support are the expertise within the Materials Engineering Research Institute (MERI), the National Centre of Excellence for Food Engineering (NCEFE), and the Sport Engineering Research Group (SERG) and Design Futures (Product and Packaging).

In a region with a very low level of innovation and investment in R&D, the project provides an important entry point to the University’s expertise and a platform for longer term projects and creates opportunities for early career researchers, graduate interns and KTP associates.  Project delivery connects our engineering expertise with specialisms across the University resulting in collaborations with designers, biosciences and materials, and supports targeted engagement with sectors for example glass and ceramics and the food industry.

Examples: 

  1. Thermotex Engineering a family-run business which operates in the field of thermodynamics and specialises in manufacturing thermal insulation. The company required physical evidence of how a fabric performed in order to make a bid for a major project based in Arctic Russia. We undertook accelerated weathering testing on the durability of a fabric material when it was exposed to cycles of freezing and thawing, UVB radiation and high temperature / relative humidity. ‘This solution provided us with indicative product testing for unusual characteristics, access to laboratory equipment, and performance of specific tests,’ said Paige Niehues, the Commercial and Technical Executive at Thermotex Engineering. https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/case-studies/accelerated-weathering-testing
  2. Sheffield-based SME Safety Fabrications Ltd manufactures fall protection and building access solutions. This includes roof top anchoring systems that allow roped access (e.g., abseiling) at height.  The company wanted to develop a new davit arm and socket system that could be used on tall structures to improve rope access for building maintenance. Their unique product idea avoided permanent obstruction on roof tops and allowed for easy installation and removal.  MERI worked with Safety Fabrications Ltd to design different davit arm configurations which would satisfy the complex needs of the BS specification. “Working with engineering specialists within the university allowed us to theoretically explore a range of options prior to manufacture & physical testing.” John Boyle, Managing Director at Safety Fabrications Limited https://www.safetyfabrications.co.uk/
  3. Equitrek provides an excellent example of cross disciplinary working and progression of relationships with a company. In summary our design expertise enabled the company to manufacture new horse boxes targeting entry into the American market and has led to longer term KTPs.  The KTP has enabled Equi-Trek to enhance all aspects of their new product development processes, including ergonomics, spatial design, technical analysis and manufacturing.   https://www.shu.ac.uk/news/all-articles/latest-news/hallam-knowledge-transfer-partnership-local-firm-outstanding
  4. Sheffield Hallam’s National Centre of Excellence for Food Engineering helping local business Dext Heat Recovery, who worked with restaurant chains including Nando’s and Frankie and Benny’s, to develop a heat exchanger to work in industrial kitchens – reducing energy costs and environmental impact. https://www.shu.ac.uk/national-centre-of-excellence-for-food-engineering/our-impact/all-projects/dext-heat-recovery
  5. Guildhawk employs thousands of translators across the world for hundreds of clients . A project with SIP led to a KTP. At the SHU Innovation Conference 2021. Jurga Zilinskiene MBE, the CEO, told delegates in her keynote address that the KTP helped create an extraordinary SaaS platform that for the first time will help businesses of all sizes to manage people in a fast, easy and secure way.  The partnership resulted in the launch of new software products, Guildhawk Aided, Text Perfect and Guildhawk Voice avatars. https://www.fenews.co.uk/education/clean-data-for-ai-at-the-heart-of-industry-4-0-technology-revolution-says-guildhawk-ceo-coder/

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Collaborating with industry for teaching and learning, Research

Author: Prof Sa’ad Sam Medhat (IKE Institute)

Keywords: Innovation Benchmarking, Innovation Portfolios, Innovation-driven Leadership, ISO 56002, Industrial Collaboration, Growth

Abstract: The Institute of Innovation and Knowledge Exchange works closely with business and industry as well as with universities (e.g. City of Birmingham, Plymouth, Westminster). The case study will feature the application of the Investor in Innovations Standard (Aligned to the ISO 56002 Innovation Management System) within the Research, Innovation, Enterprise and Employability (RIEE) Directorate of Birmingham City University (BCU). The Case Study will look at six key areas: 1. Strategy and Alignment; 2. Organisational Readiness; 3. Core Capabilities and Technologies; 4. Industry Foresight; 5. Customer Awareness; and 6. Impact and Value.

 

Introduction

This case study draws upon the work and outcomes of the Investor in Innovations (I3) ISO56002 Standard programme Birmingham City University’s (BCU) Research, Innovation, Enterprise and Employability (RIEE) department undertook with IKE Institute to benchmark their existing innovation capabilities, identify gaps and provide an action plan for future improvement in innovation and knowledge exchange (KE).

The validation and benchmarking work conducted with BCU RIEE used a six category standard framework (see fig. 1): strategy and alignment, organisational readiness, core capabilities, technologies and IP, industry foresight, customer awareness and impact and value.

 

Fig. 1 Investor in Innovations ISO56002 Standard Framework

 

Aim

The aim of the case study was to examine each of these categories to assess how knowledge exchange methodologies, practices, tools and techniques were being used to support the university’s innovation ambitions, and ultimately, to drive up value and impact.

Innovation and knowledge exchange are inextricably linked (see fig. 2). Innovation needs knowledge exchange to fuel every stage of its process, from listening and discovery, through design and experimentation to implementation and measurement. Conversely, knowledge exchange needs innovation to create a focus for engagement. Innovation gives knowledge exchange its creative, entrepreneurial spirit. The two are required to work in unison if an organisation is to achieve higher levels of innovation maturity.

 

Fig. 2 The link between the innovation process and knowledge exchange

 

Enabling innovation and knowledge exchange to work concurrently was shown to be a central theme within RIEE, exemplified, particularly, through their STEAMhouse project (see fig. 3). A collaborative innovation campus which provides product and service innovation and knowledge exchange to business.

 

Fig 3. BCU RIEE’s STEAMhouse project

 

Strategy and alignment

The critical aspect of this category was to examine BCU’s Innovation Strategy and how well aligned this was to the overall 2025 Strategy for the university. An underpinning element of the innovation strategy, was reviewing, supporting and improving their innovation ecosystem partners (both business and industry and academic), widening and growing their STEAM (Science, Technology, Engineering, Art and Mathematics) communities of practice, and supporting direct knowledge exchange through the roll-out of commercialisation policies, training, capital and digital infrastructure to support more students and entrepreneurs.

Organisational readiness

This category assessed BCU’s innovation culture, creative capabilities and the structures, processes and governance in place to support innovation developments. When examined through the knowledge exchange lens, these areas translated into BCU’s ability to use KE to spark discussion, curiosity and inspire creativity accelerating the build up of a virtuous growth mindset. BCU have engaged with over 2,500 businesses, and formally assisted 1,425 to start, grow or innovate since 2017/18. BCU demonstrated their ability to leverage this landscape to create powerful sub-networks within their wider ecosystem for greater knowledge exchange, thus, generating a force multiplier at every stage of their innovation process. Internally, dissemination of innovation wins and promotion of ideas sharing has ramped up the institution’s innovation knowledge base and underpinned a sustainable innovation pipeline of activities.

Core capabilities, technologies and IP

For an institution like BCU, this category focused on building capacity in expertise and resource. Rapid access to external knowledge sources within RIEE’s ecosystem helped to reflect different perspectives from SMEs, larger businesses, other academic stakeholders and industrial representatives from associations and learned societies. Development of 100 innovation ambassadors within RIEE has brought greater access to the ambassadors’ own communities of practice and collaborative networks. The use of crowdsourcing mechanisms such as innovation challenges, have helped build momentum around specific product, service or societal problems. Use of collaborative knowledge STEAM tools such as STEAM Sprints, have enabled greater creative problem solving and refinement of selected ideas.

Industry foresight

At the heart of this category is knowledge exchange. Through analysis and synthesis, information becomes intelligence supporting innovation directions. Within RIEE, long-established and engrained partnerships with external stakeholders and engagement on industry forums have been utilised to acquire sectoral knowledge and key market intelligence informing and shaping the exploration and exploitation of new scientific, technological and engineering discoveries. The university’s representation on key regional advisory boards positioned them as thought leaders and led to sculpting regional strategies and plans.

Customer awareness

BCU’s Public and Community Engagement Strategy forms the basis for mechanisms to drive productive knowledge exchange. This category focused on understanding the needs of the customer and involving them in the innovation development process. RIEE demonstrated its ability to use collaborative networks and customer ecosystems to identify challenges. They harnessed co-creation practices and funding – e.g. Proof of Concept Support Fund for Staff – to then deliver innovative solutions.

Effective knowledge exchange requires coherent, relevant and accurate data. Through  BCU’s CRM, segmentation and narrow-casting has been achieved. This targeting of specific information through BCU’s online platforms and social media channels has encouraged 13,591 connections with businesses and proliferated greater knowledge exchange with over 2,500 engaged relationships.

Impact and value

This category’s focus ensured that a structured approach to implementation was adopted to maximise commercial success, and measurement of the innovation process meets organisational objectives. In this context, BCU’s community engagement and knowledge exchange through multiple pathways helped to underpin continual improvement of RIEE’s innovation process. The positive impact of knowledge exchange for RIEE has been defined by the development of STEAMhouse project – phase 2, and the creation of BCU Enterprises, to further drive the impact of RIEE, including research, experimentation, exploitation, and commercialisation of product IP and service know-how in STEAM disciplines.

Outcomes

Gaps were identified across all six of the I3 Standard framework categories. The key improvements in KE included:

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Graduate employability and recruitment

Author: James Ford (University College London)

Keywords: Civil Engineering Design, Timber Design, Industry, Collaboration

Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.

 

Background

Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.

The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.

The Brief

Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.

 

Figure 1. Image from the project brief indicating the potential building envelopes for the roof design

 

Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.

Requirements

Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.

The chosen design was developed to include:

Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.

Figure 2. Connection detail drawing by group 9

 

Delivery

Course material was delivered over 4 sessions with a final session for presentations:

Session 1: Project introduction and scheme designing

Session 2: Timber design

Session 3: Construction and constructability

Session 4: Fire Engineering and sustainability

Session 5: Student Presentations

Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.

These sessions built on learning from previous modules and projects.

Learning / Skills Development

The project aimed to develop skills and learning in the following areas:

Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.

Benefits of Collaborating

The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.

 

Figure 3. Development of design concepts by group 12

 

The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).

Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.

Reflections and Feedback

Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.

Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.

 

Figure 4. Winning design summary diagram by group 12

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Ian Hobson (Senior Lecturer and Academic Mentor for Engineering Leadership Management at Swansea University and former Manufacturing Director at Tata Steel) and Dr Vasilios Samaras (Senior Lecturer and Programme Director for Engineering Leadership Management at Swansea University)

Keywords: Academia, Industry

Abstract: Throughout the MSc Engineering Leadership Management program, the students at Swansea University develop theoretical knowledge and capability around leadership in organisations. Working alongside our industry partner Tata Steel, they deploy this knowledge to help understand and provide potential solutions to specific organisational issues that are current and of strategic importance to the business. The output of this work is presented to the Tata Steel board of directors along with a detailed report.

 

Aims of the program

In today’s world, our responsibility as academics is to ensure that we provide an enabling learning environment for our students and deliver a first-class education to them. This has been our mantra for many years. But what about our responsibility to the employing organisations? It’s all well and good providing well educated graduates but if they are not aligned to the requirements of those organisations then we are missing the point. This may be an extreme scenario, but there is a real danger that as academics we can lose touch with the needs of those organisations and as time moves on the gap between what they want and what we deliver widens.

In today’s world this relationship with the employment market and understanding the requirement of it is essential. We need to be agile in our approach to meet those requirements and deliver quality employees to the market.

How did we set this collaborative approach?

In reality the only way to do this is by adopting a collaborative approach to our program designs. Our aim with the MSc Engineering Leadership Management (ELM) at Swansea University is to ensure that we collaborate fully with the employment market by integrating industry professionals into our program design and delivery processes. In this way we learn to understand the challenges that organisations face and how they need strength in the organisation to meet those challenges. This of course not an easy task to accomplish.

In our experience professionals within organisations are often overrun with workload and trying to manage the challenges that they face. A university knocking the door with an offer of collaboration is not always top of their priority list, so how do we make this happen? You need to have a balance of academics and experienced industry leaders working within the program who understand the pressures that business faces. They also often have networks within the external market who are willing to support such programs as the ELM. The power of collaboration is often overlooked. It’s often a piece of research, dealing with a specific technical issue, it is rarely a continuum of organisational alignment. If the collaboration is designed for the long-term benefit of improving employability, then organisations will see this as a way to help solve the increasing challenge of finding “good” employees in a market that is tightening. So overall this becomes a win-win situation.

How was the need for the program identified?

Our program was developed following feedback to the university from the market that graduates were joining organisations with good academic qualifications but lacked an understanding of how organisations work. More importantly how to integrate into the organisation and develop their competencies. This did come with time and support, but the graduates fell behind the expected development curve and needed significant support to meet their aspirations.

Swansea University developed the ELM to provide education on organisations and how they work and develop the skills that are required to operate in them as an employee. These tend to be the softer skills, but also developing the student’s competence in using them. Examples include working as teams and providing honest feedback via 1-1s and 360s and team reviews.

In our experience the ability to challenge in a constructive way is a competency that the students don’t possess. All our work is anchored in theory which provides reference for the content. The assignments that we set involve our industry partners and provide potential solutions to real issues that organisations face.  The outcome of their projects is presented to senior management within the host organisation. This is often the high point of the year for the students. This way the students get exposure to the organisations which extends their comfort zones preparing them for the future challenges.

What are the program outcomes?

September 2022 will be our fifth year. The program is accredited by the Institution of Engineering and Technology (IET). Our numbers have increased year on year, and we are running cohorts of up to 20 students. It’s a mix of UK and international students. The program requires collaboration between the university faculties which has brought significant benefits and provided many learning opportunities. The collaboration between the engineering and business schools has made us realise that working together we provide a rounded program that is broad in content, but also deep in areas that are identified as specific learning objectives.

The feedback from the University is that students on the ELM program perform well and they have a more mature approach to learning and have confidence in themselves and are proactive in lectures. From our industry partners they feed back that the ELM students are ahead of the curve and are promoted into positions ahead of their peers.

What have we learned from the program?

As lecturers, over the years it has become very clear that the content that we deliver must change year on year. We cannot deliver the same content as it quickly becomes out of date. The theory changes very little, but the application changes significantly, in line with the general market challenges. It is almost impossible to predict and if we sit back and look at the past 4 years this pattern is clear. We also need to refresh our knowledge and we have as much to learn from our students as they do from us. We treat them as equals and have a very good learning relationships and have open and honest debates. We always build feedback into our programs and discus how we can improve the content and delivery of the program. Without exception feedback from a year’s cohort will modify the program for the following year.

Looking ahead

We are being approached by organisations interested in the University delivering a similar program to their future leaders on a part time basis which is something we are considering. We do however recognise that this program is successful because of the experience and knowledge of the lecturers and the ability to work with small cohorts which enables a tailored approach to the program content.

We believe that collaboration with the market keeps the ELM aligned with its requirements. Equally as importantly is the collaboration with our students. They are the leaders of the future and if the market loses sight of the expectations of these future leaders, then they will fail.

The ELM not only aligns its programs with the market, it keeps the market aligned with future leaders.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Sajjad Hussain (University of Glasgow), Dr Hasan T Abbas (University of Glasgow), Dr Qammer H Abbasi (University of Glasgow), Prof Muhammad Imran (University of Glasgow), Mark Cullens (EON Reality), Marcin Kasica (EON Reality), Dr Renah Wolzinger (EON Reality)

Keywords: Mixed Reality, Virtual Reality, Augmented Reality, Metaverse

Abstract: The University of Glasgow has established a mixed reality center, EON-XR Centre, in partnership with EON Reality Inc. EON Reality is a global leader in Augmented and Virtual Reality-based knowledge and skills transfer for industry and education. In this partnership, over 2000 students, internees, and staff members are provided the opportunity to access the XR technology to enhance the understanding of countless topics in the world around us, contributing both to the development of exciting educational content as well as the larger global knowledge metaverse.

Case study

This case study is presented as a PowerPoint presentation, see the following link: Metaverse in Education – a partnership between University of Glasgow and EON Reality. Alternatively you can access the slides as a PDF here.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning

Authors: Bob Tricklebank (Dyson Institute of Engineering and Technology) and Sue Parr (WMG, University of Warwick).

Keywords: Partnerships, Academic, Industry

Abstract: This case study illustrates how, through a commitment to established guiding principles, open communication, a willingness to challenge and be challenged, flexibility and open communication, it’s possible to design and deliver a degree apprenticeship programme that is more than the sum of its parts. 

 

Introduction

Dyson is driven by a simple mission: to solve the problems that others seem to ignore.  From the humble beginnings of the world’s first bagless vacuum cleaner, Dyson is now a global research and technology company with engineering, research, manufacturing and testing operations in the UK, Singapore, Malaysia and the Philippines. The company employs 14,000 people globally including 6,000 engineers and scientists. Its portfolio of engineering expertise, supported by a £3 million per week investment into R&D, encompasses areas from solid-state batteries and high-speed digital motors to machine learning and robotics.

Alongside its expansive technology evolution, Dyson has spent the past two decades supporting engineering education in the UK through its charitable arm, the James Dyson Foundation. The James Dyson Foundation engages at all stages of the engineering pipeline, from providing free resources and workshops to primary and secondary schools to supporting students in higher education through bursaries, PhD funding and capital donations to improve engineering facilities.

It was against this backdrop of significant investment in innovation and genuine passion for engineering education that Sir James Dyson chose to take a significant next step and set up his own higher education provider: the Dyson Institute of Engineering and Technology.

The ambition was always to establish an independent higher education provider, able to deliver and award its own degrees under the New Degree Awarding Powers provisions created by the Higher Education and Research Act 2017. But rather than wait the years that it would take for the requisite regulatory frameworks to appear and associated applications to be made and quality assurance processes to be passed, the decision was made to make an impact in engineering education as quickly as possible, by beginning delivery in partnership with an established university.

Finding the right partner

The search for the right university partner began by setting some guiding principles; the non-negotiable expectations that any potential partner would be expected to meet, grounded in Dyson’s industrial expertise and insight into developing high-calibre engineering talent.

1.An interdisciplinary programme

Extensive discussions with Dyson’s engineering leaders, as well as a review of industry trends, made one thing very clear: the engineers of the future would need to be interdisciplinarians, able to understand mechanical, electronic and software engineering, joining the dots between disciplines to develop complex, connected products. Any degree programme delivered at the Dyson Institute would need to reflect that – alongside industrial relevance and technical rigour.

2. Delivered entirely on the Dyson Campus

It was essential that delivery of the degree programme took place on the same site on which learners would be working as Undergraduate Engineers, ensuring a holistic experience. There could be no block release of learners from the workplace for weeks at a time: teaching needed to be integrated into learners’ working weeks, supporting the immediate application of learning and maintaining integration into the workplace community.  

3. Actively supported by the Dyson Institute

This would not be a bipartisan relationship between employer and training provider. The fledgling Dyson Institute would play an active role in the experience of the learners, contributing to feedback and improvements and gaining direct experience of higher education activity by shadowing the provider.

WMG, University of Warwick

Dyson entered into discussions with a range of potential partners. But WMG, University of Warwick immediately stood out from the crowd.

Industrial partnership was already at the heart of WMG’s model. In 1980 Professor Lord Kumar Bhattacharyya founded WMG to deliver his vision to improve the competitiveness of the UK’s manufacturing sector through the application of value-adding innovation, new technologies and skills development. Four decades later, WMG continues to drive innovation through its pioneering research and education programmes, working in partnership with private and public organisations to deliver a real impact on the economy, society and the environment.

WMG is an international role model for how universities and businesses can successfully work together; part of a Top 10 UK ranked and Top 100 world-ranked university.

WMG’s expertise in working with industrial partners meant that they understood the importance of flexibility and were willing to evolve their approach to meet Dyson’s expectations – from working through the administrative challenge of supporting 100% delivery on the Dyson Campus, to developing a new degree apprenticeship programme.

Academics at WMG worked closely with Dyson engineers, who offered their insight into the industrial relevance of the existing programme – regularly travelling to WMG to discuss their observations in person and develop new modules. This resulted in a degree with a decreased focus on group work and project management, skills that learners would gain in the workplace at Dyson, and an increased focus on software, programming and more technically focused modules.

Importantly, WMG was supportive of Dyson’s intention to set up an entirely independent higher education provider. Rather than see a potential competitor, WMG saw the opportunity to play an important part in shaping the future of engineering education, to engage in reciprocal learning and development alongside a start-up HE provider and to hone its portfolio for future industrial partnerships.

The programme

In September 2017, the Dyson Institute opened its doors to its first cohort of 33 Undergraduate Engineers onto a BEng in Engineering degree apprenticeship, delivered over four years and awarded by the University of Warwick.

Two days per week are dedicated to academic study. The first day is a full day of teaching, with lecturers from WMG travelling to the Dyson Campus to engage in onsite delivery. The second day is a day of self-study, with lecturers available to answer questions and help embed learning. The remaining three days are spent working on live engineering projects within Dyson.

The first two years of the programme are deliberately generalist, while years three and four offer an opportunity to specialise. This academic approach is complemented in the workplace, with Undergraduate Engineers spending their first two years rotating through six different workplace teams, from electronics and software to research and product development, before choosing a single workplace team in which to spend their final two years. Final year projects are based on work undertaken in that team.

The Dyson Institute enhances WMG’s provision in a variety of ways, including administration of the admissions process, the provision of teaching and learning facilities, pastoral support, health and wellbeing support, social and extra-curricular opportunities, monitoring of student concerns and professional development support.  

Key enhancements include the provision of Student Support Advisors (one per cohort), a dedicated resource to manage learners’ workplace experience, quarterly Wellbeing and Development Days and the Summer Series, a professional development programme designed to address the broader set of skills engineers need, which takes the place of academic delivery across July and August.

Continuous improvement  

The collaborative partnership between Dyson, the Dyson Institute and WMG, the University of Warwick did not end when delivery began. Instead, the focus turned to iteration and improvement.

Dyson Institute and WMG programme leadership hold regular meetings to discuss plans, progress and challenges. These conversations are purposefully frank, with honesty on both sides allowing concerns to be raised as soon as they are noted. An important voice in these conversations is that of the student body, whose ‘on the ground experience’ is represented not only through the traditional course representatives, but through stream and workplace representatives.

Even as the Dyson Institute has begun independent delivery (it welcomed its first Dyson Institute-registered Undergraduate Engineers in September 2021), both partners remain dedicated to improving the student experience. The current focus is on increasing WMG’s onsite presence as well as the regularity of joint communications to the student body, with a view to supporting a more streamlined approach to challenge resolution.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Universities’ and business’ shared role in regional development; Knowledge exchange.

Authors: Prof Tony Dodd (Staffordshire University); Marek Hornak (Staffordshire University) and Rachel Wood (Staffordshire University).

Keywords: Regional Development Funding, Innovation Enterprise Zone

Abstract: The Stoke-on-Trent and Staffordshire region registers low in measures of economic prosperity, research and development expenditure, productivity, and higher skills. Staffordshire University has received funding to support regional growth in materials, manufacturing, digital and intelligent mobility and to develop higher skills. Packaged together into the Innovation Enterprise Zone these projects have made positive impacts in the region. This presentation will provide an overview of our approach to regional support and highlight impact and lessons learnt for companies, academics, and students.

 

Background

The Stoke-on-Trent and Staffordshire economy underperforms compared to the wider West Midlands and England [1].

Industry is dominated by SMEs with strengths in manufacturing, advanced materials, automotive, logistics and warehousing, agriculture, and digital industries [1].

Aims and Objectives

The aim was to develop an ecosystem for driving innovation, economic growth, job creation and higher skills in Stoke-on-Trent and Staffordshire.

The objectives were to:

Enterprise Zone and Projects

Funding was successfully awarded from ERDF, Research England, and Staffordshire County Council.  The themes of the projects were developed in collaboration with regional partners to identify key strengths and potential for growth.  Each of the projects is match funded by Staffordshire University including through academic time.

Innovation

Skills development through the Enterprise Academy

The projects are part of the wider Staffordshire University Innovation Enterprise Zone (launched November 2020, Research England) to support research collaboration, knowledge exchange, innovation, and skills development.  This includes space for business incubation and low-cost shared office space in The Hatchery for new start-ups.  We also provide a Creative Lab (funded by Stoke-on-Trent and Staffordshire LEP) for hosting business-academic meetings and access to the SmartZone equipment for rapid prototyping.

Spotlight on Innovation Projects

To highlight the differences between approaches we highlight two innovation projects.

Staffordshire Advanced Manufacturing, Prototyping, and Innovation Demonstrator (SAMPID) Staffordshire Connected & Intelligent Mobility Innovation Accelerator (SCIMIA)
Advanced manufacturing and product development Connected and intelligent mobility
ERDF funded ERDF funded
SMEs in Stoke-on-Trent and Staffordshire SMEs in Stoke-on-Trent and Staffordshire
12-weeks of funded support Up to 12-months of support
Innovation consultants (students/graduates) Innovation consultants (students/graduates)
Academic supervision, knowledge exchange and business support Academic supervision, knowledge exchange and business support
Dedicated technician support (0.5FTE) Dedicated technician support (0.5FTE)
3x funded PhD students to support projects and develop advanced innovation 2x Innovation and Enterprise Fellows to support technical business engagement
Funded advanced manufacturing equipment (including 3D metal printing, robot arms) and access to equipment in SmartZone Access to equipment in SmartZone
   

 

Case study videos:

Lessons Learnt

Business engagement

Project length

Student roles and recruitment

Supporting roles

Academic involvement

Possible future developments

References

[1] Stoke-on-Trent and Staffordshire Local Enterprise Partnership (2019).  Local Industrial Strategy – Evidence Base September 2019.  Available from Development of a Stoke-on-Trent & Staffordshire Industrial Strategy (SSIS) (stokestaffslep.org.uk)

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

 

Theme: Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Prof Robert Hairstans (New Model Institute for Technology and Engineering), Dr Mila Duncheva (Stora Enso), Dr Kenneth Leitch (Edinburgh Napier University), Dr Andrew Livingston (Edinburgh Napier University), Kirsty Connell-Skinner (Edinburgh Napier University) and Tabitha Binding (Timber Development UK)

Keywords: Timber, Built Environment, Collaboration, New Educational Model

Abstract: The New Model Institute for Technology and Engineering, Edinburgh Napier University and Timber Development UK are working with external stakeholders to enable an educational system that will provide comprehensive training in modern methods of timber construction. A Timber Technology Engineering and Design (TED) competency framework has been derived and a UK wide student design competition will run in the 1st quarter of 2022 as part of the process to curate the learner content and enable this alternative approach to upskilling. The EPC will gain an understanding of this alternative approach to creating an educational model by means of industry engagement. This new approach has been made possible via establishing a collaborative framework and leveraging available funding streams via the partners. This will be showcased as a methodology for others to apply to their own contexts as well as offer opportunity for knowledge and value exchange.

 

Introduction

Edinburgh Napier University (ENU), The New Model Institute for Technology and Engineering (NMITE) and Timber Development UK (TDUK) are working with external stakeholders to enable an educational system (Figure 1) that will provide comprehensive training in modern methods of timber construction. This case study presents an alternative approach to creating this Timber Technology Engineering and Design (TED) educational model by means of industry engagement and pilot learning experiences. This new approach has been made possible by establishing a collaborative framework and leveraging available funding streams via the partners.

Figure 1 – Approach to enabling Timber TED Educational System.

 

Project Aims

The aim of establishing Timber TED is to provide built environment students and professionals with a comprehensive suite of online credit bearing flexible training modules to upskill in modern timber construction techniques. To align the modules with industry need the learning content is to be underpinned by a competency framework identifying the evidence-based technical knowledge and meta skills needed to deliver construction better, faster and greener. The training modules are to be delivered in a blended manner with educational content hosted online and learners assessed by ‘learning by doing’ activities that stimulate critical thinking and prepare the students for work in practice (Jones, 2007).

Uniting industry education and training resources through one course, Timber TED will support learners and employers to harness the new knowledge and skills required to meet the increasing demand for modern timber construction approaches that meet increasingly stringent quality and environmental performance requirements.

The final product will be a recognised, accredited qualification with a bespoke digital assessment tool, suitable for further and higher education as well as employers delivering in-house training, by complementing and enhancing existing CPD, built environment degrees and apprenticeships.

The Need of a Collaborative Approach

ENU is the project lead for the Housing Construction & Infrastructure (HCI) Skills Gateway part of the Edinburgh & Southeast Scotland City Region Deal and is funded by the UK and Scottish Governments. Funding from this was secured to develop a competency framework for Timber TED given the regional need for upskilling towards net zero carbon housing delivery utilising low carbon construction approaches and augmented with addition funding via the VocTech Seed Fund 2021. With the built environment responsible for 39% of all global carbon emissions, meeting Scotland’s ambitious target of net zero by 2045 requires the adoption of new building approaches and technologies led by a modern, highly skilled construction workforce. Further to this ENU is partnering with NMITE to establish the Centre for Advanced Timber Technology (CATT) given the broader UK wide need. Notably England alone needs up to 345,000 new low carbon affordable homes annually to meet demand but is building less than a third of this (Miles and Whitehouse, 2013). The educational approach of NMITE is to apply a student-centric learning methodology with a curriculum fuelled by real-world challenges, meaning that the approach will be distinctive in the marketplace and will attract a different sort of engineering learner. This academic partnership was further triangulated with TDUK (merged organisation of TRADA and Timber Trades Federation) for UK wide industry engagement. The partnership approach resulted in the findings of the Timber TED competency framework and alternative pedagogical approach of NMITE informing the TDUK University Design Challenge 2022 project whereby inter-disciplinary design teams of 4–8 members, are invited to design an exemplary community building that produces more energy than it consumes – for Southside in Hereford. The TDUK University Design challenge would therefore pilot the approach prior to developing the full Timber TED educational programme facilitating the development of educational content via a webinar series of industry experts.

The Role of the Collaborators

The project delivery team of ENU, NMITE and TDUK are working collaboratively with a stakeholder group that represents the sector and includes Structural Timber Association, Swedish Wood, Construction Scotland Innovation Centre, Truss Rafter Association and TRADA. These stakeholders provide project guidance and are contributing in-kind support in the form of knowledge content, access to facilities and utilisation of software as appropriate.

Harlow Consultants were commission to develop the competency framework (Figure 1) via an industry working group selected to be representative of the timber supply chain from seed to building. This included for example engineered timber manufacturers, engineers, architects, offsite manufacturers and main contractors.

 

Figure 2 – Core and Cross-disciplinary high level competency requirements

 

The Southside Hereford: University Design Challenge (Figure 3) has a client group of two highly energised established community organisations Growing Local CIC and Belmont Wanderers CIC, and NMITE, all of whom share a common goal to improve the future health, well-being, life-chances and employment skillset of the people of South Wye and Hereford. Passivhaus Trust are also a project partner providing support towards the curation of the webinar series and use of their Passivhaus Planning software.

 

Figure 3 – TDUK, ENU, NMITE and Passivhaus Trust University Design Challenge

 

Outcomes, Lessons Learned and Available Outputs

The competency framework has been finalised and is currently being put forward for review by the professional institutions including but not limited to the ICE, IStructE, CIAT and CIOB. A series of pilot learning experiences have been trialled in advance of the UK wide design challenge to demonstrate the educational approach including a Passivhaus Ice Box challenge. The ice box challenge culminated in a public installation in Glasgow (Figure 4) presented by student teams acting as a visual demonstration highlighting the benefits of adopting a simple efficiency-first approach to buildings to reduce energy demands. The Timber TED competency framework has been used to inform the educational webinar series of the UK wide student design competition running in the 1st quarter of 2022. The webinar content collated will ultimately be used within the full Timber TED credit bearing educational programme for the upskilling of future built environment professionals.

 

Figure 4 – ICE box challenge situated in central Glasgow

 

The following are the key lessons learned:

Currently available outputs to date:

References

  1. Jones, J. (2007) ‘Connected Learning in Co-operative Education’, International Journal of Teaching and Learning in Higher Education, 19(3), pp. 263–273.
  2. Miles, J. and Whitehouse, N. (2013) Offsite Housing Review, Department of Business, Innovation & Skills. London

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Degree Apprenticeships Toolkit

We’ve pulled together a checklist of things for university departments to consider when proposing to get involved in degree apprenticeships.  It’s still evolving so please do contact us if you have experience or advice you would like to add.

 

As for all new programme proposals, numbers of students required in order to make a programme viable is crucial. This needs to be clearly stated and written into the contracts that will be signed. This is vital anyway; but particularly vital when offering a degree apprenticeship programme that is formed around a number of employers, consortia, trade federations and SMEs. If for example the university contracts to run such a programme for 20 students and there are only 17/18/19, then this can lead to all sorts of debates and discussions – and conflicts – if for example every employer except one has delivered the numbers promised. This must be clearly understood, and must also be recognised and addressed as a key part of the contract.  Close co-operation between the lead academic department and the HEI’s finance and planning services will be needed and, as we said earlier, a very different approach taken to evaluating viability than for a standard academic programme.  The longer term and broader relationship to be developed with the company will need to be taken into account, for example, along with the opportunity to access a new funding source.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website