Author: Professor Manuela Rosa (Algarve University). 

Keywords: Societal impact; Equity; Equality, diversity and inclusion (EDI); Design; Justice; Equity; Communication; Global responsibility. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for. 

 

Premise: 

The Declaration on the Rights of Disabled Persons, adopted by the General Assembly of United Nations on 9 December 1975, stipulated protection of the rights of people with disabilities. The United Nations 2030 Agenda for Sustainable Development, a plan of action for people, planet, and prosperity, demands that all stakeholders, acting in collaborative partnership, must recognise that the dignity of the human person is fundamental and so the development of the 17 Sustainable Development Goals must meet all segments of society in a way that “no one will be left behind”.  

In relation to engineering, The Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering in 2005 and revised in 2017, articulates one of its strategic challenges to be positioning engineering at the heart of society, enhancing its wellbeing, improving the quality of the built environment, and promoting EDI. To uphold these principles, engineering professionals are required to promote social equity, guaranteeing equal opportunities to access the built environment and transportation systems, enabling the active participation of all citizens in society, including vulnerable groups. The universal design approach is one method that engineers can use to ensure social sustainability. 

 

The challenges of universal and inclusive design: 

Every citizen must have the same equality of opportunities in using spaces because the existence of an accessible built environment is fundamental to guarantee vitality, safety, and sociability. These ethical values associated with the technical decision-making process were considered by the American architect Ronald Lawrence Mace (1941-1998) who defined the universal design concept as “designing all products, buildings and exterior spaces to be usable by all people to the greatest extent possible” (Mace et al., 1991), thus contributing to social inclusion.  

Universal accessibility according to this universal design approach is “the characteristic of an environment or object which enables everybody to enter into a relationship with, and make use of, that object or environment in a friendly, respectful and safe way” (Aragall et al., 2003). It focuses on people with reduced mobility, such as people with disabilities (mobility, vision, hearing and cognitive dimensions), children and elderly people. Built environment and transport systems must be designed considering this equity attribute which is associated with social sustainability and inclusion. 

The Center for Universal Design of the North Carolina State University developed seven principles of universal design (Connell et al., 1997):  

1. Equitable use 

2. Flexibility in use  

3. Simple and intuitive use  

4. Perceptible information  

5. Tolerance for error  

6. Low physical effort  

7. Size and space for approach and use.    

These principles must always be incorporated in the conception of products and physical environments, so as to create a ‘fair built’ environment, where all have the right to use it, in the same independent and natural way. This justice design must guarantee autonomy in the use of spaces and transport vehicles, contributing to the self-determination of citizens.   

The perceptions of the space users are fundamental to be considered in the design process to achieve the usability of the built environment and transport systems. Pedestrian infrastructure design and modal interfaces demand user-centred approaches and therefore processes of co-design and co-creation with communities, where people are effectively involved as collaborators and participants. 

Achieving an inclusive society is a great challenge because there are situations where the needs of users are divergent: technical solutions created for a specific group of people are inadequate for others. For example, wheelchair users and elderly people need smooth surfaces and, on the contrary, blind people need tactile surfaces.  

Consequently, in the process of universal design, some people can feel excluded because they need other technical solutions. It is then necessary to consider precise inclusive design when projecting urban spaces for all.   

Universal design is linked with designing one-space-suits-almost-all, and inclusive design focuses on one-space-suits-one, for example design a space for everyone (collective perspective) versus design a space for one specific group (particular perspective). As the built environment must be understandable to and usable by all people, both are important for social sustainability. Universal design contributes to social inclusion, but added inclusive design is needed, matching the excluded users to the object or space design.  

In order to promote social inclusion and quality of life, to which everyone is entitled, universal and inclusive co-design of the built environment and the transportation systems demands specific approaches that have to be integrated in engineering education: 

 

Conclusion: 

Universal and inclusive co-design of the built environment and transportation systems must be seen as an ethical act in engineering. Co-design for social sustainability can be strengthened through engineering acts. Ethical responsibility must be assumed to create inclusive solutions considering human diversity, empowering engineers to act and design justice.  

There is a strong need for engineers to possess a set of skills and competencies related to the ability to work with other professionals (for example from the social sciences),  users, or collaborators. In the 21st century, beyond the use of technical knowledge to solve problems, engineers need communication skills to achieve the sustainable development goals, requiring networking, cooperating in teams, and working with communities.  

Engineering education must consider transdisciplinary approaches which make clear progress in tackling urban challenges and finding human-centred solutions. Universal and inclusive co-design must be incorporated routinely into the practice of engineers and assumed in Engineering Ethics Codes.  

 

References: 

Aragall, F. and EuCAN members, (2003) European Concept for Accessibility: Technical Assistance Manual. Luxemburg: EuCAN – European Concept for Accessibility Network.  

Connell, B. R., Jones, M., Mace, R., Mueller, J., Mullick, A., Ostroff, E., Sanford, J., Steinfeld, E., Story, M. and Vanderheiden, G. (1997) The Principles of Universal Design, Version 2.0. Raleigh: North Carolina State University, The Center for Universal Design. USA.  

Mace, R. L., Hardie G. J. and Place, J. P. (1991) ‘Accessible environments: Toward universal design,’ in W.E. Preiser, J.C. Vischer, E.T. White (Eds.). Design Intervention: Toward a More Human Architecture. New York: Van Nostrand Reinhold, pp. 155-180.  

Declaration on the Rights of Disabled Persons. (1975). Proclaimed by G/A/RES 3447 of 9 December 1975. 

United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the United Nations General Assembly on 25 September 2015, New York.  

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Graduate employability and recruitment

Author: James Ford (University College London)

Keywords: Civil Engineering Design, Timber Design, Industry, Collaboration

Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.

 

Background

Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.

The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.

The Brief

Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.

 

Figure 1. Image from the project brief indicating the potential building envelopes for the roof design

 

Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.

Requirements

Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.

The chosen design was developed to include:

Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.

Figure 2. Connection detail drawing by group 9

 

Delivery

Course material was delivered over 4 sessions with a final session for presentations:

Session 1: Project introduction and scheme designing

Session 2: Timber design

Session 3: Construction and constructability

Session 4: Fire Engineering and sustainability

Session 5: Student Presentations

Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.

These sessions built on learning from previous modules and projects.

Learning / Skills Development

The project aimed to develop skills and learning in the following areas:

Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.

Benefits of Collaborating

The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.

 

Figure 3. Development of design concepts by group 12

 

The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).

Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.

Reflections and Feedback

Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.

Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.

 

Figure 4. Winning design summary diagram by group 12

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Prof Robert Hairstans (New Model Institute for Technology and Engineering), Dr Mila Duncheva (Stora Enso), Dr Kenneth Leitch (Edinburgh Napier University), Dr Andrew Livingston (Edinburgh Napier University), Kirsty Connell-Skinner (Edinburgh Napier University) and Tabitha Binding (Timber Development UK)

Keywords: Timber, Built Environment, Collaboration, New Educational Model

Abstract: The New Model Institute for Technology and Engineering, Edinburgh Napier University and Timber Development UK are working with external stakeholders to enable an educational system that will provide comprehensive training in modern methods of timber construction. A Timber Technology Engineering and Design (TED) competency framework has been derived and a UK wide student design competition will run in the 1st quarter of 2022 as part of the process to curate the learner content and enable this alternative approach to upskilling. The EPC will gain an understanding of this alternative approach to creating an educational model by means of industry engagement. This new approach has been made possible via establishing a collaborative framework and leveraging available funding streams via the partners. This will be showcased as a methodology for others to apply to their own contexts as well as offer opportunity for knowledge and value exchange.

 

Introduction

Edinburgh Napier University (ENU), The New Model Institute for Technology and Engineering (NMITE) and Timber Development UK (TDUK) are working with external stakeholders to enable an educational system (Figure 1) that will provide comprehensive training in modern methods of timber construction. This case study presents an alternative approach to creating this Timber Technology Engineering and Design (TED) educational model by means of industry engagement and pilot learning experiences. This new approach has been made possible by establishing a collaborative framework and leveraging available funding streams via the partners.

Figure 1 – Approach to enabling Timber TED Educational System.

 

Project Aims

The aim of establishing Timber TED is to provide built environment students and professionals with a comprehensive suite of online credit bearing flexible training modules to upskill in modern timber construction techniques. To align the modules with industry need the learning content is to be underpinned by a competency framework identifying the evidence-based technical knowledge and meta skills needed to deliver construction better, faster and greener. The training modules are to be delivered in a blended manner with educational content hosted online and learners assessed by ‘learning by doing’ activities that stimulate critical thinking and prepare the students for work in practice (Jones, 2007).

Uniting industry education and training resources through one course, Timber TED will support learners and employers to harness the new knowledge and skills required to meet the increasing demand for modern timber construction approaches that meet increasingly stringent quality and environmental performance requirements.

The final product will be a recognised, accredited qualification with a bespoke digital assessment tool, suitable for further and higher education as well as employers delivering in-house training, by complementing and enhancing existing CPD, built environment degrees and apprenticeships.

The Need of a Collaborative Approach

ENU is the project lead for the Housing Construction & Infrastructure (HCI) Skills Gateway part of the Edinburgh & Southeast Scotland City Region Deal and is funded by the UK and Scottish Governments. Funding from this was secured to develop a competency framework for Timber TED given the regional need for upskilling towards net zero carbon housing delivery utilising low carbon construction approaches and augmented with addition funding via the VocTech Seed Fund 2021. With the built environment responsible for 39% of all global carbon emissions, meeting Scotland’s ambitious target of net zero by 2045 requires the adoption of new building approaches and technologies led by a modern, highly skilled construction workforce. Further to this ENU is partnering with NMITE to establish the Centre for Advanced Timber Technology (CATT) given the broader UK wide need. Notably England alone needs up to 345,000 new low carbon affordable homes annually to meet demand but is building less than a third of this (Miles and Whitehouse, 2013). The educational approach of NMITE is to apply a student-centric learning methodology with a curriculum fuelled by real-world challenges, meaning that the approach will be distinctive in the marketplace and will attract a different sort of engineering learner. This academic partnership was further triangulated with TDUK (merged organisation of TRADA and Timber Trades Federation) for UK wide industry engagement. The partnership approach resulted in the findings of the Timber TED competency framework and alternative pedagogical approach of NMITE informing the TDUK University Design Challenge 2022 project whereby inter-disciplinary design teams of 4–8 members, are invited to design an exemplary community building that produces more energy than it consumes – for Southside in Hereford. The TDUK University Design challenge would therefore pilot the approach prior to developing the full Timber TED educational programme facilitating the development of educational content via a webinar series of industry experts.

The Role of the Collaborators

The project delivery team of ENU, NMITE and TDUK are working collaboratively with a stakeholder group that represents the sector and includes Structural Timber Association, Swedish Wood, Construction Scotland Innovation Centre, Truss Rafter Association and TRADA. These stakeholders provide project guidance and are contributing in-kind support in the form of knowledge content, access to facilities and utilisation of software as appropriate.

Harlow Consultants were commission to develop the competency framework (Figure 1) via an industry working group selected to be representative of the timber supply chain from seed to building. This included for example engineered timber manufacturers, engineers, architects, offsite manufacturers and main contractors.

 

Figure 2 – Core and Cross-disciplinary high level competency requirements

 

The Southside Hereford: University Design Challenge (Figure 3) has a client group of two highly energised established community organisations Growing Local CIC and Belmont Wanderers CIC, and NMITE, all of whom share a common goal to improve the future health, well-being, life-chances and employment skillset of the people of South Wye and Hereford. Passivhaus Trust are also a project partner providing support towards the curation of the webinar series and use of their Passivhaus Planning software.

 

Figure 3 – TDUK, ENU, NMITE and Passivhaus Trust University Design Challenge

 

Outcomes, Lessons Learned and Available Outputs

The competency framework has been finalised and is currently being put forward for review by the professional institutions including but not limited to the ICE, IStructE, CIAT and CIOB. A series of pilot learning experiences have been trialled in advance of the UK wide design challenge to demonstrate the educational approach including a Passivhaus Ice Box challenge. The ice box challenge culminated in a public installation in Glasgow (Figure 4) presented by student teams acting as a visual demonstration highlighting the benefits of adopting a simple efficiency-first approach to buildings to reduce energy demands. The Timber TED competency framework has been used to inform the educational webinar series of the UK wide student design competition running in the 1st quarter of 2022. The webinar content collated will ultimately be used within the full Timber TED credit bearing educational programme for the upskilling of future built environment professionals.

 

Figure 4 – ICE box challenge situated in central Glasgow

 

The following are the key lessons learned:

Currently available outputs to date:

References

  1. Jones, J. (2007) ‘Connected Learning in Co-operative Education’, International Journal of Teaching and Learning in Higher Education, 19(3), pp. 263–273.
  2. Miles, J. and Whitehouse, N. (2013) Offsite Housing Review, Department of Business, Innovation & Skills. London

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website