Author: Dr Irene Josa (UCL) 

Topic: Embodied carbon in the built environment. 

Type: Teaching. 

Relevant disciplines: Civil engineering; Environmental engineering; Construction management. 

Keywords: Embodied carbon; Resilient construction practices; Climate change adaptation; Ethics; Teaching or embedding sustainability; AHEP; Higher education; Pedagogy; Environmental impact assessment; Environmental risk; Assessment. 
 
Sustainability competency: Integrated problem-solving; Systems thinking; Critical thinking; Collaboration; Anticipatory.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation and infrastructure); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.

Educational aim: To foster a deep understanding of the challenges and opportunities in balancing environmental sustainability and profitability/safety in construction projects. To develop critical thinking and decision-making skills in addressing social, economic, and environmental considerations. To encourage students to propose innovative and comprehensive solutions for sustainable urban development. 

Educational level: Intermediate. 

 

Learning and teaching notes: 

Before engaging with the case study, learners should be familiar with the process of calculating embodied carbon and conducting a cost-benefit analysis. The case study is presented in three parts. In Part one, an ambitious urban revitalisation project is under development, and a project manager needs to find a balance between financial considerations and the urgent need for sustainable, low-embodied carbon construction. In Part two, the project being developed is located in a coastal area prone to climate change-related disasters. The team needs to ensure that the project is durable in the face of disasters and, at the same time, upholds sustainability principles. Lastly, in Part three, stakeholders involved in the two previous projects come together to identify potential synergies. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Supporting resources 

 

Learning and teaching resources: 

Environmental impact assessment: 

Social impact assessment: 

Economic impact assessment: 

Systems thinking and holistic analysis approaches (PESTLE, SWOT): 

Real-world cases to explore:

 

Part one: 

In the heart of an urban revitalisation project, the company CityScape Builders is embarking on a transformational journey to convert a neglected area into a vibrant urban centre which will be named ReviveRise District. This urban centre will mostly be formed by tall buildings. 

Avery, the project manager at CityScape Builders, is under immense pressure to meet tight budget constraints and deadlines. Avery understands the project’s economic implications and the importance of delivering within the stipulated financial limits. However, the conflict arises when Rohan, a renowned environmental advocate and consultant, insists on prioritising sustainable construction practices to reduce the project’s embodied carbon. Rohan envisions a future where construction doesn’t come at the cost of the environment. 

On the other side of the situation is Yuki, the CFO of CityScape Builders, who is concerned about the project’s bottom line. Yuki is wary of any actions that could escalate costs and understands that using low-embodied carbon materials often comes with a higher price tag.  

In light of this situation, Avery proposes exploring different options of construction methods and materials that could be used in the design of their skyscrapers. Avery needs to do this quickly to avoid any delay, and therefore consider just the most important carbon-emitting aspects of the different options.  

 

Optional STOP for questions and activities 

 

Part two:

CityScape Builders is now embarking on a new challenge, ResilientCoast, a construction project located in a coastal area that is susceptible to climate change-related disasters. This region is economically disadvantaged and lacks the financial resources often found in more developed areas.  

Micha, the resilience project manager at CityScape Builders, is tasked with ensuring the project’s durability in the face of disasters and the impacts of climate change. Micha’s primary concern is to create a resilient structure that can withstand extreme weather events but is equally dedicated to sustainability goals. To navigate this complex situation, Micha seeks guidance from Dr. Ravi, a climate scientist with expertise in coastal resiliency. Dr. Ravi is committed to finding innovative and sustainable solutions that simultaneously address the climate change impacts and reduce embodied carbon in construction. 

In this scenario, Bao, the local community leader, also plays a crucial role. Bao advocates for jobs and economic development in the area, even though Bao is acutely aware of the inherent safety risks. Bao, too, understands that balancing these conflicting interests is a substantial challenge. 

In this situation, Micha wonders how to construct safely in a vulnerable location while maintaining sustainability goals.  

 

Optional STOP for questions and activities 

 

Part three: 

Robin and Samir are two independent sustainability consultants that are supporting the projects in ReviveRise District and ResilientCoast respectively. They are concerned that sustainability is just being assessed by embodied carbon and cost sustainability, and they believe that sustainability is a much broader concept than just those two indicators. Robin is the independent environmental consultant working with ReviveRise District officials and is responsible for assessing the broader environmental impacts of the construction project. Robin’s analysis spans beyond embodied carbon, considering local job creation, transportation effects, pollution, biodiversity, and other aspects of the project. 

Samir, on the other hand, is a municipal board member of ResilientCoast. Samir’s role involves advocating for the local community while striving to ensure that sustainability efforts do not compromise the safety and resilience of the area. Samir’s responsibilities are more comprehensive than just economic considerations; they encompass the entire well-being of the community in the face of climate change. 

Robin and Samir recognise the need for cross-city collaboration and information sharing, and they want to collaborate to ensure that the sustainability efforts of both projects do not create unintended burdens for their communities. They acknowledge that a comprehensive approach is necessary for analysing broader impacts, and to ensure both the success of the construction projects and the greater good of both communities. They believe in working collectively to find solutions that are not only sustainable but also beneficial to all stakeholders involved. 

 

Optional STOP for questions and activities 

 

The above questions and activities call for the involvement of cross-disciplinary teams, requiring expertise not only in engineering but also in planning, policy, and related fields. Ideally, in the classroom setting, students with diverse knowledge across these disciplines can be grouped together to enhance collaboration and address the tasks proposed. In cases where forming such groups is not feasible, the educator can assign specific roles such as engineer, planner, policymaker, etc., to individual students, ensuring a balanced representation of skills and perspectives. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 
 
 
To view a plain text version of this resource, click here to download the PDF.

Author: Mark J. Heslop (University of Strathclyde). 

Topic: ESD in Chemical Engineering projects. 

Tool type: Guidance. 

Relevant disciplines: Chemical. 

Keywords: Problem-based learning; Education for sustainable development; Circularity; Circular economy; Assessment; AHEP; Sustainability; Higher education; Design; Data; Pedagogy. 
 
Sustainability competency: Systems-thinking; Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 2 (Zero hunger); SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 12 (Responsible consumption and production); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Active pedagogies and mindset development; Authentic assessment; More real-world complexity.

Who is this article for? This article should be read by Chemical Engineering educators in higher education who are seeking to integrate sustainability in their project modules. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

The design project (DP) is considered to be the major focus of the CE curriculum, where students work in groups to design a complete chemical process – feeds, products process routes, energy requirements, financial aspects and emissions.  It is considered challenging for various reasons including the following: the requirement to recall and combine knowledge covered previously in taught classes (some of which may have been forgotten), dealing with a huge corpus of data (unavailability, uncertainty, some being in conflict and some being superfluous) and all the design decisions that need to be made from many options.  This is a major contrast with standard taught modules where all the data required is normally provided in advance.  Just making decisions is not enough – they need to be timely and justified otherwise the project may be rushed and may not complete by the deadline.  This is why the DP is valued by employers.  Furthermore, if Education for Sustainable Development (ESD) is embedded in the design project, it is more likely that students will take forward sustainability into the workplace. Figure 1 illustrates Chemical processes and the design project.   

 

1. Subject (CE) and DP pictorial representations:

Part (a) is a generic representation of a chemical process and shows the input-output nature of chemical processes.  A chemical process takes a feed and converts it to useful products (the process shown has two equipment units and four streams). Part (b) is a representation of the design project, where the specification (or brief) is provided to groups at the start (DSpec) and the final submission (or solution) is the information in part (a).  Part (c) shows that specifications can be product-based (the top two) or feed-based (the bottom two).  The dashed lines indicate specifications where the flowrate and composition of the feed/product is subject to design choice – a typical factor that will extend the design procedure and require more decision-making. 

 

 2. Inclusion of sustainability in the project topic and communication with students:

This is fairly straightforward in CE design projects, because of the circular economy and the associated waste minimisation.  So, from Figure 1, a feed-based (rather than product-based) specification can be employed.  Topics that have been used at Strathclyde in recent years have been the utilisation of coffee grounds, food waste and (in 2024) green and garden waste. It is helpful that such topics can be linked to many of the UN SDGs. Furthermore, waste products are often complex with many components, and one of the characteristics of chemical engineering is the various separation techniques. These two factors should be communicated to students to improve engagement.   

 

3. Inclusion of sustainability as an ESD activity to be carried out by groups:

One of the complicating factors about the UN SDGs is that there are so many, meaning that there is the possibility of a chemical process having both positive and negative impacts on different SDGs. This means that groups really need to consider all of the SDGs.  This might be conveniently demonstrated as per Table 1.  Certainly, it would be hoped that there are more ticks in column 2 than in column 3.  Column 4 corresponds to minimal change, and column 5 where there is not enough information to determine any impact. 

 

Table 1: Sustainability rating form for design project submissions   

As an example, consider a design project which is based on better utilisation of green waste.  Let us say that this results in less greenhouse gas emissions, as well as there being less need to plant and harvest plants.  This will result in positive outcomes for SDG12 and SDG13.  There are also positive effects because more land can be used for crops, and there will be higher plant coverage during the year.  It could be argued then that there are minor positive effects om SDG2 and SDG3.  The subsequent SDG profile in Table 1 shows two major impacts and two minor impacts – this might be typical for DPs.  

 

4. Assessment of sustainability in the design project:

Table 2 shows the typical sections in a DP submission.  For convenience these are shown as having equal 20-mark contributions.  One way of determining marks is to divide these sections into a number of dimensions, for example: use of the literature, technical knowledge, creativity/innovation and style/layout.  Sustainability could then be included as a fifth dimension.  It is then a case of determining the sustainability dimension for each of the marking sections.  It could be argued that sustainability is particularly important at the start of the project (when feeds and amounts are being decided) and at the end (when the final process is being assessed).  This explains the larger weightings in Table 2. Coherence refers to how well the submission reads in terms of order and consistency and is thus independent of sustainability.  The weightings are subject to debate, but they do at least give the potential for consistent (and traceable) grading between different assessors.        

 

Table 2: Design project assessment now including ESD   

References: 

Byrne, E.P. (2023) “The evolving engineer; professional accreditation sustainability criteria and societal imperatives and norms”, Education for Chemical Engineers 43, pp. 23–30  

Feijoo, G., Moreira, M.T. (2020) “Fostering environmental awareness towards responsible food consumption and reduced food waste in chemical engineering students”, Education for Chemical Engineers 33, pp. 27–35  

IChemE (2021), “Accreditation of chemical engineering programmes: a guide for education providers and assessors” 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

Author: Cigdem Sengul, Ph.D. FHEA (Computer Science, Brunel University). 

Topic: Embedding SDGs into undergraduate computing projects using problem-based learning and teamwork. 

Tool type: Guidance. 

Relevant disciplines: Computing; Computer science; Information technology; Software engineering.  

Keywords: Sustainable Development Goals; Problem-based learning; Teamwork; Design thinking; Sustainability; AHEP; Pedagogy; Higher education; Communication; Course design; Assessment; STEM; Curriculum design. 
 
Sustainability competency: Collaboration; Integrated problem-solving.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: All 17; see specific examples below for SDG 2 (Zero Hunger); SDG 13 (Climate Action). 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment.

Who is this article for? This article should be read by educators at all levels in Higher Education who wish to embed sustainable development goals into computing projects. 

Supporting resources 

 

Premise:  

Education for Sustainable Development (ESD) is defined by UNESCO (2021) as:  “the process of equipping students with the knowledge and understanding, skills and attributes needed to work and live in a way that safeguards environmental, social and economic wellbeing, in the present and for future generations.” All disciplines have something to offer ESD, and all can contribute to a sustainable future. This guide presents how to embed the Sustainable Development Goals (SDGs) into undergraduate computing projects, using problem-based learning and teamwork as the main pedagogical tools (Mishra & Mishra, 2020).  

 

Embedding Sustainable Development Goals (SDGs) into computing group projects: 

Typically, the aim of the undergraduate Computing Group Project is to: 

This type of project provides students with an opportunity to integrate various skills, including design, software development, project management, and effective communication.  

 

In this project setting, the students can be asked to select a project theme based on the SDGs. The module team then can support student learning in three key ways: 

1. Lectures, labs, and regular formative assessments can build on lab activities to walk the project groups through a sustainability journey that starts from a project pitch, continues with design, implementation, and project progress reporting, and ends with delivering a final demo.

2. Blending large classroom teaching with small group teaching, where each group is assigned a tutor, to ensure timely support and feedback on formative assessments.

3. A summative assessment based on a well-structured project portfolio template, guiding students to present and reflect on their individual contribution to the group effort. This portfolio may form the only graded element of their work, giving the students the opportunity to learn from their mistakes in formative assessments and present their best work at the end of the module.  

 

Mapping the learning outcomes to the eight UNESCO key competencies for sustainability (Advance HE, 2021), the students will have the opportunity to experience the following: 

 

More specifically, sustainable development can be embedded following a lecture-lab-formative assessment-summative assessment path: 

1. Introduction lecture: Introduce the SDGs and give real-life examples of software that contribute to SDGs (examples include: for SDG 2 – Zero Hunger, the World Food Programme’s Hunger Map; SDG 13 – Climate Action, Climate Mind ). The students then can be instructed to do their own research on SDGs. 

2. Apply design thinking to project ideation: In a lecture, students are introduced to design thinking and the double-diamond of design to use a diverge-converge strategy to first “design the right thing” and second “design things right.” In a practical session, with teaching team support, the students can meet their groups for a brainstorming activity. It is essential to inform students about setting ground rules for discussion, ensuring all voices are heard. Encourage students to apply design thinking to decide which SDG-based problem they would like to work on to develop a software solution. Here, giving students an example of this process based on a selected SDG will be useful. 

3. Formative assessment – project pitch deliverable: The next step is to channel students’ output of the design thinking practical to a formative assessment. Students can mould their discussion into a project pitch for their tutors. Their presentation should explain how their project works towards one or more of the 17 SDGs. 

4. Summative assessment – a dedicated section in project portfolio: Finally, dedicating a section in a project portfolio template on ideation ensures students reflect further on the SDGs. In the portfolio, students can be asked to reflect on how individual ideas were discussed and feedback from different group members was captured. They should also reflect on how they ensured the chosen problem fits one or more SDGs, describe the selection process of the final software solution, and what alternative solutions for the chosen SDG they have discussed, elaborating on the reasons for the final choice. 

 

Conclusion: 

Computing projects provide an excellent opportunity to align teaching, learning, and assessment activities to meet key Sustainable Development competencies and learning outcomes. The projects can provide transformational experiences for students to hear alternative viewpoints, reflect on experiences, and address real-world challenges. 

 

References: 

Advance HE. (2021) Education for sustainable development guidance. (Accessed: 02 January 2024). 

Lewrick, M., Link, P., Leifer, L.J. & Langensand, N. (2018). The design thinking playbook: mindful digital transformation of teams, products, services, businesses, and ecosystems. New Jersey: John Wiley & Sons, Inc, Hoboken. 

Mishra, D. and Mishra, A. (2020) ‘Sustainability Inclusion in Informatics Curriculum Development’, Sustainability, 12(14), p. 5769.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 
To view a plain text version of this resource, click here to download the PDF.

Author: Dr Manoj Ravi FHEA (University of Leeds). 

Topic: Pedagogical approaches to integrating sustainability. 

Tool type: Knowledge. 

Relevant disciplines: Any.  

Keywords: Education for Sustainable Development; Teaching or embedding sustainability; Course design; AHEP; Learning outcomes; Active learning; Assessment methods; Pedagogy; Climate change; Bloom’s Taxonomy; Project-based learning; Environment; Interdisciplinary; Higher education; Curriculum. 
 
Sustainability competency: Integrated problem-solving competency.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.

Who is this article for? This article should be read by educators at all levels in higher education who are seeking an overall perspective on teaching approaches for integrating sustainability in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

As stated in the 1987 United Nations Brundtland Report, ‘sustainability’ refers to “meeting the needs of the present without compromising the ability of future generations to meet their own needs” (GH, 1987 p.242). It is underpinned by a tripartite definition encompassing environmental, social and economic sustainability. The necessity for embracing sustainability is underscored by several pressing challenges we face as a global society, ranging from climate change to economic crises.  

Against the backdrop of these global challenges, the role of the engineering profession assumes significant importance. While the scientific principles that underpin the various engineering disciplines remain largely the same, the responsibility of the engineering profession is to leverage these principles to address current and future challenges. Consequently, education for sustainable development (ESD) becomes a vital aspect of an engineer’s training, since the profession will guide the design and implementation of innovative solutions to challenges crosscutting environmental impact, judicious use of resources and social wellbeing.   

 

Integrated course design: 

Integrating ESD in engineering education requires programme and module designers to take a deliberate approach. Drawing on initial attempts to integrate sustainability in management and business education (Rusinko, 2010), four pedagogical approaches of ESD can be identified:  

  1. piggybacking,  
  2. mainstreaming,  
  3. specialising,  
  4. connecting.  

The last two approaches are for creating new curriculum structures with a narrow discipline-specific focus and a broad transdisciplinary focus, respectively. The other two, piggybacking and mainstreaming, are approaches to embed sustainability within existing curriculum structures. Although piggybacking is the easier-to-implement approach, achieved by additional sessions or resources on sustainability being tagged onto existing course modules, mainstreaming enables a broader cross-curricular perspective that intricately intertwines sustainability with engineering principles. 

The mainstreaming approach is also an elegant fit with the accreditation requirements for sustainability; the latest edition of the Accreditation of Higher Education Programmes (AHEP) emphasises competence in evaluating ‘environmental and societal impact of solutions’ to ‘broadly-defined’ and ‘complex’ problems. In order to foster this ability, where sustainability is a guiding principle for developing engineering solutions, a holistic (re)consideration of all elements of constructive alignment (Biggs, 1996) – intended learning outcomes (ILOs), teaching and learning activities, and student assessment – is needed. To this end, the Integrated Course Design (ICD) pedagogical framework can be leveraged for a simultaneous and integrated consideration of course components for embedding sustainability.  

 

Sustainability learning outcomes: 

Bloom’s taxonomy (also see here), which conventionally guides formulation of ILOs, can be extended to incorporate sustainability-based learning outcomes. The action verb in the AHEP guidance for the learning outcome on sustainability is ‘evaluate’, signifying a high cognitive learning level. ILOs framed at this level call for application of foundational knowledge through practical, critical and creative thinking. Although the cognitive domain of learning is the main component of engineering education, sustainability competence is greater than just a cognitive ability. For more information, see the Reimagined Degree Map.   

ESD is a lifelong learning process and as stated by UNESCO, it ‘enhances the cognitive, socio-emotional and behavioural dimensions of learning’. This integration of cognitive learning outcomes with affective aspects, referred to as ‘significant learning’ in the ICD terminology, is of utmost importance to develop engineers who can engage in sustainable and inclusive innovation. Furthermore, mapping programme and module ILOs to the UN Sustainable Development Goals (SDGs) is another way to integrate sustainability in engineering with connections between technical engineering competence and global sustainability challenges becoming more explicit to students and educators. Similarly, the ILOs can be mapped against UNESCO’s sustainability competencies to identify scope for improvement in current programmes. See the Engineering for One Planet Framework for more information and guidance on mapping ILOs to sustainability outcomes and competencies. 

 

Teaching and learning activities: 

Activities that engage students in ‘active learning’ are best placed to foster sustainability skills. Additional lecture material on sustainability and its relevance to engineering (piggybacking approach) will have limited impact. This needs to be supplemented with experiential learning and opportunities for reflection. To this end, design and research projects are very effective tools, provided the problem definition is formulated with a sustainability focus (Glassey and Haile, 2012). Examples include carbon capture plants (chemical engineering), green buildings (civil engineering) and renewable energy systems (mechanical and electrical engineering).  

Project-based learning enables multiple opportunities for feedback and self-reflection, which can be exploited to reinforce sustainability competencies. However, with project work often appearing more prominently only in the latter half of degree programmes, it is important to consider other avenues. Within individual modules, technical content can be contextualised to the background of global sustainability challenges. Relevant case studies can be used in a flipped class environment for a more student-led teaching approach, where topical issues such as microplastic pollution and critical minerals for energy transition can be taken up for discussion (Ravi, 2023). Likewise, problem sheets or simulation exercises can be designed to couple technical skills with sustainability.    

  

Student assessment: 

With sustainability being embedded in ILOs and educational activities, the assessment of sustainability competence would also need to take a similar holistic approach. In other words, assessment tasks should interlace engineering concepts with sustainability principles. These assessments are more likely to be of the open-ended type, which is also the case with design projects mentioned earlier. Such engineering design problems often come with conflicting constraints (technical, business, societal, economic and environmental) that need careful deliberation and are not suited for conventional closed-book time-limited examinations.  

More appropriate tools to assess sustainability, include scaled self-assessment, reflective writing and focus groups or interviews (Redman et al., 2021). In a broader pedagogical sense, these are referred to as authentic assessment strategies. Given the nexus between sustainability and ethics, inspiration can also be drawn from how ethics is being assessed in engineering education. Finally, pedagogical models such as the systems thinking hierarchical model (Orgill et al., 2019), can be used to inform the design of assessment rubrics when evaluating sustainability skills.  

 

Supporting resources: 

 

References: 

Biggs, J. (1996) ‘Enhancing teaching through constructive alignment’, Higher education, 32(3), pp. 347-364.  

Brundtland, G.H. (1987) Our Common Future: Report of the World Commission on Environment and Development. United Nations General Assembly document A/42/427, p.247.   

Glassey, J. and Haile, S. (2012) ‘Sustainability in chemical engineering curriculum’, International Journal of Sustainability in Higher Education, 13(4), pp. 354-364.  

Orgill, M., York, S. and MacKellar, J. (2019) ‘Introduction to systems thinking for the chemistry education community’, Journal of Chemical Education, 96(12), pp. 2720-2729.  

Ravi, M. (2023) ‘Spectroscopic Methods for Pollution Analysis─Course Development and Delivery Using the Integrated Course Design Framework’, Journal of Chemical Education, 100(9), pp. 3516-3525.  

Redman, A., Wiek, A. and Barth, M. (2021) ‘Current practice of assessing students’ sustainability competencies: A review of tools’, Sustainability Science, 16, pp. 117-135.  

Rusinko, C. A. (2010) ‘Integrating sustainability in management and business education: A matrix approach’, Academy of Management Learning & Education, 9(3), pp. 507-519. 

 
This work is licensed under a  Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development Assessment materials  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materials  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materials  General
Times Higher Education – Impact Rankings 2022 Accreditation materials  General
Times Higher Education, Impact Rankings 2023 Accreditation materials  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materials  General

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

Jump to a section on this page:

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development Assessment materials  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materials  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materials  General
Times Higher Education – Impact Rankings 2022 Accreditation materials  General
Times Higher Education, Impact Rankings 2023 Accreditation materials  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materials  General

 

Collaboration resources

Click to view our Collaboration resources page where you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others. 

 

Integration tools

Listed below are links to tools designed to support educators ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline

AdvanceHE’s Education for Sustainable Development Curriculum Design Toolkit

Curriculum Development  General
Engineering for One Planet Framework Learning Outcomes Curriculum Development  Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD Curriculum Development  General
University College Cork’s Sustainable Development Goals Toolkit Curriculum Development  General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development  General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide Other Learning Activities  Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes Other Learning Activities  Engineering-specific
Siemens Engineering Curriculum Materials Other Learning Activities  Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes Other Learning Activities  General
VentureWell’s Tools for Design and Sustainability Other Learning Activities  Engineering-specific
AskNature’s Biomimicry Toolbox Other Learning Activities  Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities  Engineering-specific
Siemens Xcelerator Academy Other Learning Activities  Engineering-specific

 

Knowledge tools

Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.

Resource Topic Discipline
UN SDG website Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO’s Education for Sustainable Development Toolbox Education for Sustainable Development and UN Sustainable Development Goals General
Newcastle University’s Guide to Engineering and Education for Sustainable Development Education for Sustainable Development and UN Sustainable Development Goals General
International Institute for Sustainable Development Knowledge Hub Education for Sustainable Development and UN Sustainable Development Goals General
PBL, SDGs, and Engineering Education WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Re-setting the Benchmarks for Engineering Graduates with the Right Skills for Sustainable Development WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHE’s Guidance on embedding Education for Sustainable Development in HE Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO Engineering Report  Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHEEducation for Sustainable Development: a review of the literature 2015-2022  (only accessible to colleagues from member institutions at AdvanceHE – this is a member benefit until October 2025) Education for Sustainable Development and UN Sustainable Development Goals General

Wackernagel, M., Hanscom, L. and Lin, D. (2017) Making the Sustainable Development Goals consistent with sustainability, Frontiers. (Accessed: 01 February 2024).

Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development (VIP4SD), University of Strathclyde (Video) Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development, University of Strathclyde (Study with us) Education for Sustainable Development and UN Sustainable Development Goals General
Siemens Skills for Sustainability Network Roundtable Article – August 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Network Roundtable Article – October 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Report: World Engineering Day – Engineering for One Planet (2024)
Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Student Survey Student Voice  Engineering-specific
Students Organising for Sustainability Learning Academy Student Voice  General
Students Organising for Sustainability – Sustainability Skills Survey Student Voice  General
Engineers Without Borders-UK Global Responsibility Competency Compass Competency Frameworksfor Sustainability  Engineering-specific
Institute of Environmental Management and Assessment Sustainability Skills Map Competency Frameworksfor Sustainability  General
Arizona State School of Sustainability Key Competencies Competency Frameworksfor Sustainability  General
EU GreenComp: the European Sustainability Competence Framework Competency Frameworksfor Sustainability  General
International Engineering Alliance Graduate Attributes & Professional Competencies Competency Frameworksfor Sustainability  General
Engineering for One Planet (EOP) – The EOP Framework Competency Frameworksfor Sustainability  Engineering-specific
Ellen Macarthur Foundation’s Circular Economy website Broader Context , Circular economy Engineering-specific
GreenBiz’s Cheat Sheet of EU Sustainability Regulations Broader Context , Regulations General
Green Software Practitioner – Principles of Green Software Broader Context , Software Engineering-specific
Microsoft’s Principles of Sustainable Software Engineering Broader Context , Software Engineering-specific
Engineering Futures – Sustainability in Engineering Webinars  (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.) Broader Context, Engineering Engineering-specific
Innes, C. (2023) AI and Sustainability: Weighing up the environmental pros and cons of Machine Intelligence Technology., Jisc – Infrastructure.  (Accessed: 01 February 2024). Broader Context, Artificial Intelligence Engineering-specific
Arnold, W. (2020a) The structural engineer’s responsibility in this climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2017) Structural engineering in 2027, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2020b) The institution’s response to the climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Litos , L. et al. (2023) An investigation between the links of sustainable manufacturing practices and Innovation, Procedia CIRP. (Accessed: 01 February 2024). Broader Context, Manufacturing Engineering-specific
UAL Fashion SEEDS: Fashion Societal, Economic and Environmental Design-led Sustainability
Broader Context, Design General
ISTRUCTE – Sustainability Resource Map
Broader Context, Engineering Engineering-specific

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

This post is also available here.

Author: Andrew Avent (University of Bath). 

Keywords: Assessment criteria; Pedagogy; Communication.  

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum, or into module design and learning activities. It describes an in-class activity that is appropriate for large sections and can help to provide students with opportunities to practise the communication and critical thinking skills that employers are looking for. 

 

Premise: 

Encouraging students to engage with the ethical, moral and environmental aspects of engineering in any meaningful way can be a challenge, especially in very large cohorts. In the Mechanical Engineering department at the University of Bath we have developed a debate activity which appears to work very well, minimising the amount of assessment, maximising feedback and engagement, and exposing the students to a wide range of topics and views.  

In our case, the debate comes after a very intensive second year design unit and it is couched as a slightly “lighter touch” assignment, ahead of the main summer assessment period. The debate format targets the deeper learning of Bloom’s taxonomy and is the logical point in our programme to challenge students to develop these critical thinking skills.  

Bloom, B. S. (1956). “Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain.” New York: David McKay Co Inc. 

This activity addresses two of the themes from the Accreditation of Higher Education Programmes (AHEP) fourth edition: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

 

The debate format: 

Table 1: Timings for technical feasibility debate. There is plenty of scope to alter these timings
and allow a
healthy debate from the floor and further exploration of the key arguments. 

 

Some key points to bear in mind: 

The environmental impact of Formula 1 can(not) be justified through improvements to vehicle and other technologies.

For clarity, the term “Affirmative” means they are arguing for the proposal, “Negative” implies they are arguing against the proposal. The Negative argument includes the bracketed word in all cases. 

Equally the team given the “affirmative” position to argue in favour of the sport, needs to be certain of their arguments and to fully research and anticipate any potential killer questions from their opponents. 

 

Discussion points for improvements: 

We felt that our experience with what has become known as the Technical Feasibility Debate was worth sharing with the wider higher education community, and hope that readers will learn from our experience and implement their own version.  

 

Acknowledgements: 

 

Appendices: 

Typical list of debate topics: 

  1. Gas turbines are (not) a dying technology for aircraft propulsion.
  2. Cumbrian super coal mine: there is (no) justification for accessing these fossil fuel reserves.
  3. Metal additive manufacturing, 3D Printing, is (not) a sustainable technology. 
  4. Mining the Moon/asteroids for minerals, helium, etc. should (not) be permitted. 
  5. Electrification of lorries via hydrogen fuel cell technology is (not) preferable to changing the road infrastructure to include overhead power lines (or similar). 
  6. Electrification of road vehicles is (not) preferable to using cleaner fuel alternatives in internal combustion engine cars. 
  7. The use of single use plastic packaging is (not) defensible when weighed up against increases in food waste. 
  8. The environmental impact of Formula 1 can(not) be justified through improvements to vehicle and other technologies. 
  9. Solar technologies should (not) take a larger share of future UK investment compared to wind technologies. 
  10. Tidal turbines will (never) produce more than 10% of the UK’s power. 
  11. Wave energy converters are (never) going to be viable as a clean energy resource. 
  12. Commercial sailing vessels should (not) be used to transport non-perishable goods around the globe. 
  13. We should (not) trust algorithms over humans in safety-critical settings, for example autonomous vehicles. 
  14. Inventing and manufacturing new technologies is (not) more likely to help us address the climate emergency than reverting to less technologically and energy intense practices 
  15. Mechanical Engineering will (not) one day be conducted entirely within the Metaverse, or similar. 
  16. The financial contribution and scientific effort directed towards fundamental physics research, for example particle accelerators, is (not) justified with regard to the practical challenges humanity currently faces. 
  17. A total individual annual carbon footprint quota would (not) be the best way to reduce our carbon emissions. 
  18. The UK power grid will (not) be overwhelmed by the shift to electrification in the next decade. 
  19. We are (not) more innovative than we were in the past – breakthrough innovations are (not) still being made. 
  20. Lean manufacturing and supply chains have (not) been exposed during the pandemic. 


Marking rubric:
 

Criteria  5  4  3  2  1 
1. Organisation and Clarity: 

Main arguments and responses are outlined in a clear and orderly way. 

Exceeds expectations with no suggestions for improvement.  Completely clear and orderly presentation.  Mostly clear and orderly in all parts.  Clear in some parts but not overall.  Unclear and disorganised throughout. 
2. Use of Argument: 

Reasons are given to support the resolution. 

Exceeds expectations with no suggestions for improvement.  Very strong and persuasive arguments given throughout.  Many good arguments given, with only minor problems.  Some decent arguments, but some significant problems.  Few or no real arguments given, or all arguments given had significant problems. 
3. Presentation Style: 

Tone of voice, clarity of expression, precision of arguments all contribute to keeping audience’s attention and persuading them of the team’s case. Neatly presented and engaging slides, making use of images and multimedia content. 

Exceeds expectations with no suggestions for improvement.  All style features were used convincingly.  Most style features were used convincingly.  Few style features were used convincingly.  Very few style features were used, none of them convincingly. 

 

References: 

Bloom, B. S. (1956). Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. New York: David McKay Co Inc. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Author: Dr Mike Murray (Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow)

Keywords: Mentors, Mentees, Civil Engineering

Abstract: On enrolment at university, undergraduate civil engineering students begin their journey towards a professional career. Graduate mentoring of student mentees supports students in their transition towards ‘becoming’ a professional engineer. This case study examines the results from a graduate mentoring initiative (2010-2022) involving third-year (N= 974) civil and environmental engineering student mentees, 235 graduate mentors and 73 employers.

 

A virtuous collaboration between academia and industry

This case study examines the establishment of an industry-student mentoring scheme whereby Alumni civil engineering graduates volunteer to mentor student mentees. The mentoring is formalised in a third-year module (Construction Project Management).

Authentic learning

The mentoring initiative aims to expose the mentees to authentic civil engineering practice, to shape their professional identity and belongingness to their chosen discipline, and, to enhance their employability skills. Mentors are tasked ‘to help motivate students towards learning what is useful and what might make them a better engineer rather than just focusing on grades’ [1].Two theoretical concepts provided a lens to guide the implementation. ‘Possible selves are representations of the self in the future, including those that are ideal and hoped for as well as those that one does not wish for’ [2 p.233]. Anticipatory socialisation involves individuals anticipating their future occupation prior to entry and constitutes all learning that takes place prior to an individual’s first day at work [3].

People, place & culture

The collaboration between the department and employers began in 2010 when the author approached the department’s existing industry contacts, to become the inaugural mentors. Today, LinkedIn and other social media provide a platform for broadcasting mentoring news. Over time the mentoring has built its own brand momentum and Alumni and employers now make unsolicited offers to assist (i.e. see [4] for university and industry-driven engagement strategies). The brand is enhanced through its association with key sector employers but given the propensity for small and micro SMEs in the engineering sector, these employers should not be overlooked.

Whilst the mentoring is embedded within the mechanics of a formal structure (i.e. Module, Learning Outcomes, and Assessment etc.) the development, sustaining and leadership of the initiate is fuelled through informal professional relationships. Social relations are important to maintain ongoing engagement between universities and industry stakeholders [4 p.14]. The collaborative culture is characterised by value alignment and trust between the stakeholders [5].

 

Mentoring with a contractor.

Stakeholders

The mentoring initiative can be considered an ‘employer group’ model whereby ‘engagement included collaboration between a single HEI (University of Strathclyde) and two or more employers on the same initiative’ [5 p.23]. The initial buy-in from the mentors normally requires sanctioning by a line manager, often, a supervising civil engineer.

The value alignment between all stakeholders is personified through knowledge transfer (mentor-mentee); professional development (mentor-employer); creating social value (employer-university) and, the university department through fulfilling the programme accreditation requirements:

JBM strongly recommends that higher education institutions (HEIs) maintain strong, viable and visible links with the civil engineering profession [6 p.21].

By association, the professional institutions benefit through the mentors’ contribution to their own CPD, en-route to IEng / CEng, and, through the mentees gaining an awareness of profession attributes through their own IPD during their university studies:

All members shall develop their professional knowledge, skills and competence on a continuing basis and shall give all reasonable assistance to further the education, training and continuing professional development (CPD) of others [7].

A fuller description of the mentoring process can be found [8]. Suffice to say the mentees (in groups of four) visit their mentors in the field, at a consultant’s office, and/or to a live construction site on four occasions over two academic semesters. Typically, the mentors will also provide mentees with access to their peers who would shed light on their own graduate trajectories. The department’s industrial advisory board [9] published guidance to assist the mentors. During the Covid pandemic, the majority of meetings were undertaken on ZOOM /TEAMS platforms. To date, the initiative has involved:

Assessment evolution

Over the piece, the mentoring assessment has constituted a circa 40% weighting for the 10 credit module. Initially, the students were tasked with only describing what had been learned and to link this to professional institution attributes [10]. This morphed into an Assessment for Learning [11] and sought to develop the student’s reflective practitioner [12] and metacognition skills [13]. Students develop four SMART learning objectives, linked to their programme curriculum, and, to explore these topics with guidance from their mentors. Today, the assessment criteria partially reflects the tenets of self-determined learning:

The essence of heutagogy is that in some learning situations, the focus should be on what and how the learner wants to learn, not on what is being taught [14 p.7].

During the 2020-22 academic sessions the Covid pandemic presented an opportunity to employ eLearning technology, to enhance the student’s reflection skills. The author is currently piloting Vlogging [15] whereby the students are tasked with completing short video blogs concerning their mentoring experience, and, to use the audio transcript to facilitate second-order reflection in a summative report:

..any technique that requires a learner to look through previous reflective work and to write a deeper reflective overview [16 p.148].

 

Mentoring with a Consultant

Key outcomes

The key outcomes concern enhanced opportunities for placement and graduate employment, and, an improvement in the students’ employability skills [8]. Recent anecdotal feedback (i.e. unsolicited student emails; NSS Free text; Module Evaluation; Employer Feedback) demonstrates that students, and employers, consider the initiative to constitute an emerging talent pipeline. The mentoring provides a surrogate mechanism to short circuit employer’s traditional recruitment process.

The CE4R [17] workshops are the best thing ever. That along with the mentoring class in third year is the main reason I have my graduate job, whilst my grades and ability helped, these aspects of my course opened the door for me. (NSS Free Text, 2021)

The graduate mentoring programme is excellent and is highly beneficial to both the students, our graduates in the business and AECOM as a whole.  (Lynn Masterson AECOM, Regional Director North, Scotland & Ireland. Ground, Energy & Transactions Solutions, UK&I)

The [mentoring] scheme works for us on a number of levels in providing benefits to us as a company, the professional development of our current graduate engineers, and the development of current Strathclyde undergraduates who may go on to work for us or others in industry. (Simon McCormick, Balfour Beatty, Contracts Director, Scotland)

Lessons learned

Guidance & resources

Generic guidance:

Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE.

Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering.

Davies, J.W &  Rutherford, U. (2012) Learning from fellow engineering students who have current professional experience, European Journal of Engineering Education, 37:4, 354-365, DOI: 10.1080/03043797.2012.693907

Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

Waterhouse, P (2020) Mentoring for Civil Engineers, London: ICE Publishing

University guidance:

University of Colorado Boulder (2022) Chemical & Biological Engineering: Alumni-Student Mentor Program, https://www.colorado.edu/chbe/ASMP

University of Exeter (2022) Career Mentor Scheme: Mentee Guide, http://www.exeter.ac.uk/media/universityofexeter/careersandemployability/employmentservices/Mentee_Guide_December_2021.pdf

University of Southampton (2022) Career Mentoring Programme: Mentor Handbook, https://www.southampton.ac.uk/~assets/doc/careers/Mentor_Handbook.pdf

The Pennsylvania State University (2022) Civil & Environmental Engineering (CEE) Mentoring Program, https://www.cee.psu.edu/alumni/mentor/index.aspx

End notes

[1] Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/effective-industrial-engagement-in-engineering-edu

[2] Stevenson, J & Clegg, S. (2011). Possible selves: students orientating themselves towards the future through extracurricular activity, British Educational Research Journal 37(2): 231–246.

[3] Sang, K., Ison, S., Dainty, A., & Powell, A. (2009). Anticipatory socialisation amongst architects: a qualitative examination. Education + Training 51(4):309-321, DOI: 10.1108/00400910910964584 .

[4] Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

[5] Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE, https://ore.exeter.ac.uk/repository/bitstream/handle/10036/79653/Higher%20Skills%20research%20report.pdf;jsessionid=0A6694CF9D25BBD80AC649069C2D9DFA?sequence=1

[6] Joint Board of Moderators (2021) Guidelines for developing degree programmes. https://www.jbm.org.uk/media/hiwfac4x/guidelines-for-developing-degree-programmes_ahep3.pdf

[7] Institution of Civil Engineers (2022) Code of Professional Conduct https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/About%20Us/ice-code-of-professional-conduct.pdf

[8] Murray. M., Ross. A., Blaney, N & Adamson, L. (2015). Mentoring Undergraduate Civil Engineering Students. Proceedings of the ICE-Management, Procurement & Law, 168(4): 189–198.

[9] University of Strathclyde (2013) Department of Civil & Environmental Engineering, Industrial Advisory Board Guide to mentoring.

[10] Institution of Civil Engineers (2022) Attributes for professionally qualified membership, https://www.ice.org.uk/my-ice/membership-documents/member-attributes#CEng2022

[11] Sambell, K, McDowell, L and Montgomery C (2013) Assessment for learning in Higher Education, Oxon: Routledge.

[12] Schon, D. (1987). Educating the Reflective Practitioner, San Francisco; Jossey-Bass.

[13] Davis, D., Trevisan, M., Leiffer,P., McCormack,J.,  Beyerlein, S., Khan, M.J., & Brackin, R.(2013) Reflection and Metacognition in Engineering Practice, In, Kaplan, M., Silver, N., Lavaque-Manty, D & Meizlish, D (edits) Using Reflection and metacognition to Improve Student Learning: Across the Disciplines, Across the Academy, Virginia: Stylus Publishing, pp78-103.

[14] Hase, S & Kenyon, C. (2013). Self-Determined Learning: Heutagogy in Action London: Bloomsbury Publishing Plc.

[15] Brott, P.E. (2020): Vlogging and reflexive applications, Open Learning: The Journal of Open, Distance and e-Learning, DOI: 10.1080/02680513.2020.1869536

[16] Moon, J (2004) A Handbook of Reflective & Experiential learning: Theory & Practice. London: Routledge.

[17] Murray, M., Hendry, G., & McQuade, R. (2020). Civil Engineering 4 Real (CE4R): Co-curricular Learning for Undergraduates. European Journal of Engineering Education. 45(1):128-150.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website