Author: Dr Manoj Ravi FHEA (University of Leeds). 

Topic: Pedagogical approaches to integrating sustainability. 

Tool type: Knowledge. 

Relevant disciplines: Any.  

Keywords: Education for Sustainable Development; Teaching or embedding sustainability; Course design; AHEP; Learning outcomes; Active learning; Assessment methods; Pedagogy; Climate change; Bloom’s Taxonomy; Project-based learning; Environment; Interdisciplinary; Higher education; Curriculum. 
 
Sustainability competency: Integrated problem-solving competency.

AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.  

Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action). 
 
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.

Who is this article for? This article should be read by educators at all levels in higher education who are seeking an overall perspective on teaching approaches for integrating sustainability in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for. 

 

Premise: 

As stated in the 1987 United Nations Brundtland Report, ‘sustainability’ refers to “meeting the needs of the present without compromising the ability of future generations to meet their own needs” (GH, 1987 p.242). It is underpinned by a tripartite definition encompassing environmental, social and economic sustainability. The necessity for embracing sustainability is underscored by several pressing challenges we face as a global society, ranging from climate change to economic crises.  

Against the backdrop of these global challenges, the role of the engineering profession assumes significant importance. While the scientific principles that underpin the various engineering disciplines remain largely the same, the responsibility of the engineering profession is to leverage these principles to address current and future challenges. Consequently, education for sustainable development (ESD) becomes a vital aspect of an engineer’s training, since the profession will guide the design and implementation of innovative solutions to challenges crosscutting environmental impact, judicious use of resources and social wellbeing.   

 

Integrated course design: 

Integrating ESD in engineering education requires programme and module designers to take a deliberate approach. Drawing on initial attempts to integrate sustainability in management and business education (Rusinko, 2010), four pedagogical approaches of ESD can be identified:  

  1. piggybacking,  
  2. mainstreaming,  
  3. specialising,  
  4. connecting.  

The last two approaches are for creating new curriculum structures with a narrow discipline-specific focus and a broad transdisciplinary focus, respectively. The other two, piggybacking and mainstreaming, are approaches to embed sustainability within existing curriculum structures. Although piggybacking is the easier-to-implement approach, achieved by additional sessions or resources on sustainability being tagged onto existing course modules, mainstreaming enables a broader cross-curricular perspective that intricately intertwines sustainability with engineering principles. 

The mainstreaming approach is also an elegant fit with the accreditation requirements for sustainability; the latest edition of the Accreditation of Higher Education Programmes (AHEP) emphasises competence in evaluating ‘environmental and societal impact of solutions’ to ‘broadly-defined’ and ‘complex’ problems. In order to foster this ability, where sustainability is a guiding principle for developing engineering solutions, a holistic (re)consideration of all elements of constructive alignment (Biggs, 1996) – intended learning outcomes (ILOs), teaching and learning activities, and student assessment – is needed. To this end, the Integrated Course Design (ICD) pedagogical framework can be leveraged for a simultaneous and integrated consideration of course components for embedding sustainability.  

 

Sustainability learning outcomes: 

Bloom’s taxonomy (also see here), which conventionally guides formulation of ILOs, can be extended to incorporate sustainability-based learning outcomes. The action verb in the AHEP guidance for the learning outcome on sustainability is ‘evaluate’, signifying a high cognitive learning level. ILOs framed at this level call for application of foundational knowledge through practical, critical and creative thinking. Although the cognitive domain of learning is the main component of engineering education, sustainability competence is greater than just a cognitive ability. For more information, see the Reimagined Degree Map.   

ESD is a lifelong learning process and as stated by UNESCO, it ‘enhances the cognitive, socio-emotional and behavioural dimensions of learning’. This integration of cognitive learning outcomes with affective aspects, referred to as ‘significant learning’ in the ICD terminology, is of utmost importance to develop engineers who can engage in sustainable and inclusive innovation. Furthermore, mapping programme and module ILOs to the UN Sustainable Development Goals (SDGs) is another way to integrate sustainability in engineering with connections between technical engineering competence and global sustainability challenges becoming more explicit to students and educators. Similarly, the ILOs can be mapped against UNESCO’s sustainability competencies to identify scope for improvement in current programmes. See the Engineering for One Planet Framework for more information and guidance on mapping ILOs to sustainability outcomes and competencies. 

 

Teaching and learning activities: 

Activities that engage students in ‘active learning’ are best placed to foster sustainability skills. Additional lecture material on sustainability and its relevance to engineering (piggybacking approach) will have limited impact. This needs to be supplemented with experiential learning and opportunities for reflection. To this end, design and research projects are very effective tools, provided the problem definition is formulated with a sustainability focus (Glassey and Haile, 2012). Examples include carbon capture plants (chemical engineering), green buildings (civil engineering) and renewable energy systems (mechanical and electrical engineering).  

Project-based learning enables multiple opportunities for feedback and self-reflection, which can be exploited to reinforce sustainability competencies. However, with project work often appearing more prominently only in the latter half of degree programmes, it is important to consider other avenues. Within individual modules, technical content can be contextualised to the background of global sustainability challenges. Relevant case studies can be used in a flipped class environment for a more student-led teaching approach, where topical issues such as microplastic pollution and critical minerals for energy transition can be taken up for discussion (Ravi, 2023). Likewise, problem sheets or simulation exercises can be designed to couple technical skills with sustainability.    

  

Student assessment: 

With sustainability being embedded in ILOs and educational activities, the assessment of sustainability competence would also need to take a similar holistic approach. In other words, assessment tasks should interlace engineering concepts with sustainability principles. These assessments are more likely to be of the open-ended type, which is also the case with design projects mentioned earlier. Such engineering design problems often come with conflicting constraints (technical, business, societal, economic and environmental) that need careful deliberation and are not suited for conventional closed-book time-limited examinations.  

More appropriate tools to assess sustainability, include scaled self-assessment, reflective writing and focus groups or interviews (Redman et al., 2021). In a broader pedagogical sense, these are referred to as authentic assessment strategies. Given the nexus between sustainability and ethics, inspiration can also be drawn from how ethics is being assessed in engineering education. Finally, pedagogical models such as the systems thinking hierarchical model (Orgill et al., 2019), can be used to inform the design of assessment rubrics when evaluating sustainability skills.  

 

Supporting resources: 

 

References: 

Biggs, J. (1996) ‘Enhancing teaching through constructive alignment’, Higher education, 32(3), pp. 347-364.  

Brundtland, G.H. (1987) Our Common Future: Report of the World Commission on Environment and Development. United Nations General Assembly document A/42/427, p.247.   

Glassey, J. and Haile, S. (2012) ‘Sustainability in chemical engineering curriculum’, International Journal of Sustainability in Higher Education, 13(4), pp. 354-364.  

Orgill, M., York, S. and MacKellar, J. (2019) ‘Introduction to systems thinking for the chemistry education community’, Journal of Chemical Education, 96(12), pp. 2720-2729.  

Ravi, M. (2023) ‘Spectroscopic Methods for Pollution Analysis─Course Development and Delivery Using the Integrated Course Design Framework’, Journal of Chemical Education, 100(9), pp. 3516-3525.  

Redman, A., Wiek, A. and Barth, M. (2021) ‘Current practice of assessing students’ sustainability competencies: A review of tools’, Sustainability Science, 16, pp. 117-135.  

Rusinko, C. A. (2010) ‘Integrating sustainability in management and business education: A matrix approach’, Academy of Management Learning & Education, 9(3), pp. 507-519. 

 
This work is licensed under a  Creative Commons Attribution-ShareAlike 4.0 International License. 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters. 

 

To view a plain text version of this resource, click here to download the PDF.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development  Assessment materials  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materials  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materials  General
Times Higher Education – Impact Rankings 2022 Accreditation materials  General
Times Higher Education, Impact Rankings 2023 Accreditation materials  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materials  General

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

In developing the resources for the EPC’s Sustainability Toolkit, we took into account recent scholarship and best practices and reviewed existing material available on sustainability in engineering. You can find links to these online resources in our ever-growing library of engineering education resources on sustainability below. Please note, the resources linked below are all open-source. If you want to suggest a resource that has helped you, find out how on our Get Involved page.

 

Jump to a section on this page:

 

To view a page that only lists library links from a specific category type:

 

Assessment tools

Listed below are links to tools that are designed to support educators’ ability to measure quality and impact of sustainability teaching and learning activities. These have been grouped according to topic. You can also find our suite of assessment tools, here.

Resource Topic Discipline
Newcastle University’s Assessing Education for Sustainable Development  Assessment materials  General
Welsh Assembly Government: Education for Sustainable Development and Global Citizenship. A self-assessment toolkit for Work-Based Learning Providers. Assessment materials  General
The Accreditation of Higher Education Programmes (AHEP) – Fourth edition Accreditation materials  General
Times Higher Education – Impact Rankings 2022 Accreditation materials  General
Times Higher Education, Impact Rankings 2023 Accreditation materials  General
The UK Standard for Professional Engineering Competence and Commitment (UK-SPEC) Accreditation materials  General

 

Collaboration resources

Click to view our Collaboration resources page where you can find links to groups, networks, and organisations/initiatives that will support educators’ ability to learn with and from others. 

 

Integration tools

Listed below are links to tools designed to support educators’ ability to apply and embed sustainability topics within their engineering teaching. These have been grouped according to topic. You can also find our suite of learning activities and case studies, here.

Resource Topic Discipline
Engineering for One Planet Framework Learning Outcomes  Curriculum Development   Engineering-specific
Education & Training Foundation’s Map the Curriculum Tool for ESD  Curriculum Development   General
University College Cork’s Sustainable Development Goals Toolkit  Curriculum Development   General
Strachan, S.M. et al. (2019) Using vertically integrated projects to embed research-based education for Sustainable Development in undergraduate curricula, International Journal of Sustainability in Higher Education. (Accessed: 01 February 2024). Curriculum Development   General
Snowflake Education – Faculty Training: Teaching Sustainability Program Curriculum Development General
Siemens Case Studies on Sustainability  Case Studies Engineering-specific
Low Energy Transition Initiative Case Studies Case Studies , Energy Engineering-specific
UK Green Building Council Case Studies  Case Studies , Construction Engineering-specific
Litos, L. et al. (2017) Organizational designs for sharing environmental best practice between manufacturing sites, SpringerLink. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
Litos, L. et al. (2017) A maturity-based improvement method for eco-efficiency in manufacturing systems, Procedia Manufacturing. (Accessed: 01 February 2024). Case Studies , Manufacturing Engineering-specific
European Product Bureau – Indicative list of software tools and databases for Level(s) indicator 1.2 (version December 2020). Technical tools, Built environment Engineering-specific
Royal Institution of Chartered Surveyors (RICS) – Whole life carbon assessment (WLCA) for the built environment Technical tools, Built environment Engineering-specific
The Institution of Structural Engineers (ISTRUCTE) – The Structural carbon tool – version 2 Technical tools, Structural engineering Engineering-specific
Green, M. (2014) What the social progress index can reveal about your country, Michael Green: What the Social Progress Index can reveal about your country | TED Talk. (Accessed: 01 February 2024). Technical tools  General

Manfred Max-Neef’s Fundamental human needs (Matrix of needs and satisfiers)

”One of the applications of the work is in the field of Strategic Sustainable Development, where the fundamental human needs (not the marketed or created desires and wants) are used in the Brundtland definition.”

Technical tools  General
Siemens – Engineering student software  Technical tools Engineering-specific
Despeisse, M. et al. (2016) A collection of tools for factory eco-efficiency, Procedia CIRP. (Accessed: 01 February 2024). Technical tools, Manufacturing Engineering-specific
Engineering for One Planet Quickstart Activity Guide  Other Learning Activities   Engineering-specific
Engineering for One Planet Comprehensive Guide to Teaching Learning Outcomes  Other Learning Activities   Engineering-specific
Siemens Engineering Curriculum Materials  Other Learning Activities   Engineering-specific
VentureWell’s Activities for Integrating Sustainability into Technical Classes  Other Learning Activities   General
VentureWell’s Tools for Design and Sustainability  Other Learning Activities   Engineering-specific
AskNature’s Biomimicry Toolbox  Other Learning Activities   Engineering-specific
Segalas , J. (2020) Freely available learning resources for Sustainable Design in engineering education, SEFI. (Accessed: 01 February 2024). Other Learning Activities   Engineering-specific
Siemens Xcelerator Academy Other Learning Activities   Engineering-specific

 

Knowledge tools

Listed below are links to resources that support educators’ awareness and understanding of sustainability topics in general as well as their connection to engineering education in particular. These have been grouped according to topic. You can also find our suite of knowledge tools, here.

Resource Topic Discipline
UN SDG website Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO’s Education for Sustainable Development Toolbox Education for Sustainable Development and UN Sustainable Development Goals General
Newcastle University’s Guide to Engineering and Education for Sustainable Development Education for Sustainable Development and UN Sustainable Development Goals General
International Institute for Sustainable Development Knowledge Hub Education for Sustainable Development and UN Sustainable Development Goals General
PBL, SDGs, and Engineering Education WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Re-setting the Benchmarks for Engineering Graduates with the Right Skills for Sustainable Development WFEO Academy webinar (only accessible to WFEO academy members) Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHE’s Guidance on embedding Education for Sustainable Development in HE Education for Sustainable Development and UN Sustainable Development Goals General
UNESCO Engineering Report  Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
AdvanceHEEducation for Sustainable Development: a review of the literature 2015-2022  (only accessible to colleagues from member institutions at AdvanceHE – this is a member benefit until October 2025) Education for Sustainable Development and UN Sustainable Development Goals General

Wackernagel, M., Hanscom, L. and Lin, D. (2017) Making the Sustainable Development Goals consistent with sustainability, Frontiers. (Accessed: 01 February 2024).

Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development (VIP4SD), University of Strathclyde (Video) Education for Sustainable Development and UN Sustainable Development Goals General
Vertically Integrated Projects for Sustainable Development, University of Strathclyde (Study with us) Education for Sustainable Development and UN Sustainable Development Goals General
Siemens Skills for Sustainability Network Roundtable Article – August 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Network Roundtable Article – October 2022 Education for Sustainable Development and UN Sustainable Development Goals Engineering-specific
Siemens Skills for Sustainability Student Survey Student Voice   Engineering-specific
Students Organising for Sustainability Learning Academy  Student Voice   General
Students Organising for Sustainability – Sustainability Skills Survey Student Voice   General
Engineers Without Borders-UK Global Responsibility Competency Compass  Competency Frameworks for Sustainability  Engineering-specific
Institute of Environmental Management and Assessment Sustainability Skills Map  Competency Frameworks for Sustainability  General
Arizona State School of Sustainability Key Competencies  Competency Frameworks for Sustainability  General
EU GreenComp: the European Sustainability Competence Framework  Competency Frameworks for Sustainability  General
International Engineering Alliance Graduate Attributes & Professional Competencies Competency Frameworks for Sustainability  General
Engineering for One Planet (EOP) – The EOP Framework Competency Frameworks for Sustainability  Engineering-specific
Ellen Macarthur Foundation’s Circular Economy website  Broader Context , Circular economy Engineering-specific
GreenBiz’s Cheat Sheet of EU Sustainability Regulations  Broader Context , Regulations General
Green Software Practitioner – Principles of Green Software Broader Context , Software Engineering-specific
Microsoft’s Principles of Sustainable Software Engineering  Broader Context , Software Engineering-specific
Engineering Futures – Sustainability in Engineering 2023 webinars  (You will need to create an account on the Engineering Futures website. Once you have created your account, navigate back to this link, scroll down to ”Sustainability in Engineering Webinars” and enter your account details. Click on the webinar recordings you wish to access. You will then be redirected to the Crowdcast website, where you will need to create an account to view the recordings.) Broader Context, Engineering Engineering-specific
Innes, C. (2023) AI and Sustainability: Weighing up the environmental pros and cons of Machine Intelligence Technology., Jisc – Infrastructure.  (Accessed: 01 February 2024). Broader Context, Artificial Intelligence Engineering-specific
Arnold, W. (2020a) The structural engineer’s responsibility in this climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2017) Structural engineering in 2027, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Arnold, W. (2020b) The institution’s response to the climate emergency, The Institution of Structural Engineers. (Accessed: 01 February 2024). Broader Context, Structural engineering Engineering-specific
Litos , L. et al. (2023) An investigation between the links of sustainable manufacturing practices and Innovation, Procedia CIRP. (Accessed: 01 February 2024). Broader Context, Manufacturing Engineering-specific
UAL Fashion SEEDS: Fashion Societal, Economic and Environmental Design-led Sustainability
Broader context, Design General

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: The Sustainability Resources Library was produced by Crystal Nwagboso (Engineering Professors Council). If you want to suggest a resource that has helped you, find out how on our Get Involved page.

This post is also available here.

Author: Andrew Avent (University of Bath). 

​​​​​​​Keywords: Assessment criteria; Pedagogy; Communication.  

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum, or into module design and learning activities. It describes an in-class activity that is appropriate for large sections and can help to provide students with opportunities to practise the communication and critical thinking skills that employers are looking for. 

 

Premise: 

Encouraging students to engage with the ethical, moral and environmental aspects of engineering in any meaningful way can be a challenge, especially in very large cohorts. In the Mechanical Engineering department at the University of Bath we have developed a debate activity which appears to work very well, minimising the amount of assessment, maximising feedback and engagement, and exposing the students to a wide range of topics and views.  

In our case, the debate comes after a very intensive second year design unit and it is couched as a slightly “lighter touch” assignment, ahead of the main summer assessment period. The debate format targets the deeper learning of Bloom’s taxonomy and is the logical point in our programme to challenge students to develop these critical thinking skills.  

Bloom, B. S. (1956). “Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain.” New York: David McKay Co Inc. 

This activity addresses two of the themes from the Accreditation of Higher Education Programmes (AHEP) fourth edition: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

 

The debate format: 

Table 1: Timings for technical feasibility debate. There is plenty of scope to alter these timings
and allow a
healthy debate from the floor and further exploration of the key arguments. 

 

Some key points to bear in mind: 

The environmental impact of Formula 1 can(not) be justified through improvements to vehicle and other technologies.

For clarity, the term “Affirmative” means they are arguing for the proposal, “Negative” implies they are arguing against the proposal. The Negative argument includes the bracketed word in all cases. 

Equally the team given the “affirmative” position to argue in favour of the sport, needs to be certain of their arguments and to fully research and anticipate any potential killer questions from their opponents. 

 

Discussion points for improvements: 

We felt that our experience with what has become known as the Technical Feasibility Debate was worth sharing with the wider higher education community, and hope that readers will learn from our experience and implement their own version.  

 

Acknowledgements: 

 

Appendices: 

Typical list of debate topics: 

  1. Gas turbines are (not) a dying technology for aircraft propulsion.
  2. Cumbrian super coal mine: there is (no) justification for accessing these fossil fuel reserves.
  3. Metal additive manufacturing, 3D Printing, is (not) a sustainable technology. 
  4. Mining the Moon/asteroids for minerals, helium, etc. should (not) be permitted. 
  5. Electrification of lorries via hydrogen fuel cell technology is (not) preferable to changing the road infrastructure to include overhead power lines (or similar). 
  6. Electrification of road vehicles is (not) preferable to using cleaner fuel alternatives in internal combustion engine cars. 
  7. The use of single use plastic packaging is (not) defensible when weighed up against increases in food waste. 
  8. The environmental impact of Formula 1 can(not) be justified through improvements to vehicle and other technologies. 
  9. Solar technologies should (not) take a larger share of future UK investment compared to wind technologies. 
  10. Tidal turbines will (never) produce more than 10% of the UK’s power. 
  11. Wave energy converters are (never) going to be viable as a clean energy resource. 
  12. Commercial sailing vessels should (not) be used to transport non-perishable goods around the globe. 
  13. We should (not) trust algorithms over humans in safety-critical settings, for example autonomous vehicles. 
  14. Inventing and manufacturing new technologies is (not) more likely to help us address the climate emergency than reverting to less technologically and energy intense practices 
  15. Mechanical Engineering will (not) one day be conducted entirely within the Metaverse, or similar. 
  16. The financial contribution and scientific effort directed towards fundamental physics research, for example particle accelerators, is (not) justified with regard to the practical challenges humanity currently faces. 
  17. A total individual annual carbon footprint quota would (not) be the best way to reduce our carbon emissions. 
  18. The UK power grid will (not) be overwhelmed by the shift to electrification in the next decade. 
  19. We are (not) more innovative than we were in the past – breakthrough innovations are (not) still being made. 
  20. Lean manufacturing and supply chains have (not) been exposed during the pandemic. 


Marking rubric:
 

Criteria  5  4  3  2  1 
1. Organisation and Clarity:  

Main arguments and responses are outlined in a clear and orderly way. 

Exceeds expectations with no suggestions for improvement.  Completely clear and orderly presentation.  Mostly clear and orderly in all parts.  Clear in some parts but not overall.  Unclear and disorganised throughout. 
2. Use of Argument:  

Reasons are given to support the resolution. 

Exceeds expectations with no suggestions for improvement.  Very strong and persuasive arguments given throughout.  Many good arguments given, with only minor problems.  Some decent arguments, but some significant problems.  Few or no real arguments given, or all arguments given had significant problems. 
3. Presentation Style:  

Tone of voice, clarity of expression, precision of arguments all contribute to keeping audience’s attention and persuading them of the team’s case. Neatly presented and engaging slides, making use of images and multimedia content. 

Exceeds expectations with no suggestions for improvement.  All style features were used convincingly.  Most style features were used convincingly.  Few style features were used convincingly.  Very few style features were used, none of them convincingly. 

 

References: 

Bloom, B. S. (1956). Taxonomy of Educational Objectives, Handbook I: The Cognitive Domain. New York: David McKay Co Inc. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Author: Dr Mike Murray (Department of Civil & Environmental Engineering, University of Strathclyde, Glasgow)

Keywords: Mentors, Mentees, Civil Engineering

Abstract: On enrolment at university, undergraduate civil engineering students begin their journey towards a professional career. Graduate mentoring of student mentees supports students in their transition towards ‘becoming’ a professional engineer. This case study examines the results from a graduate mentoring initiative (2010-2022) involving third-year (N= 974) civil and environmental engineering student mentees, 235 graduate mentors and 73 employers.

 

A virtuous collaboration between academia and industry

This case study examines the establishment of an industry-student mentoring scheme whereby Alumni civil engineering graduates volunteer to mentor student mentees. The mentoring is formalised in a third-year module (Construction Project Management).

Authentic learning

The mentoring initiative aims to expose the mentees to authentic civil engineering practice, to shape their professional identity and belongingness to their chosen discipline, and, to enhance their employability skills. Mentors are tasked ‘to help motivate students towards learning what is useful and what might make them a better engineer rather than just focusing on grades’ [1].Two theoretical concepts provided a lens to guide the implementation. ‘Possible selves are representations of the self in the future, including those that are ideal and hoped for as well as those that one does not wish for’ [2 p.233]. Anticipatory socialisation involves individuals anticipating their future occupation prior to entry and constitutes all learning that takes place prior to an individual’s first day at work [3].

People, place & culture

The collaboration between the department and employers began in 2010 when the author approached the department’s existing industry contacts, to become the inaugural mentors. Today, LinkedIn and other social media provide a platform for broadcasting mentoring news. Over time the mentoring has built its own brand momentum and Alumni and employers now make unsolicited offers to assist (i.e. see [4] for university and industry-driven engagement strategies). The brand is enhanced through its association with key sector employers but given the propensity for small and micro SMEs in the engineering sector, these employers should not be overlooked.

Whilst the mentoring is embedded within the mechanics of a formal structure (i.e. Module, Learning Outcomes, and Assessment etc.) the development, sustaining and leadership of the initiate is fuelled through informal professional relationships. Social relations are important to maintain ongoing engagement between universities and industry stakeholders [4 p.14]. The collaborative culture is characterised by value alignment and trust between the stakeholders [5].

 

Mentoring with a contractor.

Stakeholders

The mentoring initiative can be considered an ‘employer group’ model whereby ‘engagement included collaboration between a single HEI (University of Strathclyde) and two or more employers on the same initiative’ [5 p.23]. The initial buy-in from the mentors normally requires sanctioning by a line manager, often, a supervising civil engineer.

The value alignment between all stakeholders is personified through knowledge transfer (mentor-mentee); professional development (mentor-employer); creating social value (employer-university) and, the university department through fulfilling the programme accreditation requirements:

JBM strongly recommends that higher education institutions (HEIs) maintain strong, viable and visible links with the civil engineering profession [6 p.21].

By association, the professional institutions benefit through the mentors’ contribution to their own CPD, en-route to IEng / CEng, and, through the mentees gaining an awareness of profession attributes through their own IPD during their university studies:

All members shall develop their professional knowledge, skills and competence on a continuing basis and shall give all reasonable assistance to further the education, training and continuing professional development (CPD) of others [7].

A fuller description of the mentoring process can be found [8]. Suffice to say the mentees (in groups of four) visit their mentors in the field, at a consultant’s office, and/or to a live construction site on four occasions over two academic semesters. Typically, the mentors will also provide mentees with access to their peers who would shed light on their own graduate trajectories. The department’s industrial advisory board [9] published guidance to assist the mentors. During the Covid pandemic, the majority of meetings were undertaken on ZOOM /TEAMS platforms. To date, the initiative has involved:

Assessment evolution

Over the piece, the mentoring assessment has constituted a circa 40% weighting for the 10 credit module. Initially, the students were tasked with only describing what had been learned and to link this to professional institution attributes [10]. This morphed into an Assessment for Learning [11] and sought to develop the student’s reflective practitioner [12] and metacognition skills [13]. Students develop four SMART learning objectives, linked to their programme curriculum, and, to explore these topics with guidance from their mentors. Today, the assessment criteria partially reflects the tenets of self-determined learning:

The essence of heutagogy is that in some learning situations, the focus should be on what and how the learner wants to learn, not on what is being taught [14 p.7].

During the 2020-22 academic sessions the Covid pandemic presented an opportunity to employ eLearning technology, to enhance the student’s reflection skills. The author is currently piloting Vlogging [15] whereby the students are tasked with completing short video blogs concerning their mentoring experience, and, to use the audio transcript to facilitate second-order reflection in a summative report:

..any technique that requires a learner to look through previous reflective work and to write a deeper reflective overview [16 p.148].

 

Mentoring with a Consultant

Key outcomes

The key outcomes concern enhanced opportunities for placement and graduate employment, and, an improvement in the students’ employability skills [8]. Recent anecdotal feedback (i.e. unsolicited student emails; NSS Free text; Module Evaluation; Employer Feedback) demonstrates that students, and employers, consider the initiative to constitute an emerging talent pipeline. The mentoring provides a surrogate mechanism to short circuit employer’s traditional recruitment process.

The CE4R [17] workshops are the best thing ever. That along with the mentoring class in third year is the main reason I have my graduate job, whilst my grades and ability helped, these aspects of my course opened the door for me. (NSS Free Text, 2021)

The graduate mentoring programme is excellent and is highly beneficial to both the students, our graduates in the business and AECOM as a whole.  (Lynn Masterson AECOM, Regional Director North, Scotland & Ireland. Ground, Energy & Transactions Solutions, UK&I)

The [mentoring] scheme works for us on a number of levels in providing benefits to us as a company, the professional development of our current graduate engineers, and the development of current Strathclyde undergraduates who may go on to work for us or others in industry. (Simon McCormick, Balfour Beatty, Contracts Director, Scotland)

Lessons learned

Guidance & resources

Generic guidance:

Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE.

Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering.

Davies, J.W &  Rutherford, U. (2012) Learning from fellow engineering students who have current professional experience, European Journal of Engineering Education, 37:4, 354-365, DOI: 10.1080/03043797.2012.693907

Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

Waterhouse, P (2020) Mentoring for Civil Engineers, London: ICE Publishing

University guidance:

University of Colorado Boulder (2022) Chemical & Biological Engineering: Alumni-Student Mentor Program, https://www.colorado.edu/chbe/ASMP

University of Exeter (2022) Career Mentor Scheme: Mentee Guide, http://www.exeter.ac.uk/media/universityofexeter/careersandemployability/employmentservices/Mentee_Guide_December_2021.pdf

University of Southampton (2022) Career Mentoring Programme: Mentor Handbook, https://www.southampton.ac.uk/~assets/doc/careers/Mentor_Handbook.pdf

The Pennsylvania State University (2022) Civil & Environmental Engineering (CEE) Mentoring Program, https://www.cee.psu.edu/alumni/mentor/index.aspx

End notes

[1] Broadbent, O & McCann, E. (2026) Effective industrial engagement in engineering education– A good practice guide, Royal Academy of Engineering. https://www.raeng.org.uk/publications/reports/effective-industrial-engagement-in-engineering-edu

[2] Stevenson, J & Clegg, S. (2011). Possible selves: students orientating themselves towards the future through extracurricular activity, British Educational Research Journal 37(2): 231–246.

[3] Sang, K., Ison, S., Dainty, A., & Powell, A. (2009). Anticipatory socialisation amongst architects: a qualitative examination. Education + Training 51(4):309-321, DOI: 10.1108/00400910910964584 .

[4] Valentine, A., Marinelli, M., &  Male, S (2021): Successfully facilitating initiation of industry engagement in activities which involve students in engineering education, through social capital, European Journal of Engineering Education, DOI: 10.1080/03043797.2021.2010033

[5] Bolden R.,   Connor, H., Duquemin, A.,   Hirsh, W., & Petrov, G. (2009). Employer Engagement with Higher Education: Defining, Sustaining and Supporting Higher Skills Provision, A Higher Skills Research Report for HERDA South West and HEFCE, https://ore.exeter.ac.uk/repository/bitstream/handle/10036/79653/Higher%20Skills%20research%20report.pdf;jsessionid=0A6694CF9D25BBD80AC649069C2D9DFA?sequence=1

[6] Joint Board of Moderators (2021) Guidelines for developing degree programmes. https://www.jbm.org.uk/media/hiwfac4x/guidelines-for-developing-degree-programmes_ahep3.pdf

[7] Institution of Civil Engineers (2022) Code of Professional Conduct https://www.ice.org.uk/ICEDevelopmentWebPortal/media/Documents/About%20Us/ice-code-of-professional-conduct.pdf

[8] Murray. M., Ross. A., Blaney, N & Adamson, L. (2015). Mentoring Undergraduate Civil Engineering Students. Proceedings of the ICE-Management, Procurement & Law, 168(4): 189–198.

[9] University of Strathclyde (2013) Department of Civil & Environmental Engineering, Industrial Advisory Board Guide to mentoring.

[10] Institution of Civil Engineers (2022) Attributes for professionally qualified membership, https://www.ice.org.uk/my-ice/membership-documents/member-attributes#CEng2022

[11] Sambell, K, McDowell, L and Montgomery C (2013) Assessment for learning in Higher Education, Oxon: Routledge.

[12] Schon, D. (1987). Educating the Reflective Practitioner, San Francisco; Jossey-Bass.

[13] Davis, D., Trevisan, M., Leiffer,P., McCormack,J.,  Beyerlein, S., Khan, M.J., & Brackin, R.(2013) Reflection and Metacognition in Engineering Practice, In, Kaplan, M., Silver, N., Lavaque-Manty, D & Meizlish, D (edits) Using Reflection and metacognition to Improve Student Learning: Across the Disciplines, Across the Academy, Virginia: Stylus Publishing, pp78-103.

[14] Hase, S & Kenyon, C. (2013). Self-Determined Learning: Heutagogy in Action London: Bloomsbury Publishing Plc.

[15] Brott, P.E. (2020): Vlogging and reflexive applications, Open Learning: The Journal of Open, Distance and e-Learning, DOI: 10.1080/02680513.2020.1869536

[16] Moon, J (2004) A Handbook of Reflective & Experiential learning: Theory & Practice. London: Routledge.

[17] Murray, M., Hendry, G., & McQuade, R. (2020). Civil Engineering 4 Real (CE4R): Co-curricular Learning for Undergraduates. European Journal of Engineering Education. 45(1):128-150.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment

Authors: Dr Lisa Simmons (Manchester Metropolitan University), Dr Carl Diver (Manchester Metropolitan University), Dr Gary Dougill (Manchester Metropolitan University), Scott Pepper (GAMBICA), Paul Foden (NMCN) and Robin Phillips (Siemens Advanta Consulting).

Keywords: Graduate Outcomes, Employability, Engineering Education

Abstract: FutureMe is an event designed to enhance the aspirations, confidence and the graduate destinations of students. The series begins with an ‘industry week’- a unique collaboration between University and Industry – during which industry delivers keynote talks on: professional engineering, graduate skills, internationalisation, graduate destinations, and the flagship one day industry challenge. This event has been recognised by IET, and IMechE as good practice, in working collaboratively to show students what it is like to work as a professional engineer.

 

What is the case study about?

Assessment centre recruitment activities form an employment barrier to entry for students and can be challenging to prepare for. A large body of research suggests that motivation to begin and complete a degree in engineering; knowledge of the engineering field and its practitioners; along with students being able to identify themselves as “being an engineer” are all key drivers in student progression and graduate success. Through collaboration with industry partners, we have developed a range of events that not only give students much-needed preparation for the recruitment process but simultaneously allow them to explore their core identity and motivation.

This case study presents the development of the “FutureMe” event, which grew from a pragmatic approach to assessment centre preparation and into a self-sustaining, collaborative community between academia and industry.

What were its aims?

The core aims of the “FutureMe” activity are to:

How did it come about?

Preparing students for the assessment centre recruitment process alongside studies can be challenging. These recruitment activities are difficult, adversarial, and often intimidating for students who have limited – if any – opportunities to gain experience before they face a real recruitment panel.

“FutureMe” was established in the first instance to provide an opportunity for students to work with industrial partners on a challenge that replicated activities that are often given to applicants in an assessment centre.  A key element of the challenge was that it should allow for multi-disciplinary and cross academic level working, and should not be overly technical to a particular discipline, rather it should give students an experience of how engineers work within business and the many functions within an organisation.

As the event was set up it grew to include keynote talks on; professional engineering, graduate skills, internationalisation, graduate destinations, and the flagship one-day industry challenge. Figure 1 illustrates the January 2022 schedule of events. Figure 2 provides further detail on the running order for the industry challenge session(s).

 

Figure 1 Example schedule of events

 

Figure 2 Industry Challenge Running Order

 

How was it set up?

Industrial partners were approached to take part in the event – the industry challenge – via the Department of Engineering’s Industrial Advisory Board (IAB), GAMBICA, GM Chamber of Commerce and IET Enterprise partners.

Industrial partners were presented with

Interested parties then contacted the lead academic for a further meeting to discuss their challenge ideas and the event.

Figure 3 shows the process from initial email invites to industrial partners to the final challenge session

 

Figure 3 Step process showing how industrial partners develop a challenge to take part in the event

 

Who did it involve? (e.g., collaborating parties)

The rationale for the event was discussed for feedback with representatives from the Department of Engineering Industrial Advisory Board, GAMBICA and GM Chamber of Commerce.

All authors of this case study, worked collaboratively to develop the event, engage additional industrial partners, and feedback to the academic teams.

What were the outcomes?

FutureMe event has run in January 2021 and 2022.

In each event, there were 900 students invited, 50 supporting academics and 20+ industry representatives.

The event has led to additional opportunities for collaboration, for example, other employability events, and curriculum support in larger projects and guest lectures.

Are there any evidential outcomes?

Students were surveyed pre and post-event, on their understanding of their career readiness, their work experience, why they chose to take part in the event and what they gained from the event.

Reasons for taking part in the event were largely (75% of respondents) related to understanding how engineers work in industry and to learning more about graduate destinations for engineers.

Post-event students enjoyed the short period of time to complete the challenge, the breadth of access to industry representatives and learning about how engineers approach challenges in industry.

What lessons were learned, or what reflections can you provide? What might you do differently?

Feedback from Industry

The students who I spoke to excelled and performed better than several experienced engineers that I have been interviewing over the last few months.

I found the sessions very interesting, the discussions through the Q&A after the presentations were very good. It was great to be able to delve into more of the technology stack and see how they approach it. I also found it very interesting that the two groups chose different use cases/verticals for their research, and it tilted the result to slightly different outcomes. Really interesting to see that!

A brilliant process and a great opportunity for productive collaboration between MMU and industrialists in the interest of enhancing student employability. Without a doubt, the students were the stars of the show. Super job!

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Prof Robert Hairstans (New Model Institute for Technology and Engineering), Dr Mila Duncheva (Stora Enso), Dr Kenneth Leitch (Edinburgh Napier University), Dr Andrew Livingston (Edinburgh Napier University), Kirsty Connell-Skinner (Edinburgh Napier University) and Tabitha Binding (Timber Development UK)

Keywords: Timber, Built Environment, Collaboration, New Educational Model

Abstract: The New Model Institute for Technology and Engineering, Edinburgh Napier University and Timber Development UK are working with external stakeholders to enable an educational system that will provide comprehensive training in modern methods of timber construction. A Timber Technology Engineering and Design (TED) competency framework has been derived and a UK wide student design competition will run in the 1st quarter of 2022 as part of the process to curate the learner content and enable this alternative approach to upskilling. The EPC will gain an understanding of this alternative approach to creating an educational model by means of industry engagement. This new approach has been made possible via establishing a collaborative framework and leveraging available funding streams via the partners. This will be showcased as a methodology for others to apply to their own contexts as well as offer opportunity for knowledge and value exchange.

 

Introduction

Edinburgh Napier University (ENU), The New Model Institute for Technology and Engineering (NMITE) and Timber Development UK (TDUK) are working with external stakeholders to enable an educational system (Figure 1) that will provide comprehensive training in modern methods of timber construction. This case study presents an alternative approach to creating this Timber Technology Engineering and Design (TED) educational model by means of industry engagement and pilot learning experiences. This new approach has been made possible by establishing a collaborative framework and leveraging available funding streams via the partners.

Figure 1 – Approach to enabling Timber TED Educational System.

 

Project Aims

The aim of establishing Timber TED is to provide built environment students and professionals with a comprehensive suite of online credit bearing flexible training modules to upskill in modern timber construction techniques. To align the modules with industry need the learning content is to be underpinned by a competency framework identifying the evidence-based technical knowledge and meta skills needed to deliver construction better, faster and greener. The training modules are to be delivered in a blended manner with educational content hosted online and learners assessed by ‘learning by doing’ activities that stimulate critical thinking and prepare the students for work in practice (Jones, 2007).

Uniting industry education and training resources through one course, Timber TED will support learners and employers to harness the new knowledge and skills required to meet the increasing demand for modern timber construction approaches that meet increasingly stringent quality and environmental performance requirements.

The final product will be a recognised, accredited qualification with a bespoke digital assessment tool, suitable for further and higher education as well as employers delivering in-house training, by complementing and enhancing existing CPD, built environment degrees and apprenticeships.

The Need of a Collaborative Approach

ENU is the project lead for the Housing Construction & Infrastructure (HCI) Skills Gateway part of the Edinburgh & Southeast Scotland City Region Deal and is funded by the UK and Scottish Governments. Funding from this was secured to develop a competency framework for Timber TED given the regional need for upskilling towards net zero carbon housing delivery utilising low carbon construction approaches and augmented with addition funding via the VocTech Seed Fund 2021. With the built environment responsible for 39% of all global carbon emissions, meeting Scotland’s ambitious target of net zero by 2045 requires the adoption of new building approaches and technologies led by a modern, highly skilled construction workforce. Further to this ENU is partnering with NMITE to establish the Centre for Advanced Timber Technology (CATT) given the broader UK wide need. Notably England alone needs up to 345,000 new low carbon affordable homes annually to meet demand but is building less than a third of this (Miles and Whitehouse, 2013). The educational approach of NMITE is to apply a student-centric learning methodology with a curriculum fuelled by real-world challenges, meaning that the approach will be distinctive in the marketplace and will attract a different sort of engineering learner. This academic partnership was further triangulated with TDUK (merged organisation of TRADA and Timber Trades Federation) for UK wide industry engagement. The partnership approach resulted in the findings of the Timber TED competency framework and alternative pedagogical approach of NMITE informing the TDUK University Design Challenge 2022 project whereby inter-disciplinary design teams of 4–8 members, are invited to design an exemplary community building that produces more energy than it consumes – for Southside in Hereford. The TDUK University Design challenge would therefore pilot the approach prior to developing the full Timber TED educational programme facilitating the development of educational content via a webinar series of industry experts.

The Role of the Collaborators

The project delivery team of ENU, NMITE and TDUK are working collaboratively with a stakeholder group that represents the sector and includes Structural Timber Association, Swedish Wood, Construction Scotland Innovation Centre, Truss Rafter Association and TRADA. These stakeholders provide project guidance and are contributing in-kind support in the form of knowledge content, access to facilities and utilisation of software as appropriate.

Harlow Consultants were commission to develop the competency framework (Figure 1) via an industry working group selected to be representative of the timber supply chain from seed to building. This included for example engineered timber manufacturers, engineers, architects, offsite manufacturers and main contractors.

 

Figure 2 – Core and Cross-disciplinary high level competency requirements

 

The Southside Hereford: University Design Challenge (Figure 3) has a client group of two highly energised established community organisations Growing Local CIC and Belmont Wanderers CIC, and NMITE, all of whom share a common goal to improve the future health, well-being, life-chances and employment skillset of the people of South Wye and Hereford. Passivhaus Trust are also a project partner providing support towards the curation of the webinar series and use of their Passivhaus Planning software.

 

Figure 3 – TDUK, ENU, NMITE and Passivhaus Trust University Design Challenge

 

Outcomes, Lessons Learned and Available Outputs

The competency framework has been finalised and is currently being put forward for review by the professional institutions including but not limited to the ICE, IStructE, CIAT and CIOB. A series of pilot learning experiences have been trialled in advance of the UK wide design challenge to demonstrate the educational approach including a Passivhaus Ice Box challenge. The ice box challenge culminated in a public installation in Glasgow (Figure 4) presented by student teams acting as a visual demonstration highlighting the benefits of adopting a simple efficiency-first approach to buildings to reduce energy demands. The Timber TED competency framework has been used to inform the educational webinar series of the UK wide student design competition running in the 1st quarter of 2022. The webinar content collated will ultimately be used within the full Timber TED credit bearing educational programme for the upskilling of future built environment professionals.

 

Figure 4 – ICE box challenge situated in central Glasgow

 

The following are the key lessons learned:

Currently available outputs to date:

References

  1. Jones, J. (2007) ‘Connected Learning in Co-operative Education’, International Journal of Teaching and Learning in Higher Education, 19(3), pp. 263–273.
  2. Miles, J. and Whitehouse, N. (2013) Offsite Housing Review, Department of Business, Innovation & Skills. London

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Dr Sarah Junaid (Aston University); Professor Mike Sutcliffe (TEDI-London); Jonathan Truslove (Engineers Without Borders UK); Professor Mike Bramhall (TEDI-London).

Keywords: Active verbs; Bloom’s Taxonomy; learning outcomes; learning objectives; embedding ethics; project based learning; case studies; self-reflection; UK-SPEC; AHEP; design portfolio; ethical approval checklist and forms; ethical design.

Who this article is for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design. It will also help prepare students with the integrated skill sets that employers are looking for.

 

Premise:

Engineering can have a significant impact on society and the environment, in both positive and negative ways. To fully understand the implications of engineering requires navigating complex, uncertain and challenging ethical issues. It is therefore essential to embed ethics into any project or learning outcome and for engineering professionals and educators to operate in a responsible and ethical manner.

The fourth iteration of the Accreditation of Higher Education Programmes (AHEP) reflects this importance to society by strengthening the focus on inclusive design and innovation, equality, diversity, sustainability and ethics, within its learning outcomes. By integrating ethics into engineering and design curricula, graduates develop a deeper comprehension of the ethical issues inherent in engineering and the skill sets necessary to navigate complex ethical decision-making needed across all sectors.

 

Policy:

There is growing advocacy for bringing engineering ethics to the fore in engineering programmes. At the policy level, this is evident in three general areas:

  1. UK-SPEC and accreditation bodies are identifying ethics as one of the core learning outcomes and competencies in accreditation documents.
  2. The inclusion of more descriptive competencies that expand on engineering ethics.
  3. The fourth iteration of AHEP standards reflecting the importance of societal impact in engineering.

However, to translate the accreditation learning outcomes and their intentions to an engineering programme requires a duty of care by those responsible for programme design and development. The following are points for consideration:

 

Curriculum structure:

In the UK-SPEC (4th edition) guidance the Engineering Council states: “Engineering professionals work to enhance the wellbeing of society. In doing so they are required to maintain and promote high ethical standards and challenge unethical behaviour.”

In AHEP 4, students must meet the following learning outcome: “Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct”

So, when designing a new programme, ethics should ideally be built into the learning outcomes of the programme and modules at the early design stage and consistently be emphasised throughout. To ensure ethics are embedded, students should be required to consider the outputs of their project work through a societal or community lens, especially if they are undertaking projects with a practical delivery of ethics such as, say, designing for older people in care homes.

For existing programmes, ethics could be most readily introduced through a stand-alone ethics module. It is better, however, for ethics to be embedded across the whole programme, encouraging a holistic ‘ethical considerations mindset’ as a ‘golden thread’ across, and within, all student project work (Hitt, 2022). Minor or major modifications could be made to programmes to ensure that ethics is considered and emphasised, such as through the use of active verbs that embed critical reflections of design. For programmes with a large project-based learning component, ethical considerations should be required at the initial stage of all projects.

 

Learning and teaching activities:

In all efforts to embed ethics in engineering education, there should be a focus on constructively aligning teaching activity to learning outcomes. Examples include: employing user-centred design and/or value-sensitive design approaches and case studies for technical and non-technical considerations, using empathy workshops for ethical design, and ensuring ethical considerations are included in problem statements and product design specifications for decision-making. The use of self-reflection logs and peer reflections for team working can also be useful in capturing ethical considerations in a team setting and for addressing conflict resolutions.

A pragmatic step for programmes that use project-based learning is to encourage these ethical discussions at the beginning of all project work and to return to these questions and considerations during the course of the project. Reflecting on ethics throughout will lead to an ethical mindset, a foundation that students will build on throughout their subsequent careers.

One way of ensuring this for students is to complete an ethical scrutiny checklist, which, when completed, is then considered by a departmental ethics committee. The filter questions at the start of an ethics scrutiny submission would help determine the level of review required. Projects with no human participants could be approved following some basic checks. In some universities it has become policy for ethical scrutiny to be required for all group and individual project work such as problem-based learning projects, final year degree projects, and MSc and PhD research projects. For projects that collaborate with the Health Research Authority (HRA), it is a requirement that scrutiny is through their own HRA committee and it is good practice to put these types of projects initially through a departmental and/or university ethics committee as well. Having students go through this process is a good way of revealing the ethical implications of their engineering work.

 

Assessments:

Closing the constructive alignment triangle requires assessments that are designed to utilise learning and teaching activities and to demonstrate the learning outcomes. The challenging question is: How can ethics be evaluated and assessed effectively? One solution is through using more active verbs that demonstrate ethical awareness with outputs and deliverables. Examples where this could be applied include:

For more information on methods for assessing and evaluating ethics learning, see this related article in the engineering ethics toolkit: Methods for assessing and evaluating ethics learning in engineering education.

 

Conclusion:

Using accreditation documentation to develop effective engineering programmes requires engaging beyond the checklists, thereby becoming more accustomed to viewing all competencies through an ethical lens. At programme design and module level, it is important to focus on constructively aligning the three key elements: learning outcomes written through an ethical lens, learning and teaching activities that engage with active verbs, and assessments demonstrating ethical awareness through a product, process, reflection and decisions.

 

References:

Davis, M. (2006) ‘Integrating ethics into technical courses: Mirco-insertion’, Science and Engineering Ethics, 12(4), pp.717-730.

Gwynne-Evans, A.J, Chetty, M. and Junaid, S. (2021) ‘Repositioning ethics at the heart of engineering graduate attributes’, Australasian Journal of Engineering Education, 26(1), pp. 7-24.

Hitt, S.J. (2022) ‘Embedding ethics throughout a Master’s in integrated engineering curriculum’, International Journal of Engineering Education, 38(3).

Junaid, S., Kovacs, H., Martin, D. A., and Serreau, Y. (2021) ‘What is the role of ethics in accreditation guidelines for engineering programmes in Europe?’, Proceedings SEFI 49th Annual Conference: Blended Learning in Engineering Education: challenging, enlightening – and lasting?, European Society for Engineering Education (SEFI), pp. 274-282.

 

Additional resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website