Case study: Sheffield Innovation Programme

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Research, Graduate employability and recruitment

Authors: Alex Prince (Sheffield Hallam University) and Prof Wayne Cranton (Sheffield Hallam University)

Keywords: Innovation, SMEs

Abstract: The Sheffield innovation Programme led by Sheffield Hallam with the Growth Hub and the University of Sheffield, delivers bespoke R&D, consultancy and workshops, driving innovation in regional SMEs. In total, since 2016, our experts from across the University have supported over 400 projects with regional businesses, enabling them to grow, diversify and meet changing customer needs. Many projects lead to further collaborations such as KTPs and create new products, processes and market opportunities.

 

Background

The Sheffield Innovation Programme (SIP) was set up in 2016 to support small and medium sized enterprises (SMEs) from across the South Yorkshire region to access academic expertise, facilities and resources at Sheffield Hallam University and the University of Sheffield, to stimulate innovation and growth and to increase business competitiveness. The focus of this paper is on activities delivered by Sheffield Hallam University.

Sheffield Hallam University leads the programme, and with the £3.1m second phase of the programme also introducing two Innovation Advisors working for the Growth Hub. The programme is jointly funded by; the European Regional Development Fund (ERDF), the universities, South Yorkshire Mayoral Combined Authority and the Higher Education Innovation Fund (HEIF), providing support at zero-cost to businesses. It runs until June 2023.

Activities

The programme has now reached a milestone of 400 projects with regional SMEs, enabling them to grow, diversify and meet changing customer needs. To date over 150 academics have worked with companies. Of these 76 staff who are based in Sheffield Hallam’s engineering research centres have worked with 85 companies. 

SIP supports time for academics to undertake work with clients. It uses funding to enable delivery of R&D consultancy services to the businesses, helping to establish new products or services, resolve problems or advise on appropriate routes forwards.

Outputs

The main output is ‘business assist’ interventions- a minimum of 12 hours of engagement.  These are delivered through bespoke R&D-based consultancy and workshops. The average intervention is approx. 7 days, recognising the potential time required to work with a client meaningfully.

Sheffield Hallam has implemented a light-touch internal approval process for clients where support may take more than 10 days of time. Such investment needs to demonstrate significant added value- for the client in terms of market opportunity or jobs created, or potentially for us also in terms of joint funding proposal development.

SIP has now resulted in 8 successful KTP applications for Sheffield Hallam with more in the pipeline, plus other Innovate UK and commercial consultancy activities, plus considerable reputational benefit regionally.

SIP, Innovation and Engineering expertise

SIP has developed a proven model for collaborating with SMEs, buying out the time of engineers and other academic experts so they can work with companies.

The core areas of academic support are the expertise within the Materials Engineering Research Institute (MERI), the National Centre of Excellence for Food Engineering (NCEFE), and the Sport Engineering Research Group (SERG) and Design Futures (Product and Packaging).

In a region with a very low level of innovation and investment in R&D, the project provides an important entry point to the University’s expertise and a platform for longer term projects and creates opportunities for early career researchers, graduate interns and KTP associates.  Project delivery connects our engineering expertise with specialisms across the University resulting in collaborations with designers, biosciences and materials, and supports targeted engagement with sectors for example glass and ceramics and the food industry.

Examples: 

  1. Thermotex Engineering a family-run business which operates in the field of thermodynamics and specialises in manufacturing thermal insulation. The company required physical evidence of how a fabric performed in order to make a bid for a major project based in Arctic Russia. We undertook accelerated weathering testing on the durability of a fabric material when it was exposed to cycles of freezing and thawing, UVB radiation and high temperature / relative humidity. ‘This solution provided us with indicative product testing for unusual characteristics, access to laboratory equipment, and performance of specific tests,’ said Paige Niehues, the Commercial and Technical Executive at Thermotex Engineering. https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/case-studies/accelerated-weathering-testing
  2. Sheffield-based SME Safety Fabrications Ltd manufactures fall protection and building access solutions. This includes roof top anchoring systems that allow roped access (e.g., abseiling) at height.  The company wanted to develop a new davit arm and socket system that could be used on tall structures to improve rope access for building maintenance. Their unique product idea avoided permanent obstruction on roof tops and allowed for easy installation and removal.  MERI worked with Safety Fabrications Ltd to design different davit arm configurations which would satisfy the complex needs of the BS specification. “Working with engineering specialists within the university allowed us to theoretically explore a range of options prior to manufacture & physical testing.” John Boyle, Managing Director at Safety Fabrications Limited https://sip.ac.uk/portfolio/safetyfabrications/
  3. Equitrek provides an excellent example of cross disciplinary working and progression of relationships with a company. In summary our design expertise enabled the company to manufacture new horse boxes targeting entry into the American market and has led to longer term KTPs.  The KTP has enabled Equi-Trek to enhance all aspects of their new product development processes, including ergonomics, spatial design, technical analysis and manufacturing.   https://www.shu.ac.uk/news/all-articles/latest-news/hallam-knowledge-transfer-partnership-local-firm-outstanding
  4. Sheffield Hallam’s National Centre of Excellence for Food Engineering helping local business Dext Heat Recovery, who worked with restaurant chains including Nando’s and Frankie and Benny’s, to develop a heat exchanger to work in industrial kitchens – reducing energy costs and environmental impact. https://www.shu.ac.uk/national-centre-of-excellence-for-food-engineering/our-impact/all-projects/dext-heat-recovery
  5. Guildhawk employs thousands of translators across the world for hundreds of clients . A project with SIP led to a KTP. At the SHU Innovation Conference 2021. Jurga Zilinskiene MBE, the CEO, told delegates in her keynote address that the KTP helped create an extraordinary SaaS platform that for the first time will help businesses of all sizes to manage people in a fast, easy and secure way.  The partnership resulted in the launch of new software products, Guildhawk Aided, Text Perfect and Guildhawk Voice avatars. https://www.fenews.co.uk/education/clean-data-for-ai-at-the-heart-of-industry-4-0-technology-revolution-says-guildhawk-ceo-coder/

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments
Related articles

Embracing Neurodiversity in Engineering: A path to better understanding

For Neurodiversity Celebration Week, today’s guest blog visits what we know and what we don’t know about neurodiversity in HE...

News

Embracing Neurodiversity in Engineering: A path to a neuro-inclusive future

For Neurodiversity Celebration Week, our own EPC student data fellow makes a compelling case for a neurodiversity-affirming approach in engineering...

News

Embracing Neurodiversity in Engineering: A path to success through lived experience

For Neurodiversity Celebration Week, we hear from an experienced professional in ground engineering a who is neurodivergent (autistic, dyslexic, and...

News

Embracing Neurodiversity in Engineering: A path to sustainable development

To kick off Neurodiversity Celebration Week, we bring you the first of a series of guest blogs…   Prof Amanda...

News
Let us know what you think of our website