Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University),Professor Jarka Glassey(Director of Education, School of Engineering, Newcastle University).
Topic: How to integrate the SDGs using a practical framework.
Type: Guidance.
Relevant disciplines: Any.
Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy.
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):The Engineer and Society(acknowledging that engineering activity can have a significant societal impact) andEngineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4hereand navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design.
Premise:
The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context.
b. Review government targets and discipline-specific guidance.
c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic.
e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert).
2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision.
b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness.
c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert).
d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified.
e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme.
3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such.
b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules.
c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is:
“Apply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).”
e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials.
For module-wide alignment:
1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme.
a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics.
b. Determine any specific guidelines, standards, and regulations for this theme within the discipline.
2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps.
b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs.
c. Review feedback from current students on the clarity of the modules links to the SDGs.
d. Review feedback from external examiners on the sustainability content of the module.
3. Look ahead.
a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated.
b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options.
Appendix:
A. Outcome I.2 (programme level mapping)
B. Outcome II.5 (module level mapping) – same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs.
C. II.6.b – Specific activities
Activity 1: Best carried out at the start of the module and then repeated near the end of the module to compare students perception and learning. Split students into groups of 3-4, at the start of the module use the module template (attached as a resource) to clearly outline the ILOs. Then present the SDGs and ask students to spend no more than 5 min identifying the top 3 SDGs they believe the material delivered in the module will enable them to address. Justify the selection. Can either feed back or exchange ideas with the group to their right. Capture these SDGs for comparison of the repeat exercise towards the end of the module. How has the perception of the group changed following the delivery of the module and why?
Activity 2: Variation on the above activity – student groups to arrange the SDGs in a pyramid with the most relevant ones at the top, capture the picture and return to it later in module delivery
Activity 3: Suitable particularly for the earlier stages. Use https://go-goals.org/ to increase the general awareness of SDGs.
Activity 4: The coursework geared to the SDGs, with each student choosing a goal of their choice and developing a webmap to demonstrate the role of module-relevant data and analysis in tackling that goal.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Water and sanitation; Infrastructure; Community sustainability; Health; Government policy; Social responsibility; AHEP; Higher education; Sustainability; Project brief; Water quality control.
Sustainability competency: Systems thinking; Anticipatory; Collaboration; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 hereand navigate to pages 30-31 and 35-37.
Related SDGs: SDG 3 (Good health and well-being); SDG 4 (Quality education); SDG 6 (Clean water and sanitation); SDG 8 (Decent work and economic growth).
Reimagined Degree Map Intervention: Active pedagogies and mindsets; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This is an example project that could be adapted for use in a variety of contexts. It asks students to devise a “sustainability dashboard” that can not only track indicators of river system sustainability through technical means, but also communicate the resulting data to the public for the purpose of policy decisions. Teachers should ideally select a local river system to focus on for this project, and assign background reading accordingly.
Learners have the opportunity to:
Investigate the links between history, politics, and engineered systems;
Research existing data sources;
Devise a technical solution for community impact.
Teachers have the opportunity to:
Showcase real-world implications of the SDGs;
Integrate technical learning with sustainability issues;
Emphasise the importance of the engineer’s role in public life.
Two vital and unique resources for the planet are water and air. Any alterations in their composition can have detrimental effects on humans and living organisms. Water uses across New Mexico are unsustainable. Reduced precipitation and streamflows cause increased groundwater use and recharge. Serious omissions in state water policy provide no protection against complete depletion of groundwater reserves.
The water governance status quo in New Mexico will result in many areas of New Mexico running out of water, some sooner, some later, and some already have. Because Water is Life, water insecurity will cause economic insecurity and eventual collapse.
Water resources, both surface and groundwater, and total water use, determine the amount of water use that can be sustained, and then reduce total water use if New Mexico is to have water security. The public must therefore recognise that action is required. Availability of compiled, accessible data will lead to and promote our critical need to work toward equitable adaptation and attain sustainable resiliency of the Middle Rio Grande’s common water supply and air quality.
A data dashboard is needed to provide on-line access to historical, modern, and current perspectives on water, air quality, health, and economic information. A dashboard is needed to help inform the public about why everyone and all concerned citizens, institutions and levels of government must do their part!
Project brief:
The Middle Rio Grande region of New Mexico has particular sustainability and resilience requirements and enforceable legal obligations (Rio Grande Compact) to reduce water depletions of the Rio Grande and tributary groundwater to sustainable levels. However, there is a lack of accessible depictions of the Middle Rio Grande’s water supply and demand mismatch. Nothing publicly accessible illustrates the surface water and groundwater resources, water uses, and current water depletions that cannot be sustained even if water supplies were not declining. Therefore, there is a corresponding lack of public visibility of New Mexico’s water crisis, both in the Middle Valley and across New Mexico. Local water institutions and governments are siloed and have self-serving missions and do not recognise the limits of the Middle Valley’s water resources.
A water data dashboard is needed to provide online open access to historical, modern, and current perspectives on water inflows, outflows, and the change in stored surface and groundwater. This dashboard should inform the public about why everyone and all water institutions and levels of government must do their part!
Given:
Data from numerous on-line and paper or spreadsheet data sources
Law of the Rio Grande
The 2004 water budget components and historical information.
Objectives:
Engage data providers to cooperatively secure access to the public data they collect and maintain.
Create one website Dashboard to present the relevant water data of the Middle Rio Grande.
Demonstrate the function and form of the Water Data Dashboard to illustrate the value of simplified presentation of aggregated data.
Illustrate the value of creating procedures for data aggregation and presentation in simplified, accessible formats so that the prototype dashboard is taken over by an institution with the resources to build and maintain an improved second-generation version.
Provide selected water data sets as set forth in 2019 Water Data Act standards and procedures to the NM Water Data Initiative.
Find a long-term home for the dashboard project with a government agency or Middle Rio Grande water institution.
Acknowledgements: The 2023 Peace Engineering summer cohort of Argentine Fulbright Scholars who analysed the Middle Rio Grande Case Study concluded that water in the Middle Rio Grande is a community problem that requires a community driven solution.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Normative; Self-awareness; Strategic; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 9 (Industry, innovation, and infrastructure), SDG 12 (Responsible consumption and production); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Active pedagogies and mindset development. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational aim: The objective of this activity is to provide students with an understanding of the complexity of technology development and different considerations that need to be made by stakeholders in the design and implementation of a technology. The activity is set up as a role-play where students are assigned different roles as members of an expert panel providing feedback on the use of E-Scooters on a college campus.
Educational level: Beginner.
Learning and teaching notes:
Learners have the opportunity to:
Consider sustainability issues related to the design and use of devices and technology.
Discuss concerns related to safety and accessibility, that can be overlooked or not attended to when technology is developed under time pressure and when developers lack resources – human and material.
Practice a variety of communication modes.
Engage in research and reflection.
Teachers have the opportunity to:
Highlight issues revealing the intricate links between digital technology and the environment.
Demonstrate the value of perspective-taking and stakeholder engagement in technology development.
Reveal the ethical and accessibility aspects of technology development.
Informally evaluate critical thinking and communication skills.
Supporting resources:
Several different ethical frameworks, codes, or guidelines can be provided to students to prepare for the discussion or to reflect upon during their discussion depending on the students’ disciplinary composition. Here are a few examples:
One of the goals of this exercise is to motivate students to undertake their own research on the topic to prepare for the activity. But it is important to provide them with preliminary material to start their own research. Here are a few useful resources for this case:
Each student is assigned a role a week before the discussion.
Students assigned to the role of Eva Walker serve as the moderator and lead the conversation based on the script below.
The script provided below is there to guide the discussion, but you should leave room for the conversation to flow naturally and allow everyone to contribute.
One way to ensure students are prepared for the discussion is to assign a few questions from the script as a pre-discussion assignment (short answers). Similarly, to ensure students reflect on the discussion, they can be assigned the last question from the script as a post-discussion exercise. They can also be asked specifically about frameworks and concepts related to sustainability.
Role-play scenario narrative and description of roles:
Eva Walker recently started reporting about on-campus traffic issues for the student newspaper. She would have preferred to do more human-interest stories, but as a new member of the staff who had just moved from intern to full-time, she was happy to get whatever opportunity she could. Eva was studying both journalism and creative writing, and this was her dream on-campus job. She also realised that, even though many stories at first didn’t appear to her as though she would be interested in them, as she dug deeper she eventually found an angle with which she could strongly relate.
One weekday morning, Eva was working on yet another story on parking woes when Amina Ali, one of the editorial staff members, texted her to say that there had been an accident on campus; she just passed it at the intersection of the library and the recreation building, and it might be worth covering. Eva was at the library, and within no time, reached the spot of the accident.
When Eva arrived, a police vehicle, an ambulance, and a fire engine were all present at the scene, and near the accident site, an e-scooter lay smashed into a tree. It looked like the rider was sitting in the ambulance and was being treated by the medical staff. A little further away, Eva noticed the police speaking to a young woman in a wheelchair. Although Eva’s first instinct was to try to talk to the police or the medical staff to ascertain what had happened, she realised this probably wasn’t the best moment and she would have to wait until later for the official version of the event.
She looked around and saw a group of four students leaning against a wall with drinks in their hands. A couple of them were vaping. Eva thought that they looked like they had been here for a while, and she walked over to ask them what had happened. From the account they gave her, it appeared as if the e-scooter rider was coming around the bend at some speed, saw the woman in the wheelchair a little too late to ride past her, and, to avoid hitting her, leapt off his e-scooter and let the vehicle hit the tree. Things happened very quickly and no one was exactly sure about the sequence of events, but this was the rough story she got.
Later, she called the police department on campus and was able to speak with one of the officers to get an official account. The story was very similar to what she already knew. She did find out that nobody was seriously hurt and that the only injuries were to the e-scooter rider and were taken care of at the scene by the medical staff. When she asked about who was to blame or if any legal action was expected, she was told that there were no laws around the use of helmets or speeding for e-scooters yet and that she should reach out later for more information. Eva wrote up what she had so far, sent it over to the editorial staff, and considered her work done.
But as she was walking back to her halls of residence that evening, her attention was drawn to the large number of e-scooters parked near the library. As she crossed the central campus, she noticed even more e-scooters lying about the intersections, and there was a litter of them around the residence hall. She wondered why she hadn’t noticed them before. Her attention was drawn today, she thought, because of the accident and also because she saw a good Samaritan remove an e-scooter from the sidewalk, as it was blocking the path of one of the self-driving food delivery robots. It’s a sign, Eva thought, this is what she needs to look for more in her next article, the use of e-scooters on campus.
Eva recognised that, to write a balanced and informative article, as she had been taught to do, she would have to look at many different aspects of the use of e-scooters as well as look broadly at mobility on campus and the use of battery powered vehicles. She had also recently seen e-bikes on campus and, in addition to the food delivery robots, service robots in one of the buildings that she assumed was either delivering paperwork or mail. The accident had also made her realise that, when it came to mobility, accessibility was something that never crossed her mind but that she now understood was an important consideration. She hoped to learn more about it as her research progressed.
As background research for the article, Eva started reading up on articles and studies published about e-scooters, e-bikes, and urban mobility and came across a range of concerns that had been raised beyond accessibility. First, there were reports that e-scooters are not as environmentally friendly as many service providers had made them out to be. This is related to the production of the battery as well as the short lifespan of the vehicles, and as of yet, there has been no procedure implemented to reuse them(Pyzyk, 2019). Second, there were reports of littering, where e-scooters are often left on sidewalks and other places where they restrict movement of other vehicles, pedestrians, and in particular, those in wheelchairs (Iannelli, 2021). Finally, it was also clear from the reports that accidents and injuries have increased due to e-scooters, especially since many riders do not wear safety gear and are often careless, even inebriated, as there were little to no regulations (2021). When she approached her editor with an outline for an article, she was advised to do some more reporting by talking with people who could shed more light on the issue.
After some research, Eva shortlisted the following experts across fields related to e-scooters for an interview, and once she spoke with them, she realised that it would help her if she could get them to have a dialogue and respond to some of the questions that were raised by other experts. Therefore, she decided to conduct a focus group with them so that she achieved her goal of a balanced article and did not misrepresent any expert’s point of view.
Experts/roles for discussion:
1. Bryan Avery is co-founder and chief technology officer (CTO) of RideBy, an e-scooter company. RideBy is one of the options available on campus. Born in a small town, Bryan used to ride his bicycle everywhere while growing up, and for him, founding and leading an e-scooter company provided a chance to merge his interests in personal transportation and new forms of energy. He was a chemical engineer by training, and at a time when most of his friends ended up working for big oil companies, Bryan decided to work on alternative fuels and found himself developing expertise and experience with batteries. For most of the software- and mobile device-related development, RideBy outsourced the work and utilised ready-to-configure systems that were available. By only keeping the core device and battery functionality in-house, they could focus on delivering a much stronger product. Overall, he is quite happy with the success of RideBy so far and can’t help but extol the difference it can make for the environment.
2. Abiola Abrams is a professor of transportation engineering and an expert on mobility systems. Her work combines systems engineering, computer science, and data analytics. Her recent research is on urban mobility and micro-mobility services, particularly e-bikes. In her research, Dr. Abrams has looked at a host of topics related to e-bikes, many of which are also applicable to e-scooters, including the optimisation of hubs for availability, common path patterns of users, subscription use models, and the e-waste and end of lifecycle for these vehicles. Increasingly, she has become concerned about the abuse of some of these services, especially in cities that attract a lot of tourists, and about the rough use of the vehicles, so much so that many do not even last for a month. In a new project, she is investigating the effect of e-vehicles on the environment and has found that there is mixed evidence for how much difference battery-operated vehicles will actually make for climate change compared to vehicles that use fossil fuels.
3. Marco Rodrigues works as transportation director for the local county government where the university is based. As part of a recent bilateral international exchange, he got the opportunity to spend time in different cities in Germany to learn about local transportation. He realised very quickly that local transportation was very different in Germany; residents had a range of public, shared options that were missing in the United States. However, he also realised that e-mobility services were being considered across both countries. He investigated this further and found that Germany waited until it could pass some regulations before allowing e-mobility operators to offer services; helmets were mandatory on e-scooters and e-bikes, and riders had to purchase a nominal insurance policy. He also learned that there were strict rules around the sharing of data generated by the vehicles as well as the apps used by riders.
4. Judy Whitehouse is director of infrastructure and sustainability on campus and responsible for planning the long-term development of the campus from a space perspective, but also increasingly from a sustainability dimension. As the number of students has increased, so has the need for more infrastructure, including classrooms and halls of residence. This has also resulted in greater distances to be traveled on campus. Judy regards e-mobility options as a necessary component of campus life and has been a strong supporter for them. Lately, she has been called into meetings with safety and emergency management people discussing the issue of increased accidents on campus and the littering of e-vehicles across the campus. Not only is it bad for living on campus, but it is also bad for optics. A recent photo featured in the campus newspaper was a stark reminder of just how bad it can look. She is further divided on the use of e-scooters due to misgivings about the sustainability of battery use, as new research suggests that manufacturing batteries and disposing them are extremely harmful for the environment.
5. Aaron Schneider heads Campus Mobility, a student interest group focused on autonomous vehicles development and use. The group members come from different degree programmes and are interested in both the technical dimensions of mobile solutions and the policy issues surrounding their implementation. Aaron himself is a computer science student with interests in data science, and with some of his fellow members from the policy school, he has been analysing a range of mobility-related datasets that are publicly available online. Of these, the data on accidents is quite glaring, as the number of accidents in which e-scooters are involved has gone up significantly. Aaron and his friends were intrigued by their findings and approached some of the companies to see if they would share data, but they were disappointed when they could not get access. Although the companies said it was due to privacy reasons, Aaron was not too convinced by that argument. He was also denied access to any internal reports about usage patterns of accidents. Ideally, he would have liked to know what algorithms were used for optimising delivery and access, but he knew he was not going to get that information.
6. Sarah Johnson is the head of accessibility services on campus and is responsible for both technology- and infrastructure-related support for students, faculty, and staff. The growth of the physical campus and the range of technological offerings has significantly increased the workload for her office, and they are really strained in terms of people and expertise. The emphasis from the university leadership is largely on web and IT accessibility, as teaching and other services are shifting quickly online, but Sarah realises that there is still an acute need to provide physical and mobility support to many members of the community. Although all the new buildings are up to code in terms of accessibility, there is still work to be done both for the older buildings and especially for mobility. Campus beautification does not always go along with access. She is also worried about access to devices, as taking part in any campus activity requires not just a computer, but also access to mobile devices that are out of reach economically for many and not easy to use.
Role-play script:
To help get the dialogues started and based on her prior conversation with the group, Eva has prepared some initial questions:
What role are you playing and, from your perspective, what do you see as the biggest pros of using e-vehicles, especially e-scooters on campus?
From your perspective, what do you see as the biggest downside of using e-vehicles, especially e-scooters on campus?
Can you confidently say that e-scooters are an environmentally friendly option?
What current accessibility accommodations would be impacted by the use of e-vehicles, and what new, potential accessibility accommodations might arise from increased use of e-vehicles?
Would we be better off waiting for more regulations to come before deploying these vehicles on campus and, if so, what should those regulations look like?
Should we use automatic regulation of speed on the vehicle based on where it is and/or inform authorities if it is violated?
Can we control where it can go or penalise if not put back?
What guidelines do you recommend for e-scooter usage on campus?
Authorship and project information and acknowledgements: The scenarios and roles were conceptualised and written by Aditya Johri. Feedback was provided by Ashish Hingle, Huzefa Rangwala, and Alex Monea, who also collaborated on initial implementation and empirical research. This work is partly supported by U.S. National Science Foundation Awards# 1937950, 2335636, 1954556; USDA/NIFA Award# 2021-67021-35329. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. The research study associated with the project was approved by the Institutional Review Board at George Mason University.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Climate change; Water and sanitation; Renewable energy; Battery Technologies; Recycling or recycled materials; AHEP; Sustainability; Student support; Local community; Environment; Future generations; Risk; Higher education; Assessment; Project brief.
Sustainability competency: Systems thinking; Anticipatory; Strategic; Integrated problem-solving; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. Potential alignments with AHEP criteria are shown below.
Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate / Advanced.
Learning and teaching notes:
This resource outlines a project brief that requires an engineer to assess the local area to understand the scale of flooding and the local context. This will highlight how climate change affects everyday life, how water usage is changing and happening on our doorstep.
The project also requires the engineer to be considerate of the needs of a local business and showcases how climate change affects the economy and individual lives, enabling some degree of empathy and compassion to this exercise.
Depending upon the level of the students and considering the needs of modules or learning outcomes, the project could follow either or both of the following pathways:
Pathway 1 – Introduction to Electronic Engineering (beginner/intermediate- Level 4)
LO1: Describe the operation of electronic circuits and associated discrete components (AHEP4: SM1m).
LO2: Compare the operation principles of a variety of electronic sensors and actuators and apply them to a given task (AHEP4: EA2m).
LO3: Interpret how transistors and operational amplifiers function (AHEP4: EA4m).
LO4: Know how amplifiers operate and assess their performance for a given application (AHEP4: EA1m; EA2m).
LO5: Integrate the operation of an actuator, sensor, and power supply into a system for a given task (AHEP4: EA4m; EA6m).
In this pathway, the project deliverables could be in the form of a physical artefact, together with a technical specification.
Pathway 2 – Electromagnetics in Engineering (intermediate/advanced- Level 5)
LO1: communicate the primary challenges inherent in wireless communication (AHEP4: SM1m
LO2: devise solutions to a given design challenge (AHEP4: SM1m; SM3m) In this pathway, the project deliverable could be in the form of a Technical Report.
This project allows teachers the option to stop at multiple points for questions and/or activities as desired.
Learners have the opportunity to:
analyse local environmental factors that affect river water levels,
appreciate local planning with respect to installing devices on or near a riverbank,
consider how to communicate with a variety of stakeholders,
undertake cost-benefit and value trade-off analysis in the context of using sustainable materials,
undertake cost-benefit and value trade-off analysis in the context of using renewable energy,
practise argument and reasoning related to sustainability dilemmas.
Teachers have the opportunity to:
introduce concepts related to climate change in the local environment,
introduce concepts related to environmental sensors,
introduce concepts related to renewable energy sources,
introduce concepts related to battery systems,
introduce concepts related to local planning laws,
informally evaluate students’ argument and reasoning skills,
integrate technical content in the areas of electrical or mechanical engineering related to water level monitoring,
authentically assess a team activity and individual work.
A local business premises near to a river has been suffering from severe flooding over the last 10 years. The business owner seeks to install a warning system that can provide adequate notice of a possible flood situation.
Time frame & structure: This project can be completed over 30 hours, either in a block covering 2-3 weeks (preferred) or 1 hour per week over the academic term. This project should be attempted in teams of 3-5 students. This would enable the group to develop a prototype, but the Specification (Pathway 1) and Technical Report (Pathway 2) could be individual submissions without collusion to enable individual assessment.
It is recommended that a genuine premises is found that has had the issues described above and a site visit could be made. This will not only give much needed context to the scenario but will also trigger emotional response and personal ownership to the problem.
To prepare for activities related to sustainability, teachers may want to read, or assign students to pre-read the following article: ‘Mean or Green: Which values can promote stable pro-environmental behaviour?’
Context and Stakeholders:
Flooding in the local town has become more prevalent over recent years, impacting homes and businesses. A local coffee shop priding itself on its ethical credentials is located adjacent to the river and is one of the businesses that has suffered from severe flooding over the last 10 years, causing thousands of pounds worth of spoilt stock and loss of revenue. The local council’s flood warning system is far from adequate to protect individuals on a site-by-site basis. So the shop is looking for an individual warning system, giving the manager and staff adequate notice of a possible flood situation. This will enable stock to be moved in good time to a safer drier location. The shop manager is very conscious of wanting to implement a sustainable design that uses sustainable materials and renewable energy, to promote the values of the shop. It is becoming clear that such a solution would also benefit other businesses that experience flooding and a wider solution should also be considered.
Pathway 1
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring. You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and doesit surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity: Research water level monitoring. What are the main technical and logistical issues with this technology in this scenario?
Activity: Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Reflection: Obligations to future generations: Do we have a responsibility to provide a safe and healthy environment for humans that don’t yet exist, or for an ecosystem that will eventually change?
Design Process:
To satisfy the learning outcomes identified above the following activities are suggested.
Assessment activity 1 – Physical artefact:
Design, build and test a prototype flood warning device, monitoring various water levels and controlling an output or outputs in an alarm condition to meet the following as a minimum:
a) The device will require the use of an analogue sensor that will directly or indirectly output an electrical signal proportional to the water level.
b) It will integrate to appropriate Operational Amplifier circuitry.
c) The circuitry will control an output device or devices.
d) The power consumption of the complete circuit will be assessed to allow an appropriate renewable energy supply to be specified (but not necessarily be part of the build).
The written specification and accompanying drawings shall enable a solution to be manufactured based on the study, evaluation and affirmation of the product requirements.
The evaluation of the product requirements and consequent component selection will reference the use of design tools and problem-solving techniques. In compiling the specification the component selection and integration will highlight the underlying engineering principles that have been followed. The specification shall be no more than 1000 words (plus illustrations and references).
Pathway 2
This project requires assessment of the local area and ideally a visit to the retailer to understand their needs and consider options for water level monitoring.
You are required to consider environmental and sustainable factors when presenting a solution.
After a visit to the premises:
Discussion: What is your initial reaction to the effects of the flooding and does it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion: What is your initial reaction to the causes of the flooding anddoes it surprise you? What might your initial reaction reveal to you about your own perspectives and values?
Discussion and activity: List the potential issues and risks to installing a device in or near to the river bank.
Activity:Both cost-benefit and sustainable trade-off analyses are valuable approaches to consider in this case. Determine the possible courses of action and undertake both types of analysis for each position by considering both short- and long-term consequences.
Wireless communication of information electronically is now commonplace. It’s important for the learners to understand the differences between the various types both technically and commercially to enable the most appropriate form of communication to be chosen.
Pathway 1 above explains the need for a flood warning device to monitor water levels of a river. In Pathway 2, this part of the challenge (which could be achieved in isolation) is to communicate this information from the river to an office location within the town.
Design Process:
Design a communications system that will transmit data, equivalent to the height of the river in metres. The maximum frequency and distance over which the data can be transmitted should be explored and defined, but as a minimum this data should be sent every 20 seconds over a distance of 500m.
Assessment activity – Technical report:
A set of user requirements and two possible technical solutions shall be presented in the form of a Technical Report:
Highlighting the benefits and drawbacks of each.
Explaining the inherent challenges in wireless communication that defined your selections
Design tools and problem-solving techniques should be used to define the product requirements and consequent component selection
The report shall be no more than 3000 words (plus illustrations and references)
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Relevant disciplines: Environmental; Civil; Systems engineering.
Keywords: Sustainability; Environmental justice; Water and sanitation; Community engagement; Urban planning; Waste management; Nigeria; Sweden; AHEP; Higher education.
Sustainability competency: Systems thinking; Integrated problem-solving competency; Strategic competency.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 6 (Clean Water and Sanitation); SDG 11 (Sustainable Cities and Communities); SDG 13 (Climate Action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Beginner.
Learning and teaching notes:
This case study juxtaposes the waste management strategies of two cities: Stockholm, Sweden, renowned for its advanced recycling and waste-to-energy initiatives, and Lagos, Nigeria, a megacity grappling with rapid urbanisation and growing waste challenges. The contrast and comparison aim to illuminate the diverse complexities, unique solutions, and ethical considerations underlying their respective journeys towards sustainable waste management.
This case is presented in parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Understand the role of UNSDGs in urban planning and waste management policy.
Analyse and apply diverse waste management strategies considering socio-economic and cultural contexts.
Advocate for inclusive, equitable, and environmentally conscious waste management solutions.
Teachers have the opportunity to:
Introduce concepts relating to circularity
Link real-world and systemic engineering problems with SDGs
You are a renowned environmental engineer and urban planner, specialising in sustainable waste management systems. The Commissioner of Environment for Lagos invites you to analyse the city’s waste challenges and develop a comprehensive, adaptable roadmap towards a sustainable waste management future. Your mandate involves:
Assessing the current state of waste generation, collection, and disposal in Lagos.
Evaluating the exemplar Stockholm’s waste management strategies and identifying transferable best practices.
Examining the socio-economic and cultural context of Lagos and its specific waste management needs.
Devising a holistic waste management framework that prioritises environmental sustainability, social equity, and community engagement.
Optional STOP for questions and activities:
Discussion: Compare and contrast Lagos’s current waste management with Stockholm’s system, considering factors like efficiency, technology, and environmental impact.
Activity: Map the various stakeholders involved in Lagos’s waste management system, identifying potential partners and challenges for collaboration.
Discussion: Explore the social and economic dimensions of waste management in Lagos. How does waste affect different communities and individuals?
Part two:
As you delve deeper, you recognise the multifaceted challenges Lagos faces. While Stockholm boasts advanced technologies and high recycling rates, its solutions may not directly translate to Lagos’s context. Limited infrastructure, informal waste sectors, and diverse cultural practices must be carefully considered. Your role evolves from simply analysing technicalities and policies to devising a holistic strategy. This strategy must not only champion environmental sustainability but also champion social equity, respecting the unique socio-economic and cultural nuances of each urban setting. You must design a system that:
Promotes waste reduction and source separation at the community level.
Empowers and integrates the informal waste sector through training and formalisation
Ensures access to safe and efficient waste collection for all, particularly underserved communities.
Leverages sustainable technologies and practices (e.g., composting, biogas) while remaining adaptable to resource constraints.
Optional STOP for questions and activities:
Analysing existing waste management policies
City: [Choose Stockholm or Lagos]
Existing policy: [Specify the specific policy you are analysing]
Adaptability for diverse contexts:
Can this policy be easily adapted to other cities with different socio-economic and cultural contexts?
What are the key challenges and opportunities for adaptation?
What resources and support would be needed for successful adaptation?
What technical knowledge and skills are required to enact the policy? What local industries and partners will be critical to success?
Discussion prompts:
To what extent does the existing policy prioritise environmental sustainability, social equity, and economic feasibility?
What role can communities and diverse stakeholders play in shaping and implementing waste management policies?
Part three:
While implementing your strategy, you encounter enthusiasm from some sectors but also resistance from others, particularly informal waste workers and industries whose livelihoods may be impacted. Balancing immediate socio-economic concerns with long-term environmental benefits becomes crucial.
Optional STOP for questions and activities:
Discussion: Explore the ethical considerations of implementing a sustainable waste management system that might have short-term negative impacts on certain groups. How do you balance long-term benefits with potential immediate drawbacks?
Activity: Investigate real-world examples of cities transitioning to sustainable waste management and the strategies they used to mitigate negative socio-economic impacts.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Anticipatory; Strategic; Integrated problem-solving.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG7 (Affordable and Clean Energy); SDG 10 (Reduced Inequalities); SDG 11 (Sustainable Cities and Communities).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Cross-disciplinarity. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational level: Intermediate.
Learning and teaching notes:
This case study offers learners an explorative journey through the multifaceted aspects of deploying off-grid renewable solutions, considering practical, ethical, and societal implications. It dwells on themes such as Engineering and Sustainable Development (emphasizing the role of engineering in driving sustainable initiatives) and Engineering Practice (exploring the application of engineering principles in real-world contexts).
The dilemma in this case is presented in six parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
Recognise the significance of the SDGs in engineering solutions;
Enhance their skills in applying sustainable engineering practices in real-world scenarios.
Delve into the complexities of implementing off-grid solutions.
Navigate through the ethical considerations of deploying technologies in remote, often vulnerable, communities.
Engage in critical thinking to balance technological, societal, and environmental aspects.
Teachers have the opportunity to:
Highlight the importance of SDGs in engineering.
Facilitate discussions on ethical implications in technology deployment.
Evaluate learners’ ability to devise sustainable and ethical engineering solutions.
DGS; Planning and installing photovoltaic systems: A guide for installers, architects and engineers; ISBN: 978-1849713436; Planning and installing series.
In accordance with a report from the International Energy Agency (IEA) and statistics provided by the World Bank, approximately 633 million individuals in Africa currently lack access to electricity. This stark reality has significant implications for the remote villages across the continent, where challenges related to energy access persistently impact various aspects of daily life and stall social and economic development. In response to this critical issue, the deployment of off-grid renewable solutions emerges as a promising and sustainable alternative. Such solutions have the potential to not only address the pressing energy gap but also to catalyse development in isolated regions.
Situated in one of Egypt’s most breathtaking desert landscapes, Siwa holds a position of immense natural heritage importance within Egypt and on a global scale. The region is home to highly endangered species, some of which have restricted distributions found only in Siwa Oasis. Classified as a remote area, a particular community in Siwa Oasis currently relies predominantly on diesel generators for its power needs, as it remains disconnected from the national grid. Moreover, extending the national grid to this location is deemed economically and environmentally impractical, given the long distances and rugged terrain.
Despite these challenges, Siwa Oasis possesses abundant renewable resources that can serve as the foundation for implementing a reliable, economical, and sustainable energy source. Recognising the environmental significance of the area, the Egyptian Environmental Affairs Agency (EEAA) declared Siwa Oasis as a protected area in 2002.
Part one: Household energy for Siwa Oasis
Imagine being an electrical engineer tasked with developing an off-grid, sustainable power solution for Siwa Oasis village. Your goal is to develop a solution that not only addresses the power needs but also is sustainable, ethical, and has a positive impact on the community. The following data may help in developing your solution.
Data on Household Energy for Siwa Oasis:
Activities:
Analyse typical household appliances and their power consumption (lighting, refrigeration, pressing Iron).
Simulate daily energy usage patterns using smart meter data.
Identify peak usage times and propose strategies for energy conservation (example LED bulbs, etc)
Calculate appliance power consumption and estimate electricity costs.
Discussion:
a. How does this situation relate to SDG 7, and why is it essential for sustainable development?
b. What are the primary and secondary challenges of implementing off-grid solutions in remote villages?
Part two: Power supply options
Electricity supply in Siwa Oasis is mainly depends on Diesel Generators, 4 MAN Diesel Generators of 21 MW which are going to be wasted in four years, 2 CAT Diesel Generators of 5.2 MW and 1 MAN Diesel Generator 4 MW for emergency. Compare and contrast various power supply options for the household (renewable vs. fossil fuel).
Renewable: Focus on solar PV systems, including hands-on activities like solar panel power output measurements and battery sizing calculations.
Fossil fuel: Briefly discuss diesel generators and their environmental impact.
The Siwa Oasis community is divided over the choice of power supply options for their households. On one hand, there is a group advocating for a complete shift to renewable energy, emphasising the environmental benefits and long-term sustainability of solar PV systems. On the other hand, there is a faction arguing to continue relying on the existing diesel generators, citing concerns about the reliability and initial costs associated with solar power. The community must decide which power supply option aligns with their values, priorities, and long-term goals for sustainability and energy independence. This decision will not only impact their day-to-day lives but also shape the future of energy use in Siwa Oasis.
Optional STOP for questions and activities:
Debate: Is it ethical to impose new technologies on communities, even if it’s for perceived improvement of living conditions?
Discussion: How can engineers ensure the sustainability (environmental and operational) of off-grid solutions in remote locations?
Activities: Students to design a basic solar PV system for the household, considering factors like energy demand, solar resource availability, and budget constraints.
Part three: Community mini-grid via harnessing the desert sun
Mini-grid systems (sometimes referred to as micro-grids) generally serve several buildings or entire communities. The abundant sunshine in Siwa community makes it ideal for solar photovoltaic (PV) systems and based on the load demand of the community, a solar PV mini grid solution will work perfectly.
Electrical components of a typical PV system can be classified into DC and AC.
DC components: The electrical connection of solar modules to the inverter constitutes the DC part of a PV installation. Its design requires particular care and reliable components, as there is a risk of significant accidents with high DC voltages and currents, especially due to electric arcs.
The key DC components are:
PV cables and connectors: PV modules are usually delivered with a junction box and pre-assembled cables with single-contact electrical connectors. They enable easy interconnection of individual modules in strings. Solar cables are made of copper or aluminum (more cost-efficient).
Combiner boxes: Here, incoming strings are connected in parallel, and the resulting current is channeled through an output terminal to the inverter. A combiner box usually contains all required protection devices, disconnectors, and measuring equipment for string monitoring.
AC components: The equipment installed on the AC side of the inverter depends on the size and voltage class of the grid connection (low-voltage (LV), medium-voltage (MV), or high-voltage (HV) grid). Utility-scale PV plants usually require the following equipment:
Transformers, to increase the inverter output voltage to the grid voltage level
AC cables, buried
Circuit breakers, switchgears, and protection devices, for large PV plants (MV/HV connection)
Electricity meters
Activities:
Research and discuss the safety precautions and regulations for working with DC systems.
Analyse the DC components of a typical PV system, including cables, connectors, and combiner boxes.
Calculate the voltage and current levels at different points in the DC circuit based on the system design.
Investigate the concept of power factor and its significance in grid stability and energy bills.
Analyse the power factor of common household appliances and discuss its impact on the mini-grid.
Propose strategies to improve the overall power factor of the mini-grid, such as using capacitors or choosing energy-efficient appliances.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: Design and innovation; Conflicts of interest; Ethics; Regulatory compliance; Stakeholder engagement; Environmental impact; AHEP; Sustainability; Higher education; Pedagogy; Assessment.
Sustainability competency: Systems thinking; Anticipatory; Critical thinking; Integrated problem-solving; Strategic; Collaboration.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 7 (Affordable and Clean Energy); SDG 9 (Industry, Innovation and Infrastructure); SDG 12 (Responsible Consumption and Production); SDG 13 (Climate Action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Educational aim: Apply interdisciplinary engineering knowledge to a real-world sustainability challenge in aviation, foster ethical reasoning and decision-making with regards to environmental impact, and develop abilities to collaborate and communicate with a diverse range of stakeholders.
Educational level: Intermediate.
Learning and teaching notes:
This case study provides students an opportunity to explore the role of hydrogen fuel in the aviation industry. Considerable investments have been made in researching and developing hydrogen as a potential clean and sustainable energy source, particularly for hydrogen-powered aircraft. Despite the potential for hydrogen to be a green and clean fuel there are lingering questions over the long-term sustainability of hydrogen and whether technological advancements can progress rapidly enough to significantly reduce global carbon dioxide emissions. The debate around this issue is rich with diverse perspectives and a variety of interests to consider. Through this case study, students will apply their engineering expertise to navigate this complex problem and examine the competing interests involved.
This case is presented in parts, each focusing on a different sustainability issue, and with most parts incorporating technical content. Parts may be used in isolation, or may be used to build up the complexity of the case throughout a series of lessons.
Learners have the opportunity to:
Understand the principles of hydrogen production, storage, and emissions in the context of aviation.
Assess the environmental, economic, and social impacts of adopting hydrogen technology in the aviation industry.
Develop skills in making estimates and assumptions in real-world engineering scenarios.
Explore the ethical dimensions of engineering decisions, particularly concerning sustainability and resource management.
Examine the influence of policy and stakeholder perspectives on the adoption of green hydrogen within the aviation industry.
Teachers have the opportunity to:
Integrate concepts related to renewable energy sources, with a focus on hydrogen.
Discuss the engineering challenges and solutions in storing and utilising hydrogen in aviation.
Foster critical thinking about the balance between technological innovation, environmental sustainability, and societal impact.
Guide students in understanding the role of policy in shaping technological advancements and environmental strategies.
Assess students’ ability to apply engineering principles to solve complex, open-ended, real-world problems.
Supporting resources:
Learning and teaching resources:
Hydrogen fundamentals resources:
Case Study Workbook – designed for this study to give a broad overview of hydrogen, based primarily on the content below from US DoE.
Hydrogen Aware – Set of modules for a more comprehensive background to hydrogen with a UK-specific context.
We recommend encouraging the use of sources from a variety of stakeholders. Encourage students to find their own, but some examples are included below:
FlyZero Open Source Reports Archive: A variety of technical reports focused on hydrogen in aviation specifically including concept aircraft, potential life cycle emissions, storage, and usage.
Hydrogen in Aviation Alliance: Press release (September 2023) announcing an agreement amongst some of the major players in aviation to focus on hydrogen.
Safe Landing: A group of aviation workers campaigning for long-term employment. Projected airline growth is not compatible with net zero goals and the current technology is not ready for decarbonisation, action is drastically needed now to safeguard the aviation industry and prevent dangerous levels of warming.
UK Government Hydrogen Strategy: Sets out the UK government view of how to develop a low carbon hydrogen sector including aviation projects including considerations of how to create a market.
Pre-Session Work:
Students should be provided with an overview of the properties of hydrogen gas and the principles underlying the hydrogen economy: production, storage and transmission, and application. There are several free and available sources for this purpose (refer to the Hydrogen Fundamentals Resources above).
Introduction
“At Airbus, we believe hydrogen is one of the most promising decarbonisation technologies for aviation. This is why we consider hydrogen to be an important technology pathway to achieve our ambition of bringing a low-carbon commercial aircraft to market by 2035.” – Airbus, 2024
As indicated in the industry quote above, hydrogen is a growing area of research interest for aviation companies to decarbonise their fleet. In this case study, you are put in the role of working as an engineering consultant and your customer is a multinational aerospace corporation. They are keen to meet their government issued targets of reducing carbon emissions to reach net zero by 2050 and your consultancy team has been tasked with assessing the feasibility of powering a zero-emission aircraft using hydrogen. The key areas your customer is interested in are:
The feasibility of using green hydrogen as a fuel for zero-emission aviation;
The feasibility of storing hydrogen in a confined space like an aircraft;
Conducting a stakeholder analysis on the environmental impact of using hydrogen for aviation.
Part one: The aviation landscape
Air travel connects the world, enabling affordable and reliable mass transportation between continents. Despite massive advances in technology and infrastructure to produce more efficient aircraft and reduce passenger fuel consumption, carbon emissions have doubled since 2019 and are equivalent to 2.5 % of global CO2 emissions.
Activity: Discuss what renewable energy sources are you aware of that could be used for zero-emission aviation?
Your customer is interested in the feasibility of hydrogen for aviation fuel. However, there is a debate within the management team over the sustainability of hydrogen. As the lead engineering consultant, you must guide your customer in making an ethical and sustainable decision.
Hydrogen is a potential energy carrier which has a high energy content, making it a promising fuel for aviation. Green hydrogen is produced from water and is therefore potentially very clean. However, globally most hydrogen is currently made from fossil fuels with an associated carbon footprint. Naturally occurring as a gas, the low volumetric density makes it difficult to transport and add complications with storage and transportation.
Activity: From your understanding of hydrogen, what properties make it a promising fuel for aircraft? And what properties make it challenging?
Optional activity: Recap the key properties of hydrogen – particularly the low gas density and low boiling point which affect storage.
Part two: Hydrogen production
Hydrogen is naturally abundant but is often found combined with other elements in various forms such as hydrocarbons like methane (CH4) and water (H2O). Methods have been developed to extract hydrogen from these compounds. It is important to remember that hydrogen is an energy carrier and not an energy source; it must be generated from other primary energy sources (such as wind and solar) converting and storing energy in the form of hydrogen.
Research: What production methods of hydrogen are you aware of? Where does most of the world’s hydrogen come from currently?
The ideal scenario is to produce green hydrogen via electrolysis where water (H2O) is split using electricity into hydrogen (H2) and oxygen (O2). This makes green hydrogen potentially completely green and clean if the process uses electricity from renewable sources. The overall chemical reaction is shown below:
However, the use of water—a critical resource—as a feedstock for green hydrogen, especially in aviation, raises significant ethical concerns. Your customer’s management team is divided on the potential impact of this practice on global water scarcity, which has been exacerbated by climate change. You have been tasked with assessing the feasibility of using green hydrogen in aviation for your client. Your customer has chosen their London to New York route (3,500 nmi), one of their most popular, as a test-case.
Activity: Estimate how much water a hydrogen plane would require for a journey of 5000 nmi (London to New York). Can you validate your findings with any external sources?Hint: How much water does it take to produce 1 kg of green hydrogen? Consider the chemical equation above.
Activity: Consider scaling this up and estimate how much water the entire UK aviation fleet would require in one year. Compare your value to the annual UK water consumption, would it be feasible to use this amount of water for aviation?
Discussion: From your calculations and findings so far, discuss the practicality of using water for aviation fuel. Consider both the obstacles and opportunities involved in integrating green hydrogen in aviation and the specific challenges the aviation industry might face.
Despite its potential for green production, globally the majority of hydrogen is currently produced from fossil fuels – termed grey hydrogen. One of your team members has proposed using grey hydrogen as an interim solution to bridge the transition to green hydrogen, in order for the company to start developing the required hydrogen-related infrastructure at airports. They argue that carbon capture and storage technology could be used to reduce carbon emissions from grey hydrogen while still achieving the goal of decarbonisation. Hydrogen from fossil fuels with an additional carbon capture step is known as blue hydrogen.
However, this suggestion has sparked a heated debate within the management team. While acknowledging the potential to address the immediate concerns of generating enough hydrogen to establish the necessary infrastructure and procedures, many team members argued that it would be a contradictory approach. They highlighted the inherent contradiction of utilising fossil fuels, the primary driver of climate change, to achieve decarbonisation. They emphasised the importance of remaining consistent with the ultimate goal of transitioning away from fossil fuels altogether and reducing overall carbon emissions. Your expertise is now sought to weigh these options and advise the board on the best course of action.
Optional activity: Research the argument for and against using grey or blue hydrogen as an initial step in developing hydrogen infrastructure and procedures, as a means to eventually transition to green hydrogen. Contrast this with the strategy of directly implementing green hydrogen from the beginning. Split students into groups to address both sides of this debate.
Discussion: Deliberate on the merits and drawbacks of using grey or blue hydrogen to catalyse development of hydrogen aviation infrastructure. What would you recommend—prioritising green hydrogen development or starting with grey or blue hydrogen as a transitional step? How will you depict or visualise your recommendation to your client?
Part three: Hydrogen storage
Despite an impressive gravimetric energy density (the energy stored per unit mass of fuel) hydrogen has the lowest gas density and the second-lowest boiling point of all known chemical fuels. These unique properties pose challenges for storage and transportation, particularly in the constrained spaces of an aircraft.
Activity: Familiarise yourself with hydrogen storage methods. What hydrogen storage methods are you aware of? Thinking about an aviation context what would their advantages and disadvantages be?
As the lead engineering consultant, you have been tasked with providing expert advice on viable hydrogen storage options for aviation. Your customer has again chosen their London to New York route (3,500 nmi) as a test-case because it is one of their most popular, transatlantic routes. They want to know if hydrogen storage can be effectively managed for this route as it could set a precedent for wider adoption for their other long-haul flights. The plane journey from London to New York is estimated to require around 15,000 kg of hydrogen (or use the quantity estimated previously estimated in Part 2 – see Appendix for example).
Activity: Estimate the volume required to store the 15,000 kg of hydrogen as a compressed gas and as a liquid.
Discussion: How feasible are compressed gas and liquid hydrogen storage solutions? The space taken up by the fuel is one consideration but what other aspects are important to consider? How does this compare to the current storage solution for planes which use conventional jet fuel. Examples of topics to consider are: materials required for storage tanks, energy required to liquify or compress the hydrogen, practicality of hydrogen storage and transport to airports, location and distance between hydrogen generation and storage facilities, considerations of fuel leakage. When discussing encourage students to compare to the current state of the art, which is jet fuel.
Part four: Emissions and environmental impact
In Part four, we delve deeper into the environmental implications of using hydrogen as a fuel in aviation with a focus on emissions and their impacts across the lifecycle of a hydrogen plane. Aircraft can be powered using either direct combustion of hydrogen in gas turbines or by reacting hydrogen in a fuel cell to produce electricity that drives a propeller. As the lead engineering consultant, your customer has asked you to choose between hydrogen combustion in gas turbines or the reaction of hydrogen in fuel cells. The management team is divided on the environmental impacts of both methods, with some emphasising the technological readiness and efficiency of combustion and others advocating for the cleaner process of fuel cell reaction.
Activity: Research the main emissions associated with combustion of hydrogen and electrochemical reaction of hydrogen in fuel cells. Compare to the emissions associated with combustion of standard jet fuel.Students should consider not only CO2 emissions but also other pollutants such as NOx, SOx, and particulate matter.
Discussion: What are the implications of these emissions on air quality and climate change. Discuss the trade-offs between the different methods of utilising hydrogen in terms of the environmental impact. Compare to the current standard of jet fuel combustion.
Both combustion of hydrogen in an engine and reaction of hydrogen in a fuel cell will produce water as a by-product. The management team are concerned over the effect of using hydrogen on the formation of contrails. Contrails are clouds of water vapour produced by aircraft that have a potential contribution to global warming but the extent of their impact is uncertain.
Activity: Investigate how combustion (of both jet fuel and hydrogen) and fuel cell reactions contribute to contrail formation. What is the potential climactic effect of contrails?
Optional extension: How can manufacturers and airlines act to reduce water emissions and contrail formation – both for standard combustion of jet fuel and future hydrogen solutions?
Discussion: Based on your findings, which hydrogen propulsion technology would you recommend to the management team?
So far we have considered each aspect of the hydrogen debate in isolation. However, it is important to consider the overall environmental impact of these stages as a whole. Choices made at each stage of the hydrogen cycle – generation, storage, usage – will collectively impact the overall environmental impact and sustainability of using hydrogen as an aviation fuel and demonstrates how interconnected our decisions can be.
Activity: Assign students to groups based on the stage of a hydrogen lifecycle (generation, storage/transport, usage). Each group could research and discuss the potential emissions and environmental impacts associated with their assigned stage. Consider both direct and indirect emissions, like energy used in production processes or emissions related to infrastructure development. Principles such as life cycle assessment can be incorporated for a holistic view of hydrogen emissions.
Activity: After the individual group discussions, each group could present their findings and perspectives on their stage of the lifecycle. The whole class could then reflect on the overall environmental impacts of hydrogen in aviation. How do these impacts compare across different stages of the lifecycle? What are the trade-offs involved in choosing different types of hydrogen (green, blue, grey) and storage/transportation solutions?
Discussion: Conclude with a reflective discussion. Students bring together their findings on the life cycle stages of hydrogen and present their overall perspectives on the environmental sustainability of using hydrogen in aviation.
Part five: Hydrogen aviation stakeholders
Hydrogen aviation is an area with multiple stakeholders with conflicting priorities. Understanding the perspectives of these key players is important when considering the feasibility of hydrogen in the aviation sector.
Activity: Who are the key players in this scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully?
Your consultancy firm is hosting a debate for the aviation industry in order to help them make a decision around hydrogen-based technologies. You have invited representatives from consumer groups, the UK government, Environmental NGOs, airlines, and aircraft manufacturers.
Activity: Take on the role of these key stakeholders, ensuring you understand their perspective and priorities. This could form part of a separate research exercise, or students can use the key points given below. Debate whether or not hydrogen fuel should be used to help the aviation sector reach net zero.
Stakeholder
Key priorities and considerations
Airline & Aerospace Manufacturer
Cost efficiency (fuel, labour, fleet maintenance) – recovering from pandemic.
Passenger experience (commercial & freight).
Develop & maintain global supply chains.
Safety, compliance and operational reliability.
Financial responsibility to employees and investors.
Need government assurances before making big capital investments.
UK Government
Achieve net zero targets by 2050
Promote economic growth and job creation (still recovering from pandemic).
Fund research and innovation to put their country’s technology ahead.
Fund renewable infrastructure to encourage industry investment.
Environmental NGOs
Long-term employment for aviation sector.
Demand a sustainable future for aviation to ensure this – right now, not in 50 years.
Standards and targets for industry and government and accountability if not met.
Some NGOs support drastic cuts to flying.
Want to raise public awareness over sustainability of flying.
Consumer
Environmentally aware (understand the need to reduce carbon emissions).
Also benefit greatly from flying (tourism, commercial shipping, etc.).
Safety and reliability of aircraft & processes.
Cost effectiveness – want affordable service
Appendix: Example calculations
There are multiple methods for approaching these calculations. The steps shown below are just one example for illustrative purposes.
Part two: Hydrogen production
Challenge: Estimate the volume of water required for a hydrogen-powered aircraft.
Assumptions around the hydrogen production process, aircraft, and fuel requirement can be given to students or researched as a separate task. In this example we assume:
All hydrogen is generated via electrolysis of fresh water with an efficiency of 100%.
A mid-size aircraft required with ~300 passenger capacity and flight range of ~3500 nmi (London to New York).
Flight energy requirement for a kerosene-fuelled jet is the same as a hydrogen-fuelled jet.
Example estimation:
1. Estimate the energy requirement for a mid-size jet
No current hydrogen-fuelled aircraft exists, so we can use a kerosene-fuelled analogue. Existing aircraft that meet the requirements include the Boeing 767 or 747. The energy requirement is then:
2. Estimate the hydrogen requirement
Assuming a hydrogen plane has the same fuel requirement:
3. Estimate the volume of water required
Assuming all hydrogen is produced from the electrolysis of water:
Electrolysis reaction:
For this reaction, we know one mole of water produces one mole of hydrogen. We need to calculate the moles for 20,000 kg of hydrogen:
With a 1:1 molar ratio, we can then calculate the mass of water:
This assumes an electrolyser efficiency of 100%. Typical efficiency values are under 80%, which would yield:
Challenge: Is it feasible to power the UK aviation fleet with water?
The total energy requirement for UK aviation can be given to students or set as a research task.
Estimation can follow a similar procedure to the above.
Multiple methods for validating and assessing the feasibility of this quantity of water. For example, the UK daily water consumption is 14 billion litres. The water requirement estimated above is < 1 % of this total daily water consumption, a finding supported by FlyZero.
Part three: Hydrogen storage
Challenge: Is it feasible to store 20,000 kg of hydrogen in an aircraft?
There are multiple methods of determining the feasibility of storage volume. As example is given below.
1. Determining the storage volume
The storage volume is dependent on the storage method used. Density values associated with different storage techniques can be research or given to students (included in Table 2). The storage volume required can be calculated from the mass of hydrogen and density of storage method, example in Table 2.
Table 2: Energy densities of various hydrogen storage methods
2. Determining available aircraft volume
A straightforward method is to compare the available volume on an aircraft with the hydrogen storage volume required. Aircraft volumes can be given or researched by students. Examples:
This assumes hydrogen tanks are integrated into an existing aircraft design. Liquid hydrogen can feasibly fit into an existing design, though actual volume will be larger due to space/constraint requirements and additional infrastructure (pipes, fittings, etc) for the tanks. Tank size can be compared to conventional kerosene tanks and a discussion encouraged over where in the plane hydrogen tanks would need to be (conventional liquid fuel storage is in the wings of aircraft, this is not possible for liquid storage tanks due to their shape and infrastructure storage is inside the fuselage). Another straightforward method for storage feasibility is modelling the hydrogen volume as a simple cylinder and comparing to the dimensions of a suitable aircraft.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Emma Crichton CEng MICE and Dr Jonathan Truslove MEng PhD (Engineers Without Borders UK).
Topic: How to talk about sustainability in engineering education.
Tool type: Guidance.
Relevant disciplines: Any.
Keywords: Advocacy; Collaboration; Global responsibility; Sustainability; Systems change; Climate change; AHEP; Higher education; Pedagogy.
Sustainability competency: Self-awareness; Strategic; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 11 (Sustainable cities and communities); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who should read this article? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It’s especially useful in helping educators, heads of departments and deans to engage in a constructive or uncomfortable conversation if you don’t see yourself as a sustainability expert.
Premise:
“To not have conversations because they make you uncomfortable is the definition of privilege. Your comfort is not at the centre of this discussion. That’s not how it works. We have to be able to choose courage over comfort, we have to be able to say, ‘Look, I don’t know if I’m going to nail this but I’m going to try because I know what I’m sure as hell not going to do is stay quiet.’” Brene Brown
Some of the best conversations you can have in life are not comfortable to initiate:
Saying “I love you” for the first time to someone you don’t know will say it back.
Asking for a pay rise for the first time and having to describe why you are valuable.
Saying “I don’t know” when you’ve positioned yourself as an expert.
Talking about your grief. Talking about life. Talking about death.
Talking about the future. Talking about the past.
Think about a time you’ve participated in a meaningful conversation. These are not easy conversations, but they can also be the ones we look back to as very powerful, even if they took courage to initiate. And sometimes in a conversation, especially a constructive conversation, people disagree. People debate. People have different perspectives. And that’s the beauty of conversation and the beautiful rich diversity of people. It would be so boring if we all had the same life experiences, expertise and thoughts. If we only wanted to hear our own perspective, you can do that in a voice note to yourself, in your journal or by talking to the mirror.
There can also be different conversations depending on the values of those having the conversation. What they see as important, scary or what environment they live in helps form their core understanding. But despite our differences, humans are hard-wired for connection, to listen and talk with others. We discuss ideas in order to find common ground, and/or to learn about an experience we didn’t have ourselves. Difficult, constructive conversations build relationships, while avoiding them leads to a less deep connection.
Why talk about sustainability?
Educators,you have permission to start and facilitate a conversation about something you don’t know much about or are not an expert in. Just be honest about what you know and be driven to learn more.
This relates to conversations around the topic of sustainability. When we talk about how we can live within our planetary limits, whilst meeting the needs of all people, questions about justice, inequality and fairness often crop up. We don’t have one right answer here, we don’t have a magic fix or one person to blame. No one is an expert here. Sure, some know more about the science, others more about people’s lived experiences and others can feel they don’t know enough. But we all have a right to participate in conversations about our collective humanity. For example, conversations you could have with students about sustainability could cover:
Views on a particular podcast, TED talk or news article.
Think of a community you love. What would you like life there to be like in 2050?
What sustainability-related questions or topics would you like to explore?
What do the Sustainable Development Goals mean to you? How might they connect to community-driven initiatives?
What does the future of work look like for engineering?
How do we all acknowledge the burden of shifting the norm in engineering to address sustainability challenges?
Is there an extra pressure on future engineering generations? How does that feel?
How might we recognise that those who are most impacted by the climate crisis may not be the ones whose actions are responsible for it?
After all, sustainability is about imagining our future: One where we have less impact on our safe climate and biodiversity and less inequality. But we may see that future world differently. We may worry about the impact any change might have on our lives and the things we value most. Some may struggle with the idea of repurposing golf courses to address our housing crisis, others may struggle with the idea of policies stopping people from flying frequently (but they might be okay with this being imposed on those with private jets). Others may despair at the slow levels of change, where we don’t move from our default trajectory and risk climate breakdown.
On our current trajectory, we are looking at living in a world where our climate exceeds 1.5 degrees of warming, where there is mass migration, sea level rise, etc. This world may be worse, where more people suffer. But would you change how we engineer to make it better or play a role in another way to shift our trajectory?
How to initiate conversations about sustainability in engineering education:
To not have these important conversations means we don’t see any role for ourselves or the organisations we work for in creating change – and that’s not true, since sustainability requires systemic change to how we engineer AND to how we educate. For example, we asked hundreds of engineering educators and educationalists what they hope to see as the future of engineering education. Their responses are visualised below:
Discussing your opinions about these responses could be one way to start a conversation with a colleague.
It is also really important to engage in regular conversations about sustainability with students as a feature of their university education. Be a role model for how to participate in constructive conversations respectfully. Help them practise how to hold and present themselves in these spaces.
So, with this in mind, what can you do?
Initiate the conversation. Prepare to do so. Here are some tips and tricks.
Open questions are generally your friend; avoid yes/no questions that don’t allow the responder to share their insights.
Have clarity on what you will do if you don’t know the answer. Could a person in the room go away, research and come back with a more informed response?
Create a space for people to open up.
Bring in people who can facilitate this type of environment and learn from them. It is not incumbent on individual educators to create all learning content and deliver that to students.
Be humble! Learning from others is key. Degrees can be designed so that students can frequently hear and learn about different perspectives and develop the ability to speak with economists, social scientists, scientists, humanities experts, ecologists, and those with expertise gained through lived experience. Be willing to learn from others and acknowledge that it’s okay they don’t have all the answers either. In our experience, students usually respect this attitude of humility.
It can be helpful to work with those with experience. Recognise who is leading changes and creating ways for educators to feel safe in leading and making change. Sometimes all it takes is the offer of a coffee with a colleague to form a connection and get a shared understanding of how to move forward.
Seek (and give) advice and share your experience. Share resources, barriers, insights and position initiatives to support in an organised and collaborative way.
Work in partnership with students. Students also have a critical role to play in this shift, not just because they are increasingly demanding to see more sustainability in the curriculum. For many emerging students, sustainability is the topic of their lifetime. Listen to the perspectives of international students, who can bring more diverse perspectives on global responsibility.
“Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.” 2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course)
Useful resources to get talking:
There are some excellent resources out there that can help us get started framing and having conversations about sustainability with others:
1. The Talk Climate Changecampaign tracks climate discussions to share messages and inspire others around the world. It provides advice, conversation starters and allows you to add your discussions with family, friends, and communities about sustainability to their interactive map and explore conversations submitted by others.
2. Listen to podcasts such as the Liberating Sustainabilitypodcast by Students Organising for Sustainability UK (SOSUK) who bring together leaders from student liberation movements and academia to deconstruct the exclusivity of sustainability activism and education, orAn Idiot’s Guide to Saving the World which dives into each of the Sustainable Development Goals and focuses in on ‘who is affected?’, ‘What are solutions on a global scale?’, and ‘what can I as an individual do?’.
3. Watch the presentation on ‘Imagining 2050’ from James Norman, a current educator (who will be 72 years old in 2050) and Cleo Parker, an engineering student (who will be 49 in 2050) during the Institution of Structural Engineers Annual Academics Conference 2022. You can also read the main learning points from the conference in this blog post.
4. The World Café methodology is an example of creating a space for collaborative dialogue around questions that matter and sharing insights and lessons learned. You can see an example of this by the UK Green Building Council (UKGBC) who run Collaboration Cafes on Climate Resilience, here.
5. Watch the TED talksplaylists on sustainability covering key questions and visionary ideas on the question of our generation.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving; Strategic; Self-awareness; Normative.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 8 (Decent work and economic growth); SDG 10 (Reduced Inequalities); SDG 13 (Climate action).
Reimagined Degree Map Intervention: More real-world complexity; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who wish to consider how to navigate tradeoffs between economic and environmental sustainability as they apply to engineering. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
In the face of the ever-growing need for economic progress and the escalating environmental crises, the engineering profession finds itself at a crossroads. Striking a delicate balance between economic growth and environmental sustainability is no longer an option but an imperative. This article delves into the pivotal role of engineering educators in shaping the mindset of future engineers, offering an expanded educational framework that fosters a generation capable of harmonising economic prosperity with environmental responsibility.
The uneasy truce:
Developing nations, with burgeoning populations and aspirations for improved living standards, grapple with the paradox of rapid economic expansion at the expense of environmental degradation. This necessitates a shift in focus for engineering educators, who bear the responsibility of cultivating engineers with a foresighted perspective. Rather than demonising economic growth, the goal is to instill a nuanced understanding of its interdependence with environmental well-being. For example, in developing countries like Brazil, rapid economic expansion driven by industries such as agriculture and logging has resulted in extensive deforestation of the Amazon region. This deforestation not only leads to the loss of valuable biodiversity and ecosystem services but also contributes to climate change through the release of carbon dioxide. Similarly, in industrialised nations, the pursuit of economic growth has often led to the pollution of air, water, and soil, causing adverse health effects for both humans and wildlife.
Equipping our future stewards:
To navigate this delicate landscape, educators must move beyond traditional technical expertise, fostering a holistic approach that integrates ethical awareness, interdisciplinary collaboration, localised solutions, and a commitment to lifelong learning.
1. Ethical awareness: One potential counterargument to the expanded educational framework may be that the focus of engineering education should remain solely on technical expertise, with the assumption that ethical considerations and interdisciplinary collaboration can be addressed later in a professional context. However, research has shown that integrating ethical awareness and interdisciplinary collaboration early in engineering education not only enhances problem-solving skills but also cultivates a sense of responsibility and long-term thinking among future engineers.
2. Holistic thinking: Research has shown that interdisciplinary collaboration between engineering and social science disciplines can lead to more effective and sustainable solutions. For instance, a study conducted by the World Bank’s Water and Sanitation Program (WSP) found that by involving sociologists and anthropologists in the design and implementation of water infrastructure projects in rural communities, engineers were able to address cultural preferences and local knowledge, resulting in higher acceptance and long-term maintenance of the infrastructure. Similarly, a case study of a renewable energy project in Germany demonstrated how taking into account the geographic nuances of the region, such as wind patterns and solar radiation, led to more efficient and cost-effective energy solutions. Presently, Germany boasts the world’s fourth-largest installed solar capacity and ranks amongst the top wind energy producers.
3. Localised solutions: Students must be required to consider the social, cultural, and geographic nuances of each project. This means moving away from one-size-fits-all approaches and towards an emphasis on the importance of context-specific solutions. This ensures that interventions are not only technologically sound but also culturally appropriate and responsive to local needs, fostering sustainability at both the project and community levels.
4.Lifelong learning: Empower students with the skills to stay abreast of emerging technologies, ethical frameworks, and policy landscapes. Recognise that the landscape of sustainability is dynamic and ever evolving. Foster a culture of continuous learning and adaptability to ensure that graduates remain true stewards of a sustainable future, equipped to navigate evolving challenges throughout their careers.
A compass for progress:
By integrating these principles into engineering curricula, educators can provide students with a moral and intellectual compass—an ethical framework guiding decisions toward a future where economic progress and environmental responsibility coexist harmoniously. Achieving this paradigm shift will require collaboration, innovation, and a willingness to challenge the status quo. However, the rewards are immeasurable: a generation of engineers empowered to build a world where prosperity thrives alongside a healthy planet—a testament to the true potential of the engineering profession.
Engineering teachers can raise a generation of engineers who can balance economic growth with environmental responsibility by embracing a broader educational framework that includes ethical awareness, cross-disciplinary collaboration, localised solutions, and a commitment to lifelong learning. Through the adoption of these principles, engineering curricula can provide students with a moral and intellectual compass, guiding them toward a future where economic progress and environmental sustainability coexist harmoniously.
References:
International Renewable Energy Agency (IRENA) (2023). ‘Pathways to Carbon Neutrality: Global Trends and Solutions’, Chapter 3.
Sharma, P. (2022) ‘The Ethical Imperative in Sustainable Engineering Design’, Chapter 5.
United Nations (2021) ‘Goal 13: Climate Action. In Sustainable Development Goals: Achieving a Balance between Growth and Sustainability’. (pp. 120-135).
World Bank (2022) ‘Renewable Energy in Developing Nations: Prospects and Challenges’, pp.10-15.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.