Author: Onyekachi Nwafor (KatexPower).

Topic: A country-wide energy transition plan.

Engineering disciplines: Energy; Electrical.

Ethical issues:  Sustainability; Social responsibility; Risk.

Professional situations: Public health and safety,

Educational level: Beginner.

Educational aim: Engaging in Ethical Judgement: reaching moral decisions and providing the rationale for those decisions.

 

Learning and teaching notes:

At COP26, H.E. President Muhammadu Buhari announced Nigeria’s commitment to carbon neutrality by 2050. This case involves an engineer who is one of the stakeholders invited by the president of Nigeria to implement an Energy Transition Plan (ETP). It requires the engineer, who is a professional and well experienced in renewable energy and energy transition, to deliver a comprehensive decarbonisation roadmap that will ensure net zero emissions.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

UK website:

Think tank:

Nigeria government site:

Industry publication:

Business:

 

Dilemma – Part one:

You are an electrical engineer working as a technical consultant in an international organisation aiming to  transform the global energy system to secure a clean, prosperous, zero-carbon future for all. The organisation is one of the stakeholders invited by the federal government of Nigeria to implement the country’s new Energy Transition Plan (ETP) and you are given the task of creating a comprehensive decarbonisation roadmap and presenting it at the stakeholder meeting.

 

Optional STOP for questions and activities:

1. Discussion: In what ways could an electrical engineer bring needed expertise to the ETP? Why are engineers essential to ensuring a zero-carbon future? Should engineers be involved in policy planning? Why or why not?

2. Activity: Wider context research: Nigeria is currently an oil-producing country. What might policy makers need to consider about this reality when implementing an ETP? How strongly should you advocate for a reduction of the use of fossil fuels in the energy mix?

3. Discussion and activity: List the potential benefits and risks to implementing the ETP. Are these benefits and risks the same no matter which country they are implemented in?

4. Activity: Research and outline countries that have attained a zero emission target. What are their energy distribution mixes? Based on this information, what approach should Nigeria take and why?

5. Activity: What will be your presentation strategy at the stakeholder meeting? What will you advocate for and why? What ethical justifications can you make for the plan you propose?

 

Dilemma – Part two:

At the stakeholder meeting, you were given the opportunity to present your decarbonisation roadmap and afterwards faced serious opposition by the chief lobbyist of the Fossil Fuel and Mining Association, Mr. Abiola. Mr. Abiola is of the opinion that because Nigeria contributes less than 1% to the global emissions, it should not be held accountable for climate change, and therefore no country-wide climate policy is necessary. Furthermore, he fears the domestic market for coal that is used to produce electricity as well as the global market for fossil fuels will shrink because of the new policy. He also argues that a shift away from coal and fossil fuels could result in challenges to the security of supply, since renewables are by definition unreliable and volatile. Other stakeholders, such as activists and environmental experts, also voiced different concerns and opinions. They argue that time has already run out, and no country can delay decarbonisation plans no matter how small their impact on the global total. This conflict has resulted in disagreements in the negotiation.

 

Optional STOP for questions and activities:

1. Debate: Do different countries have different ethical responsibilities when it comes to decarbonisation? Why or why not? If so, for what reasons?

2. Discussion: How should countries weigh the short-term versus long-term benefits and burdens of the energy transition? What role do governments and corporations play in managing those? What role should citizens play?

3. Discussion: How will you prepare for and handle opposing questions to your roadmap plan? 

4. Activity: Create a participatory stakeholder engagement plan embedded in the overall decarbonisation strategy.

5. Activity: How will you utilise the different renewable energy mix to provide 100% access to electricity and ensure security of supply as an electrical engineer?

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Author:
Dr Gill Lacey (Teesside University).

Topic: Maintenance of an offshore wind farm.

Engineering disciplines: Mechanical; Energy.

Ethical issues: Sustainability; Risk.

Professional Situations: Public health and safety; Quality of work; Conflicts with leadership/management.

Educational level: Beginner.

Educational aim: Becoming Ethically Aware: determining that a single situation can be considered from a ethical point of view.

 

Learning and teaching notes:

The case is based on a genuine challenge raised by a multinational energy company that operates an offshore wind farm in the North Sea. It involves three professional engineers responsible for various aspects of the project to negotiate elements of safety, risk, environmental impact, and costs, in order to develop a maintenance plan for the wind turbine blades.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

This case is presented in two parts. In the first part, the perspectives and responsibilities of the three engineers are outlined so that students can determine what professional and ethical responsibilities are inherent in their roles. In the second part, a scenario is developed that puts the roles into potential conflict. Students then have the opportunity to work through a real-world brief that requires them to negotiate in order to present a solution to management. Teachers can choose to use Part one in isolation, or some or all of Part two to expand on the issues in the case. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

Professional organisations:

Business:

Journal articles:

 

Dilemma – Part one:

Offshore wind has huge benefits to the electricity industry as a renewable, low carbon resource.  The size and scale of the turbines, together with the remoteness – the wind farm referred to in this case is 200 km from shore – are a problem. However, it is a rapidly maturing industry and many of the issues around accessibility during installation have been solved. A wind farm is expected to generate for twenty years and so a system of inspection and maintenance needs to be put in place. At the same time, the environmental impact of industrial activity (including ongoing maintenance and repairs) needs to be managed in order to mitigate risks to ecosystem resources and services provided by the open sea.

In this wind farm there are one hundred turbines, each with three blades. The blades are 108 m long. Clearly, they need to be kept in good condition. However, inspecting the blades is a difficult and time consuming job.

There are three engineers that are responsible for various aspects of maintenance of the wind turbine blades. They are:

1. Blade engineer: My job is to make sure the blades are in good condition so that the wind farm operates as it was designed and generates as much power as possible. I am responsible for:

2. Health and safety engineer: My job is to make sure that the technicians who inspect and maintain the turbine blades are at minimal risk. I need to ensure compliance with:

3. Environmental engineer: My job is to ensure that the ecosystem is damaged as little as possible during turbine inspection and maintenance, and to rectify as best as possible any adverse effects that are incurred. After all, wind power is considered to be “green” energy and so wind farms should do as little damage to the environment as possible. This work helps:

 

Optional STOP for questions and activities:

1. Discussion: What sort of instances might cause damage to the turbine blades? (Possible answers: bird strike, collision with a vessel, storm, ice etc.)

2. Discussion: What problems might a damaged blade cause? (Possible answers: a damaged blade cannot generate properly; it might unbalance the other two blades until the whole turbine is affected. If a blade were to come loose it could strike another turbine blade, a vessel, sea creatures etc.)

3. Activity: Research how blade inspection is done. (Answer: a combination of photos from drones and reports from crew who need to use rope access to take a close look.)

a. If a drone is used, what issues might the drone have? (Answers: needs to be operated from a nearby vessel; weather (wind!); getting good resolution photos from a vibrating and moving drone; energy (battery) to power the drone.)

b. If a technician goes onsite, what issues are there with rope access? (Answers: time consuming; dangerous; can only be done in good weather; have to stop the turbine to access; training the inspection team; recording the findings.)

4. Discussion: What competing values or motivations might conflict in this scenario? Explain what constraints each engineer might be operating under and the potential conflicts between the roles.

5. Activity: Research what health and safety, environmental, and legal policies affect offshore wind farms. If they are in the open sea, which country’s laws are applied? Who is responsible for maintaining ecosystem health in the open sea? How are harms identified and mitigated?

 

Dilemma – Part two:

So, the blade engineer wants maintenance done effectively, with as little down time as possible; the H&S engineer wants it done safely, with as little danger to crew as possible; while the environmental engineer wants it done with as little damage to the ecosystem as possible. These three people must together develop an inspection plan that will be approved by upper management, who are largely driven by profitability – limited downtime in maintenance means increased profits as well as more energy delivered to customers.

 

Optional STOP for questions and activities:

The students are then presented with a brief that gives some background to the wind farms and the existing inspection regime. The brief is structured to allow engineering design, engineering drawing and technical research to take place alongside consideration of potential ethical dilemmas.

Brief: In teams of three, where each team member is assigned a different role outlined above (blade engineer, health and safety engineer, environmental engineer), propose a feasible method for blade inspection that:

Aspects to consider:

Teachers could task teams to work together to:

The pitch could include details of:

 

1. Activity: Working in groups, consider possible solutions:

a. Explore 2 or 3 alternatives to answer the need or problem, identifying the ethical concerns in each.

b. Analyse the alternative solutions to identify potential benefits, risks, costs, etc.

c. Justify the proposed solution.

 (Apart from the design process, this activity allows some discussion over the choice of solution. Looking at more than one allows the quieter students to speak out and justify their thinking.)

2. Activity: Working in groups, present a solution that consists of one or more of the following:

a. Make a CAD or drawn prototype.

b. Make a physical or 3D model.

c. Create a poster detailing the solution which could include technical drawings.

d. Presentation.

 

Students will be assessed according to:

a. Quality of final solution

b. Construction and testing of model

c. Innovation and originality

d. Communication skills

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.

Topic: Materials sourcing and circularity.

Engineering disciplines: Materials engineering; Manufacturing; Environmental engineering; Construction.

Ethical issues: Respect for the environment; Risk.

Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.

Educational level: Intermediate.

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.

 

Learning and teaching notes:

This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

NGOs:

Government site:

Business:

Journal articles:

Professional organisations:

 

Dilemma – Part one:

Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.

Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.

Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.

 

Optional STOP for questions and activities:

1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?

2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.

3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?

  

Dilemma: Part two:

After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.

When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.

At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.

 

Optional STOP for questions and activities:

1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.

2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?

3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?

 

Dilemma – Part three:

In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.

She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.

Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.

 

Optional STOP for questions and activities:

1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.

2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.

3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation? 

4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?

5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Peter Beattie (Ultra Group). 

Topic: Dealing with contracts or subcontracts with potential slave or forced labour. 

Engineering disciplines: Manufacturing; Engineering business. 

Ethical issues: Social responsibility; Human rights; Risk. 

Professional situations: Legal implications; Company/organisational reputation; Conflicts with leadership/management. 

Educational level: Beginner. 

Educational aim: Practising Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes: 

This case study puts students in the shoes of an engineer who is required to select a subcontractor to manufacture systems and parts. There are stipulations around who can be selected, among which are legal and ethical concerns around  suspicions of slavery or forced labour. The engineer must navigate communication with both their supervisors and their potential subcontractor, and ultimately justify their decision.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The case is presented in three parts. If desired, a teacher could use the Summary and Part one in isolation, but Parts two and three enable additional professional situations to be brought into consideration. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Professional organisations: 

Government sites: 

Global development institutions: 

NGOs: 

Educational institutions: 

 

Summary: 

Autonomous Vehicle Corporation (AVC) has recently been awarded a contract to provide a bespoke design unmanned air vehicle to India. AVC is a UK certified B Corp that prides itself on maintaining the highest standards of social and environmental performance, transparency, and accountability. 

A stipulation of the newly awarded contract is that at least 30% of the contract value is spent on the manufacture of sub-systems and parts from subcontractors based in India. AVC is responsible for identifying and contracting these suppliers. 

After many years working as a Systems Engineer for AVC, you have been selected as the Lead Engineer for the project, responsible for the selection of the Indian suppliers. You are aware from your initial research of reports regarding slave and forced labour in the region’s manufacturing industry and are concerned that this situation might affect the project and the company. Additionally, you would personally feel uncomfortable knowing that you might contract a supplier who engaged in those practices. 

 

Optional STOP for questions and activities: 

1. Activity: To consider how AVC might be impacted from engaging a supplier that utilises slave or forced labour, chart out the viewpoints of different stakeholders, such as customers, investors, other suppliers, communities, and employees. 

2. Discussion: Are there other factors besides ethical considerations that may influence your selection of supplier? What are these?  

3. Discussion: How would you weigh the importance of ethical considerations, such as the use of slave or forced labour, against the other factors identified in the previous question? What information or resources might you use in guiding your weighting of these considerations? 

4. Activity: Contrast the UK Engineering Council’s code of ethics with the Engineering Council of India’s Code of Ethics. How do the two differ? Which code should you be primarily guided by in this situation? Why? How might cultural expectations and norms influence what is seen as ethical?  

 

Dilemma – Part one: 

One supplier you are considering is Quality Electronics Manufacturing Pvt. Ltd. (QEM), a company based outside Naya Raipur in one of India’s poorest provinces. During a video call, QEM’s managing director assures you that they comply with a strict code of ethics and conduct all recruitment through a carefully selected list of brokers and agencies. He tells you that QEM sources raw materials from around the world, and none of their suppliers have ever been convicted of any offences relating to slavery. He invites you to tour their factory when you are in the country next month and will personally escort you to answer any questions you may have. 

 

Optional STOP for questions and activities: 

1. Activity: Does anything you have heard give you cause for concern regarding the risk of slave or forced labour at QEM in particular? Research this issue from the perspective of various sources, such as investigative journalism, academic papers, government reports, and industry publications. Do their conclusions align or differ in any significant ways? Are there any gaps in knowledge that these sources haven’t adequately covered?  

2. Discussion: QEM mentions that they source raw materials from around the world. The reality of modern supply chains is that they often involve multiple complex layers of subcontractors. Does AVC have an ethical duty to consider the whole supply chain? Would this be the same if AVC were further down the supply chain? If AVC were further down the supply chain, would they have to consider the upstream elements of the supply chain? What are the business implications of considering an entire supply chain? 

3. Activity: List possible contextual risk factors and potential indicators of slave and forced labour. Which are present in the case of QEM? 

4. Activity and discussion: Create a set of questions you wish to answer during your visit to QEM to help assess the risk that they are engaged in the use of slave or forced labour. How will you get this information? Who will you need to talk to? What evidence would you expect to see and collect? To practise business communication, students could draft a memo to their supervisor explaining the situation and outlining their proposed course of action.  

 

Dilemma – Part two: 

During your visit to QEM’s factory, you meet with workers at all levels and you review QEM’s policies and procedures. You identify some potential risk factors that could indicate QEM is using forced labour in its workforce. You raise this with QEM’s managing director, but he responds indignantly, “QEM creates good jobs for our workers and without us they would not be able to feed their families. Your contract would allow us to sustain those jobs and create many more for the local community.” 

You know that QEM is the lowest cost supplier for the work you want them to undertake, and you are under pressure to keep budgets down. You have no conclusive evidence that QEM uses forced labour. You also know that the alternative suppliers you could use are all based in regions with high employment, which means the risk of not being able to staff your work (resulting in schedule delays) is high.  

Upon your return to the UK, your project manager calls you into her office and tells you she needs your decision on whether to utilise QEM by the end of the week. 

 

Optional STOP for questions and activities: 

1. Activity: Conduct a risk analysis that identifies what might be the impact of not using QEM and what might be the impact of using QEM. 

2. Debate: Do you use QEM as one of your suppliers? Why, or why not? You may wish to consider your answer using the lens of uncertainty and risk. 

3. Discussion: What actions could you put in place with QEM to reduce the incidence/risk of slave or forced labour in its workforce? Which of these would you recommend, and which would you require, QEM to implement as part of contracting with them? How would you enforce them, and what evidence of them being successfully implemented would you need? 

 

Dilemma – Part three – Postscript:

If you chose to use QEM: It is now two years after you subcontracted QEM. An investigation by an NGO has uncovered the rampant use of slave and forced labour within the global electronics manufacturing industry by companies with B-Corp status. AVC is named as one of the perpetrators, and a story about workers at QEM is scheduled to run in a leading tabloid newspaper tomorrow morning. AVC has called an emergency press conference to give its side of the story.  

If you chose not to use QEM: The following week, your project manager calls you into her office again. She tells you that she has just stepped out of a meeting with the board, and they are deeply concerned about spiralling costs on your project. In particular, they are concerned that you rejected QEM’s proposal in favour of another supplier who is more than twice as expensive. You have been asked to present your reasoning to the board when they reconvene shortly.  

 

Optional STOP for activity:

1. Roleplay either the press conference or the board meeting and defend your decision. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Author:
Wendy Attwell (Engineering Professors’ Council).

Topic: Balancing personal values and professional conduct in the climate emergency. 

Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy. 

Ethical issues: Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact. 

Professional situations: Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation. 

Educational level: Intermediate. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes:  

This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4  here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Professional organisations: 

Educational institutions: 

Education and campaign groups: 

 News articles:  

 

Summary: 

Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.  

But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero. 

 

Dilemma – Part one: 

Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.  

Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.  

Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”  

 

Optional STOP for questions and activities: 

1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest? 

2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict? 

3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be? 

4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?  

5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why? 

6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario. 

7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken? 

8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint? 

 

Dilemma – Part two: 

After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.  

On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.  

Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article 

Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it? 

 

Optional STOP for questions and activities: 

1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?  

2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?  

3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario. 

4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change? 

5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change? 

6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation? 

7. Activity: Write a statement for Kelechi to release to the press. 

8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public. 

 

Dilemma – Part three: 

Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”  

Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint. “She’s endangering the public,” says another. 

It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.” 

As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.  

 

Optional STOP for questions and activities: 

1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past. 

2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”? 

3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked? 

4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted? 

5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement. 

6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?  

7. Activity: Write a press release for the institution, taking one of the above positions. 

8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision? 

9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Diana Martin (Eindhoven University of Technology); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Topic:  Participatory approaches for engaging with a local community about the development of risky technologies. 

Engineering disciplines: Nuclear engineering; Energy; Chemical engineering. 

Ethical issues: Corporate Social Responsibility; Risk; Accountability; Respect for the Environment. 

Professional situations: Conflicts of interest; Public health and safety; Communication. 

Educational level: Advanced.  

Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.  

 

Learning and teaching notes:  

This case study involves an early career engineer tasked with leading the development of plans for the construction of the first nuclear plant in a region. The case can be customised by instructors when specifying the name of the region, as to whether the location of the case study corresponds to the location of the educational institution or if a more remote context is preferred. The case incorporates several components, including stakeholder mapping, participatory methods for assessing risk perception and community engagement, qualitative risk analysis, and policy-making.  

The case study asks students to identify and define an open-ended risk problem in engineering and develop a socially acceptable solution, on the basis of limited and possibly contradictory information and differing perspectives. Additionally, students can gain awareness of broader responsibilities of engineers in the development of risky technologies, as well as the role of engineers in public debates and community engagement related to the adoption or development of risky technologies. 

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

 Learners have the opportunity to: 

Teachers have the opportunity to:  

 

Learning and teaching resources: 

Journal articles: 

Community engagement organisations: 

 

Dilemma – Part one:

You are an early career engineer working in the civil nuclear industry for Ultra Nuclear. This is a major company overseeing the construction of new power stations that has a strong reputation as a leader in the field with no controversies associated with its activity. Indeed, you have been impressed with Ultra Nuclear’s vision that the transition to using more nuclear energy can significantly reduce carbon emissions, and their development of next-generation nuclear technologies. After two years of working on the strictly technical side of the business, you have been promoted to a project manager role which requires you to do more public engagement. Your manager has assigned your first major project which involves making the plans for the development of a new power plant.  

 

Optional STOP for questions and activities: 

1. Activity: Societal context – What is the context in which Ultra Nuclear operates? Identify the national and supranational policies and regulation in your country related to the adoption of nuclear energy. Reflect on the broader rationale given for the adoption of nuclear energy. Research the history of nuclear technological developments (including opposition and failures) in your country. When tracing the context, you may consider:

2. Discussion: Personal values – What is your initial position on the adoption of nuclear energy? What are the advantages and disadvantages that you see for the adoption of nuclear energy in your country? What alternatives to nuclear energy do you deem more suitable and why?

3. Discussion: Risk perception – How do you perceive the risk of nuclear energy? How do your family and friends see this risk? How is nuclear energy portrayed in the media? Do you see any differences in how people around you see these risks? Why do you think this is so?

4. Activity: Risk mapping – Using a qualitative risk matrix, map the risks of a nuclear power plant.

 

Dilemma – Part two:

As it happens, this will be the first power plant established in the region where you were born, and your manager counts on your knowledge of the local community in addition to your technical expertise. To complete your project successfully, you are expected to ensure community approval for the new nuclear power plant. In order to do this, you will have to do some research to understand different stakeholders and their positions.  

 

Optional STOP for questions and activities:

1. Activity: Stakeholder mapping – Who are all the groups that are involved in the scenario? 

1.a. Activity: Read the article by Sven Ove Hansson, which puts forward a method for categorising stakeholders as risk-exposed, beneficiaries, or decision-makers (including overlaps of the three categories). Place each stakeholder group in one of these categories.

1.b. Discussion: Why are some groups risk-exposed, others beneficiaries, and others decision-makers? Why is it undesirable to have stakeholder groups solely in one of the categories? 

1.c. Discussion: What needs to change for some stakeholder groups to be not only in the category of risk-exposed, but also in the category of beneficiaries or decision-makers?  

2. Activity: Stakeholder mapping – How does each stakeholder group view nuclear energy? For each stakeholder group identified, research the arguments they put forward, their positions and preferences in regard to the adoption of nuclear energy. In addition to the stakeholder groups previously identified, you may consider:

For your research, you may consult the webpage of the stakeholder group (if it exists); any manifesto they present; mass media features (including interviews, podcasts, news items or editorials); flyers and posters. 

3. Discussion: How convincing are these arguments according to you? Do you see any contradictions between the arguments put forward by different groups? 

3.a. Discussion: Which group relies most on empirical data when presenting their position? Which stakeholders take the most extreme positions, according to you (radical either against or for nuclear energy), and why do you think this is so?  

3.b. Discussion: In groups of five students, rank the stakeholders from those that provide the most convincing to the least convincing arguments, then discuss these rankings in plenary. 

3.c. Roleplay (with students divided into groups): Each group is assigned a stakeholder, and gets to prepare and make the case for why their group is right, based on the empirical data and position put forward publicly by the group. The other groups grade on different criteria for how convincing the group is (such as 1. reliability of data, 2. rhetoric, 3. soundness of argument). 

4. Guest speaker activity: The instructor can invite as a guest speaker a representative of one of the stakeholder groups to talk with students about the theme of nuclear energy. Students can prepare a written reflection after the session on the topic of “What I learned about risks from the guest speaker” or “What I learned about my responsibility as a future engineer in regard to the adoption of nuclear energy.” 

 

Dilemma – Part three:

You arrive at the site of the intended power plant. You are received with mixed emotions. Although you are well liked and have many friends and relatives here, you are also warned that some residents are against the plans for the development of nuclear energy in the area. Several people with whom you’ve had informal chats have significant concerns about the power plant, and whether their health or safety will be negatively affected. At the same time, many people from the surrounding area do not yet know anything about the plans for building the nuclear site. In addition, in the immediate vicinity of the power plant site, the community hosts a small number of refugees who, having just arrived, are yet to be proficient in the language, and whose communication relies mostly on a translator. How will you ensure that this community is well informed of the plans for developing the power plant in their region and approves the plans of Ultra Nuclear? How will you engage with the community and towards what aims? 

 

Optional STOP for questions and activities: 

1. Activity: Research empirical data on the risk awareness and risk perception of public attitudes about nuclear energy, and sum up any findings that you find interesting or relevant for the case study. 

1.a. Discussion: According to you, is risk awareness and perception the same thing? How do they differ as concepts? Considering the research you just did, is there a relation between people’s risk awareness and perception? What does this imply? 

1.b Discussion: Do you identify any differences in the risk perception of the public (based on gender, age, geographical location, educational level)? Why do you think this is so?  

1.c. Discussion: Does the public see the same risks about nuclear energy as technical experts do? Why is this so? 

1.d. Activity: Read Sheila Jasanoff – The political science of risk perception. What is the key takeaway message for you?

2. Group activity: Compose a survey to understand the risk awareness and risk perception of members of the local community.

2.a. Discussion: What are the key questions for the survey? 

2.b. Discussion: How will you distribute the survey and to how many people? 

2.c. Discussion: Do you need to make any special arrangements to ensure that the views of all relevant groups are represented in the survey? 

2.d. Discussion: How will you use the data from the survey and how do you plan to follow-up on the survey?

3. Group activity: Develop a method for engaging with the community in the stages of developing and operating the nuclear plant.

3.a. Discussion: What values and principles do you highlight by engaging with the community? 

3.b. Discussion: How do you choose which participatory methods to use? 

You can use the following resources: Participation toolkit  or Performing Participatory Foresight Methods, Mazzurco and Jesiek, Bertrand, Pirtle and Tomblin. 

 

Annex:  

Localised case study: The development of Nuclear Energy in Ireland. 

Context description: Wikipedia entry for Nuclear power in Ireland and the Carnsore Point protests. 

Summary: 

The entire island of Ireland, comprising The Republic of Ireland and Northern Ireland (part of the UK), has never produced any electricity from nuclear power stations. Previous plans have been opposed as early as the 1970s through large public rallies, concerts, and demonstrations against the production of nuclear energy on the island. At the time, Carnsore Point was proposed as a site for the development of four nuclear reactors by the Electricity Supply Board. Public opposition led to the cancelling of this nuclear project and its replacement with a coal burning power station at Moneypoint. Since the 2000s there has been a renewed interest in the possibilities for producing nuclear energy on the island, in response to climate change and the need to ensure energy security. Surveys for identifying public acceptance and national forums have been proposed as ways to identify current perceptions and prospects for the development of nuclear energy. Nevertheless, nuclear energy in the Republic of Ireland is still prohibited by law, through the Electricity Regulation Act (1999). Nuclear energy is currently a contentious topic of debate, with many involved parties holding varying positions and arguments. 

Example of stakeholders: The Irish government; the UK government; political parties; electricity supply board (state owned electricity company); BENE – Better Environment with Nuclear Energy (lobby group); Friends of the Irish Environment (environmental group), Friends of the Earth – Ireland (environmental group); The Union of Concerned Scientists; Wind Aware (lobby group); local community (specified further based on demographic characteristics, such as the Traveller community); scientists in the National Centre for Plasma Science & Technology at Dublin City University (university researchers). 

Sources used for the description of the roles: Policy documents; official websites; institutional or group manifestos; news articles, editorials and other appearances in the media. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Water wars: managing competing water rights

Activity: Role-play the council meeting, with students playing different characters representing different perspectives.

Author: Cortney Holles (Colorado School of Mines, USA).

 

Overview:

This enhancement is for an activity found in the Dilemma Part two, Point 6 section: “Role-play the council meeting, with students playing different characters representing different perspectives.” Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

 

Prompts for questions:

After discussing the case in class, and completing the stakeholder mapping activity (Dilemma Part one, Point 4 – repeated below) from the Water Wars case study, this lesson guides teachers through conducting a role-play of the council meeting scenario.

1. Discuss the stakeholder mapping activity: Who are all the characters in the scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully?

2. To prepare for the council meeting role-play activity, assign students in advance to take on different stakeholder roles (randomly or purposefully), or let them self-assign based on their interests.  Roles can include any of the following:

Suggestions from Stakeholder mapping activity:

Additional stakeholders to consider:

3. Before the class session in which the role-play will occur, students should research their stakeholder to get a sense of their values and motivations in regard to the case. Where no information is available, students can imagine the experiences and perspectives of the stakeholder with the goal of articulating what the stakeholder values and what motivates them to come to the council meeting to be heard on this issue. Students should prepare some statements about the stakeholder position on the water use by DSS, what the stakeholder values, and what the stakeholder proposes the solution should be. Students assigned to be council members will prepare for the role-play by learning about the conflict and writing potential questions they would want to ask of the stakeholders representing different views on the conflict.

4. In class, students prepare to role-play the council meeting by first connecting with others in the same stakeholder role (if applicable – you may have few enough students to have only one student assigned to a stakeholder) and deciding who can speak (you may want to require each student to speak or ask that one person be nominated to speak on behalf of the stakeholder group).

5. As the session begins, remind students to jot down notes from the various perspectives’ positions so there can be a debrief conversation at the end.  Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the council meeting. If they were a lead member of the council, what solution would they propose or vote for?

6. As the Council Meeting begins, the teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the students representing the Council members.  Council members will open the meeting with their description of the matter at hand between DSS and other local parties. They set the tone for the meeting with a call for feedback from the community members. The teacher can help the Council members call up the stakeholders in turn. Each stakeholder group will have a chance to state their argument, values, and reasons for or against DSS’ water use.  Each stakeholder will have an opportunity to suggest a proposed solution and Council members can engage in discussion with each stakeholder to clarify anything about their position that was unclear.

7. At the end of the meeting, the council members privately confer and then publicly vote on a resolution for the community.  All students, no matter their role, end the class by reflecting on the outcome and their original position on the case. Has anything shifted in their position or rationale after the council meeting? Why or why not?

8. The whole class could then engage in a discussion about the outcome of the council meeting. Teachers could focus on an analysis of how the process went, a discussion about the persuasiveness of different values and positions, and/or an exploration of the internal thinking students went through to arrive at their positions.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Facial recognition for access and monitoring

Activity: Prompts to facilitate discussion activities. 

Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

 

Overview:

There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. The discussion prompts for Dilemma Part three are already well developed in the case study, so this enhancement focuses on expanding the prompts in Parts one and two.

 

Dilemma Part one – Discussion prompts:

1. Legal Issues. Give students ten minutes to individually or in groups do some online research on GDPR and the Data Protection Act (2018). In either small groups or as a large class, discuss the following prompts. You can explain that even if a person is not an expert in the law, it is important to try to understand the legal context. Indeed, an engineer is likely to have to interpret law and policy in their work. These questions invite critical thinking and informed consideration, but they do not necessarily have “right” answers and are suggestions that can help get a conversation started.

a. Are legal policies clear about how images of living persons should be managed when they are collected by technology of this kind?

b. What aspects of these laws might an engineer designing or deploying this system need to be aware of?

c. Do you think these laws are relevant when almost everyone walking around has a digital camera connected to the internet?

d. How could engineers help address legal or policy gaps through design choices?

2. Sharing Data. Before entering into a verbal discussion, either pass out the suggested questions listed in the case study on a worksheet or project on a screen. Have students spend five or ten minutes jotting down their personal responses. To understand the complexity of the issue, students could even create a quick mind map to show how different entities (police, security company, university, research group, etc.) interact on this issue. After the students spend some time in this personal reflection, educators could ask them to pair/share—turn to the person next to them and share what they wrote down. After about five minutes of this, each pair could amalgamate with another pair, with the educator giving them the prompt to report back to the full class on where they agree or disagree about the issues and why.

3. GDPR Consent. Before discussing this case particularly, ask students to describe a situation in which they had to give GDPR consent. Did they understand what they were doing, what the implications of consent are, and why? How did they feel about the process? Do they think it’s an appropriate system? This could be done as a large group, small group, or through individual reflection. Then turn the attention to this case and describe the change of perspective required here. Now instead of being the person who is asked for consent, you are the person requiring consent. Engineers are not lawyers, but engineers often are responsible for delivering legally compliant systems. If you were the engineer in charge in this case, what steps might you take to ensure consent is handled appropriately? This question could be answered in small groups, and then each group could report back to the larger class and a discussion could follow the report-backs.

4. Institutional Complexity. The questions listed in the case study relate to the fact that the building in which the facial recognition system will be used accommodates many different stakeholders. To help students with these questions, educators could divide the class into small groups, with each group representing one of the institutions or stakeholder groups (college, hospital, MTU, students, patients, public, etc.). Have each group investigate whether regulations related to captured images are different for their stakeholders, and debate if they should be different. What considerations will the engineer in the case have to account for related to that group? The findings can then be discussed as a large class.

 

Dilemma Part two – Discussion prompts:

The following questions relate to macroethical concerns, which means that the focus is on wider ethical contexts such as fairness, equality, responsibility, and implications.

1. Benefits and Burdens. To prepare to discuss the questions listed in the case study, students could make a chart of potential harms and potential benefits of the facial recognition system. They could do this individually, in pairs or small groups, or as a large class. Educators should encourage them to think deeply and broadly on this topic, and not just focus on the immediate, short-term implications. Once this chart is made, the questions listed in the case study could be discussed as a group, and students asked to weigh up these burdens and benefits. How did they make the choices as to when a burden should outweigh a benefit or vice versa?

2. Equality and Utility. To address the questions listed in the case study, students could do some preliminary individual or small group research on the accuracy of facial recognition systems for various population groups. The questions could then be discussed in pairs, small groups, or as a large class.

3. Engineer Responsibility. Engineers are experts that have much more specific technical knowledge and understanding than the general public. Indeed, the vast majority of people have no idea how a facial recognition system works and what the legal requirements are related to it, even if they are asked to give their consent. Does an engineer therefore have more of a responsibility to make people aware and reassure them? Or is an engineer just fulfilling their duty by doing what their boss says and making the system work? What could be problematic about taking either of those approaches?

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Konstantinos Konstantis (National and Kapodistrian University of Athens). 

Keywords: Ethical theories; Societal impact; Privacy; Freedom; Security; Pedagogy; Risk. 

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design. It will also help prepare students with the integrated skill sets that employers are looking for.  

 

Premise: 

It goes without saying that the way we design and use technology plays a crucial role in our daily lives. Engineers and their decisions have a huge impact on society (Unger, 2005). Technology is presented as a very promising solution for many societal problems, such as the environmental crisis and poverty. At the same time, many ethical challenges arise. The imminent possibility of artificial intelligence (AI) and robots replacing humans in a vast array of professions, and the everyday cyber-related issues concerning privacy, freedom, property, and security, are just a few of the challenges that the information revolution has bequeathed to us. Furthermore, advances in biomedical technology and, in particular, genetic engineering and developments in reproductive procedures, raise very similar issues including the reconfiguration of the distinction between the artificial and the human. Without a consideration of ethics, engineering could be inadequately or inappropriately designed to address these challenges. 

Walczak et al. (2010) assert that ethical development comes as an output of three components. First, the knowledge of ethics refers to the ability of engineers to understand what is ethical and what is not ethical. In this component belongs the understanding of the professional responsibility of engineers and of codes of ethics for engineers. Second, ethical reasoning refers to the ability of engineers to first understand ethical problems and then to deal with them. Third, ethical behaviour refers to the ethical intentions that engineers have during an ethical problem and ethical solutions that engineers provide to that problem (Walczak et al., 2010). According to Walczak et al. (2010), formal curricular experiences, co-curricular experiences, student characteristics, and institutional culture are four aspects that influence ethical development of engineering students.  

However, there is a disconnection between these four aspects and ethical development. There are five obstacles that are responsible for this disconnection (Walczak et al., 2010, p. 15.749.6). First, “the curriculum is already full, and there is little room for ethics education,” second, “faculty lack adequate training for teaching ethics,” third, “there are too few incentives to incorporate ethics into the curriculum,” fourth, “policies about academic dishonesty are inconsistent,” and fifth, “institutional growth is taxing existing resources.” Among other ways to overcome these obstacles, Walczak et al. (2010, p. 15.749.9 – 15.749.10) recommend the integration of curricular and co-curricular activities. Student organisations and service learning are two examples of how to integrate ethics in engineering education effectively. For instance, student organisations could organise lectures in which engineering students have the chance to listen to engineers talk about real life ethical problems and dilemmas. Secondly, service learning is a way for engineering students to combine ethics education with their engineering practice. Participating in community service activities offers the opportunity for students to understand the role of engineers and their responsibility towards society. Finally, integrating ethics alongside technical curriculum and within the context of engineering projects can help students understand the ethical context of their work.   

This is an important reason for integration, because as van de Poel and Royakkers (2011) describe, ethics helps engineers to deal with technical risks. Martin and Schinzinger (2009) show us how different subfields of engineering, such as computer and environmental engineering, could benefit from the inclusion of ethics. Baura (2006) analyses how engineers could have acted in concrete ethical dilemmas that have been presented in the past, in order not to lead to some of the engineering disasters that have happened. Martin and Schinzinger (1983) highlight engineering as “social experimentation,” requiring the need for the ethical education of engineers in order for them to be ready to take the right decisions in dilemmas they will have to deal with in the future. According to Fledderman (2011), codes of ethics of engineers and an array of ethical theories could be combined to offer ethical problem-solving techniques (for example ‘line drawing’ and ‘flow charts’) to engineers.  

However, ethics should be integrated in engineering for another reason as important as those listed above. Technology not only shapes society, but it is shaped by society too. Therefore, engineering ethics should be twofold. First, engineering ethics should address ‘disaster ethics,’ and second, it should be about “the social aspects of everyday engineering practice” (Kline, 2001, p. 14). Traditionally, engineering accidents become the cause for engineers and engineering ethicists to analyse the ethical implications of technology and the ways that engineers could take decisions that will not lead to disasters again. These examples are called ‘disaster ethics’. The “social aspects of everyday engineering practice” have to do with the fact that technology is not made in a single time when an engineer has to take a serious decision that may cause an accident or not, but rather in daily and regular practice. These aspects are referring to the co-constitution of technology and society and how engineers can “deal with everyday issues of tremendous significance regarding the ethical and social implications of engineering” (Kline, 2001, p. 19).  

The Engineering Council and the Royal Academy of Engineering have published the Statement of Ethical Principles, which should be followed by all engineers in the UK. Statements like this are useful to encourage engineers to act ethically. But, ethics in engineering should be integrated in the whole “engineering life”. From research to implementation, ethics should be part of engineering (Kline, 2001).  

If courses relevant to engineering ethics are absent from the curriculum, engineering students take the message that ethics is not important for their education and therefore for their profession (Unger, 2005). In contrast with the claim that ethics is innate and therefore cannot be taught (Bok, 1976), ethics should be integrated in engineering teaching and practice. The fields of Science and Technology Studies (STS) and History of Technology could play a crucial role in covering the twofold aspect of engineering ethics as presented in this article. Scholars from these fields, among others, could give answers on questions such as “How do engineering practices become common, despite the fact they may be risky?” This is what Vaughan (1997), in her analysis of the Challenger disaster, calls “normalisation of deviance”. This is the only way for engineers to understand the bidirectional relationship between technology and society, and to put aside the dominant ideology of neutral technology that affects and shapes society and doesn’t get affected by it. No matter if engineers want to add ethics into the making of technology, “in choosing a solution, engineers are making an ethical judgement” (Robison, 2014, p.1). 

To conclude, there are many engineering challenges that need to be addressed. Integrating ethics in engineering is one of the best ways to address these challenges for the benefit of the whole of society. This is also the way to overcome problems relevant with the difficulty to add ethics into the engineering curriculum, such as the fact that the engineering curriculum is already full. Ethics has not only to do with the way that technology affects society, but also with the fact that society shapes the way that engineers design and develop technology. If ethics is integrated in engineering education and the curriculum, students perceive that their actions in engineering are not only technical, but at the same time have to do with ethics too. They don’t perceive ethics as a separate ‘tick-box’ that they have to fill during engineering, but instead they perceive ethics as a fundamental part of engineering. 

 

References: 

Baura, G. D. (2006) Engineering Ethics: An Industrial Perspective. Academic Press. 

Bok, D. C. (1976) ‘Can Ethics Be Taught?’ Change, 8(9), pp. 26–30.  

Fleddermann, C. B. (2011) Engineering Ethics (4th ed.). Pearson. 

Hagendorff, T. (2020) ‘The Ethics of AI Ethics: An Evaluation of Guidelines’, Minds and Machines, 30(1), pp. 99–120.  

Kline, R. R. (2001) ‘Using history and sociology to teach engineering ethics’. IEEE Technology and Society Magazine, 20(4), pp. 13–20.  

Martin, M. W. and Schinzinger, R. (1983) ‘Ethics in engineering’. Philosophy Documentation Center, 2(2), 101–105. 

Martin, M. W. and Schinzinger, R. (2009) Introduction to Engineering Ethics. McGraw-Hill. 

Poel, I. van de, and Royakkers, L. (2011) Ethics, Technology, and Engineering: An Introduction. Wiley-Blackwell. 

Robison, W. L. (2014) ‘Ethics in engineering’, 2014 IEEE International Symposium on Ethics in Science, Technology and Engineering, pp. 1–4.  

Unger, S. H. (2005) ‘How best to inject ethics into an engineering curriculum with a required course’, International Journal of Engineering Education, 21(3), 373–377.  

Vaughan, D. (1997) The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA. University of Chicago Press. 

Walczak, K., Finelli, C., Holsapple, M., Sutkus, J., Harding, T., and Carpenter, D. (2010) ‘Institutional obstacles to integrating ethics into the curriculum and strategies for overcoming them’, ASEE Annual Conference & Exposition, pp. 15.749.1-15.749.14.  

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Matthew Studley (UWE Bristol); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University). 

Keywords: Pedagogy; Personal ethics; Risk. 

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum, or into module design and learning activities. It describes techniques that can help to provide students with opportunities to practise the communication and critical thinking skills that employers are looking for. 

 

Premise: 

Discussing ethical issues can be a daunting prospect, whether one-to-one or with an entire classroom. Ethics often addresses topics and decisions related to moral choices and delicate situations about which people may have firm and long-held beliefs. Additionally, these issues are often rooted in underlying values which may differ between people, cultures, or even time periods. For instance, something that was considered immoral or unethical in a rural community in 18th-century Ireland may have been viewed very differently at the same time in urban India. Because students come from different backgrounds and experiences, it is essential to be sensitive to this context (Kirk and Flammia, 2016). However, ethics also requires that we address tough topics in order to make decisions about what we should do in difficult situations, such as those encountered by engineers in their personal, professional, and civic lives. 

 

Why we need to be sensitive in discussions about ethics: 

Discussions about tough topics can be ‘triggering’. Psychologists define a psychological ‘trigger’ as a stimulus that causes a painful memory to resurface. A trigger can be any reminder of the traumatic event: a sound, sight, smell, physical sensation, words, or images. When a person is triggered, they’re being provoked by a stimulus that awakens or worsens the symptoms of a traumatic event or mental health condition (Gerdes, 2019). A person’s strong reaction to being triggered may come as a surprise to others because the response seems out of proportion to the stimulus, because the triggered individual is mentally reliving the original trauma. Some neurodivergencies can adapt these responses. For example, people with autism spectrum disorder (ASD) may experience stronger emotional reactions and may present this in ways which are unfamiliar or surprising to those who have not experienced the same challenges (Fuld, 2018). 

Apart from triggering memories, the topics of right and wrong may be emotive. Young people are often passionate in their beliefs and may be moved to strong responses. There is nothing wrong with that, unless one person’s strong response makes another’s participation and expression less likely.  

 

Ethics is only salient if the topics are tough: 

Ethics concerns questions of moral value, of right and wrong, and relates to our deep-held beliefs and emotions. If any experience in an engineer’s education is likely to cause unpleasant memories to surface, or to stimulate strong discussion, it’s likely to be Ethics, and some of our students may have an emotional response to the topics of discussion and their impacts. This might be enough to make many educators shy away from integrating ethics. 

However, research has shown that most engineers are moved by their personal sense of moral value, rather than by abstract external standards, and this can create very powerful and impactful learning experiences (Génova and González, 2016). To teach Ethics, we need to be willing to engage emotionally. Students also appreciate when educators can be vulnerable in the same way that we ask them to be, which means being willing to be honest about our own reactions to tough topics. 

 

Approaches to tackling tough topics:  

a. Prepare by reviewing resources 

Several resources exist to guide educators who are engaging with tough topics in the classroom. Teaching and learning specialists recognise the challenges inherent in engaging with this kind of activity, yet also want to support educators who see the value in creating a space for students to wrestle with the difficult questions that they will encounter in the future. Many centres of teaching and learning at universities provide strategies and guidance through websites or pamphlets that are easily found by searching online. We include a list of some of our preferred resources below. 

b. Prepare by finding local support 

Even though we will avoid obvious triggers, there’s always the possibility that our students may become upset. We should be prepared by promoting the contact details for local support services within the institution. It can never be a bad thing for our students to know about these. 

 c. Give warnings and ask for consent 

You might want to warn your students that discussing ethical matters is not without emotional consequence. At your discretion, seek their explicit consent to continue. There has been some criticism of this approach in the media, as some authors suggest that this infantilises the audience. Indeed, the pros and cons of trigger warnings might make an interesting topic for discussion: life can be cruel, is there value in developing a thick skin? What do we lose in this process? Being honest about your own hesitations and internal conflicts might encourage students to open up about how they wrestle with their own dilemmas. To be fully supportive, consider an advanced warning with the option to opt-out so that people aren’t stampeded into something they might prefer to avoid. 

 d. Recognise discomfort, and respond 

Be aware of the possibility that individuals in your group could become upset. Be prepared to quietly offer time out or to change the activity in response to where the students want to take the discussion. Again, being transparent with the students that some people may be uncomfortable or upset by topics can reveal another relevant ethical topic – how to be respectful of others whose response differs from your own. And being willing to change the activity demonstrates the flexibility and adaptability required of 21st century engineers!  

 e. Avoid unnecessary risk 

Some topics are best avoided due to the strength of emotion which they might trigger in students whose life story may be unknown to us. These topics include sexual abuse, self-harm, violence, eating disorders, homophobia, transphobia, racism, child abuse and paedophilia, and rape.  

 

Be kind, and be brave: 

Above all, let your students know that you care for their well-being. If we are to teach Ethics, let us be ethical. You might need to overcome some awkward moments with your students, but you will all learn and grow in the process! 

 

References: 

Fuld S. (2018) ‘Autism spectrum disorder: The Impact of stressful and traumatic life events and implications for clinical practice.’ Clinical Social Work Journal 46(3), pp. 210-219.  

Génova, G., and González, M.R. (2016) ‘Teaching ethics to engineers: A Socratic experience,’ Science and Engineering Ethics 22, pp. 567–580.  

Gerdes, K. (2019) ‘Trauma, trigger warnings, and the rhetoric of sensitivity,’ Rhetoric Society Quarterly, 49(1), pp. 3-24. 

Kirk S. A. and Flammia, M. (2016) ‘Teaching the ethics of intercultural communication,’ in Teaching and Training for Global Engineering: Perspectives on Culture and Professional Communication Practices, pp.91-124. 

 

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website