Author: Peter Beattie (Ultra Group). 

Topic: Dealing with contracts or subcontracts with potential slave or forced labour. 

Engineering disciplines: Manufacturing; Engineering business. 

Ethical issues: Social responsibility; Human rights; Risk. 

Professional situations: Legal implications; Company/organisational reputation; Conflicts with leadership/management. 

Educational level: Beginner. 

Educational aim: Practising Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes: 

This case study puts students in the shoes of an engineer who is required to select a subcontractor to manufacture systems and parts. There are stipulations around who can be selected, among which are legal and ethical concerns around  suspicions of slavery or forced labour. The engineer must navigate communication with both their supervisors and their potential subcontractor, and ultimately justify their decision.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The case is presented in three parts. If desired, a teacher could use the Summary and Part one in isolation, but Parts two and three enable additional professional situations to be brought into consideration. The case study allows teachers the option to stop at multiple points for questions and/or activities as desired.  

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Professional organisations: 

Government sites: 

Global development institutions: 

NGOs: 

Educational institutions: 

 

Summary: 

Autonomous Vehicle Corporation (AVC) has recently been awarded a contract to provide a bespoke design unmanned air vehicle to India. AVC is a UK certified B Corp that prides itself on maintaining the highest standards of social and environmental performance, transparency, and accountability. 

A stipulation of the newly awarded contract is that at least 30% of the contract value is spent on the manufacture of sub-systems and parts from subcontractors based in India. AVC is responsible for identifying and contracting these suppliers. 

After many years working as a Systems Engineer for AVC, you have been selected as the Lead Engineer for the project, responsible for the selection of the Indian suppliers. You are aware from your initial research of reports regarding slave and forced labour in the region’s manufacturing industry and are concerned that this situation might affect the project and the company. Additionally, you would personally feel uncomfortable knowing that you might contract a supplier who engaged in those practices. 

 

Optional STOP for questions and activities: 

1. Activity: To consider how AVC might be impacted from engaging a supplier that utilises slave or forced labour, chart out the viewpoints of different stakeholders, such as customers, investors, other suppliers, communities, and employees. 

2. Discussion: Are there other factors besides ethical considerations that may influence your selection of supplier? What are these?  

3. Discussion: How would you weigh the importance of ethical considerations, such as the use of slave or forced labour, against the other factors identified in the previous question? What information or resources might you use in guiding your weighting of these considerations? 

4. Activity: Contrast the UK Engineering Council’s code of ethics with the Engineering Council of India’s Code of Ethics. How do the two differ? Which code should you be primarily guided by in this situation? Why? How might cultural expectations and norms influence what is seen as ethical?  

 

Dilemma – Part one: 

One supplier you are considering is Quality Electronics Manufacturing Pvt. Ltd. (QEM), a company based outside Naya Raipur in one of India’s poorest provinces. During a video call, QEM’s managing director assures you that they comply with a strict code of ethics and conduct all recruitment through a carefully selected list of brokers and agencies. He tells you that QEM sources raw materials from around the world, and none of their suppliers have ever been convicted of any offences relating to slavery. He invites you to tour their factory when you are in the country next month and will personally escort you to answer any questions you may have. 

 

Optional STOP for questions and activities: 

1. Activity: Does anything you have heard give you cause for concern regarding the risk of slave or forced labour at QEM in particular? Research this issue from the perspective of various sources, such as investigative journalism, academic papers, government reports, and industry publications. Do their conclusions align or differ in any significant ways? Are there any gaps in knowledge that these sources haven’t adequately covered?  

2. Discussion: QEM mentions that they source raw materials from around the world. The reality of modern supply chains is that they often involve multiple complex layers of subcontractors. Does AVC have an ethical duty to consider the whole supply chain? Would this be the same if AVC were further down the supply chain? If AVC were further down the supply chain, would they have to consider the upstream elements of the supply chain? What are the business implications of considering an entire supply chain? 

3. Activity: List possible contextual risk factors and potential indicators of slave and forced labour. Which are present in the case of QEM? 

4. Activity and discussion: Create a set of questions you wish to answer during your visit to QEM to help assess the risk that they are engaged in the use of slave or forced labour. How will you get this information? Who will you need to talk to? What evidence would you expect to see and collect? To practise business communication, students could draft a memo to their supervisor explaining the situation and outlining their proposed course of action.  

 

Dilemma – Part two: 

During your visit to QEM’s factory, you meet with workers at all levels and you review QEM’s policies and procedures. You identify some potential risk factors that could indicate QEM is using forced labour in its workforce. You raise this with QEM’s managing director, but he responds indignantly, “QEM creates good jobs for our workers and without us they would not be able to feed their families. Your contract would allow us to sustain those jobs and create many more for the local community.” 

You know that QEM is the lowest cost supplier for the work you want them to undertake, and you are under pressure to keep budgets down. You have no conclusive evidence that QEM uses forced labour. You also know that the alternative suppliers you could use are all based in regions with high employment, which means the risk of not being able to staff your work (resulting in schedule delays) is high.  

Upon your return to the UK, your project manager calls you into her office and tells you she needs your decision on whether to utilise QEM by the end of the week. 

 

Optional STOP for questions and activities: 

1. Activity: Conduct a risk analysis that identifies what might be the impact of not using QEM and what might be the impact of using QEM. 

2. Debate: Do you use QEM as one of your suppliers? Why, or why not? You may wish to consider your answer using the lens of uncertainty and risk. 

3. Discussion: What actions could you put in place with QEM to reduce the incidence/risk of slave or forced labour in its workforce? Which of these would you recommend, and which would you require, QEM to implement as part of contracting with them? How would you enforce them, and what evidence of them being successfully implemented would you need? 

 

Dilemma – Part three – Postscript:

If you chose to use QEM: It is now two years after you subcontracted QEM. An investigation by an NGO has uncovered the rampant use of slave and forced labour within the global electronics manufacturing industry by companies with B-Corp status. AVC is named as one of the perpetrators, and a story about workers at QEM is scheduled to run in a leading tabloid newspaper tomorrow morning. AVC has called an emergency press conference to give its side of the story.  

If you chose not to use QEM: The following week, your project manager calls you into her office again. She tells you that she has just stepped out of a meeting with the board, and they are deeply concerned about spiralling costs on your project. In particular, they are concerned that you rejected QEM’s proposal in favour of another supplier who is more than twice as expensive. You have been asked to present your reasoning to the board when they reconvene shortly.  

 

Optional STOP for activity:

1. Roleplay either the press conference or the board meeting and defend your decision. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Author:
Wendy Attwell (Engineering Professors’ Council).

Topic: Balancing personal values and professional conduct in the climate emergency. 

Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy. 

Ethical issues: Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact. 

Professional situations: Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation. 

Educational level: Intermediate. 

Educational aim: Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way. 

 

Learning and teaching notes:  

This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.  

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4  here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired. 

Learners have the opportunity to: 

Teachers have the opportunity to: 

 

Learning and teaching resources: 

Professional organisations: 

Educational institutions: 

Education and campaign groups: 

 News articles:  

 

Summary: 

Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.  

But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero. 

 

Dilemma – Part one: 

Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.  

Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.  

Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”  

 

Optional STOP for questions and activities: 

1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest? 

2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict? 

3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be? 

4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?  

5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why? 

6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario. 

7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken? 

8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint? 

 

Dilemma – Part two: 

After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.  

On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.  

Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article 

Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it? 

 

Optional STOP for questions and activities: 

1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?  

2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?  

3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario. 

4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change? 

5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change? 

6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation? 

7. Activity: Write a statement for Kelechi to release to the press. 

8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public. 

 

Dilemma – Part three: 

Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”  

Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint. “She’s endangering the public,” says another. 

It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.” 

As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.  

 

Optional STOP for questions and activities: 

1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past. 

2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”? 

3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked? 

4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted? 

5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement. 

6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?  

7. Activity: Write a press release for the institution, taking one of the above positions. 

8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision? 

9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Universities’ and businesses’ shared role in regional development.

Author: Dr Laura Fogg-Rogers (University of the West of England, Bristol).

Case-study team: Wendy Fowles-Sweet; Maryam Lamere; Prof. Lisa Brodie; Dr Venkat Bakthavatchaalam (University of the West of England, Bristol); Dr Abel Nyamapfene (University College London).

Keywords: Education for Sustainable Development; Climate Emergency; Net Zero; Sustainable Development Goals.

Abstract: The University of the West of England (UWE Bristol) has declared a Climate and Ecological Emergency, along with all regional councils in the West of England. In order to meet the regional goal of Net-Zero by 2030, sustainability education has now been embedded through all levels of the Engineering Curriculum. Current modules incorporate education for Sustainable Development Goals alongside citizen engagement challenges, where engineers find solutions to real-life problems. All undergraduate engineers also take part in immersive project weeks to develop problem-based learning around the Engineers without Borders international challenges.

 

Engineering Education for Sustainable Development

The environmental and health impacts of climate change and biodiversity loss are being felt around the world, from record high temperatures, drought, wildfires, extreme flooding, and human health issues (Ripple et al., 2020). The Intergovernmental Panel on Climate Change reports that urgent action is required to mitigate catastrophic impacts for billions of people globally (IPCC, 2022). The UK Government has pledged to reach net zero emissions by 2050, with a 78% drop in emissions by 2035 (UK Government, 2021). Following IPCC guidance, regional councils such as Bristol City Council and the West of England Combined Authority, have pledged to reach Net Zero at an earlier date of 2030 (Bristol City Council, 2019). In parallel, UWE Bristol has embedded this target within its strategic plan (UWE Bristol, 2019), and also leads the Environmental Association for Universities and Colleges (EAUC), an Alliance for Sustainability Leadership in Education (UWE Bristol, 2021b). All UWE Bristol programmes are expected to embed the UN Sustainable Development Goals (SDGs) within curricula (UN Department of Economic and Social Affairs, 2021), so that higher education degrees prepare graduates for working sustainably (Gough, 2021).

Bourn and Neal (2008) draw the link between global sustainability issues and engineering, with the potential to tackle complex sustainability challenges such as climate change, resource limitations, and extreme poverty. The SDGs are therefore particularly relevant to engineers, showing the connections between social, environmental, and economic actions needed to ensure humanitarian development, whilst also staying within planetary boundaries to support life on earth (Ramirez-Mendoza et al., 2020). The engineering sector is thus obligated to achieve global emissions targets, with the work of engineers being essential to enable the societal and technological change to reach net zero carbon emissions (Fogg-Rogers, L., Richardson, D., Bakthavatchaalam, V., Yeomans et al., 2021).

Systems thinking and solution-finding are critical engineering habits of mind (Lucas et al., 2014), and so introducing genuine sustainability problems provides a solid foregrounding for Education for Sustainable Development (ESD) in engineering. Indeed, consideration for the environment, health, safety, and social wellbeing are enshrined in the UK Specification for Professional Engineers (UK SPEC) (Engineering Council, 2021). ‘Real-world’ problems can therefore inspire and motivate learners (Loyens et al., 2015), while the use of group projects is considered to facilitate collaborative learning (Kokotsaki et al., 2016). This aligns with recommendations for creating sustainability-literate graduates published by the Higher Education Academy (HEA) and the UK Quality Assurance Agency for Higher Education (QAA and Advance HE, 2021) which emphasise the need for graduates to: (1) understand what the concept of environmental stewardship means for their discipline and their professional and personal lives; (2) think about issues of social justice, ethics and wellbeing, and how these relate to ecological and economic factors; and (3) develop a future-facing outlook by learning to think about the consequences of actions, and how systems and societies can be adapted to ensure sustainable futures (QAA & HEA, 2014). These competencies are difficult to teach, and instead need to developed by the learners themselves based on experience and reflection, through a student-centred, interdisciplinary, team-teaching design (Lamere et al., 2021).  

The need for engineers to learn about the SDGs and a zero carbon future is therefore necessary and urgent, to ensure that graduates are equipped with the skills needed to address the complex challenges facing the 21st Century.  Lamere et al., (2021)describe how the introduction of sustainability education within the engineering curriculum is typically initiated by individual academics (early adopters) introducing elements of sustainability content within their own course modules. Full curricula refresh in the UWE Bristol engineering curricula from 2018-2020 enabled a more programmatic approach, with inter-module connections being developed, alongside inter-year progression of topics and skills.

This case study explores how UWE Bristol achieved this curriculum change throughout all programmes and created inter-connected project weeks in partnership with regional stakeholders and industry. 

Case Study Methods – Embedding education for sustainable development

The first stage of the curricula transformation was to assess current modules against UK SPEC professional requirements, alongside SDG relevant topics. A departmental-wide mixed methods survey was designed to assess which SDGs were already incorporated, and which teaching methods were being utilized. The survey was emailed out to all staff in 2020, with 27 module leaders responding to highlight pedagogy in 60 modules, covering the engineering topics of: Aerospace; Mechanical and Automotive; Electrical, Electronic, and Robotics; Maths and Statistics; and Engineering Competency.

Two sub-themes were identified: ‘Direct’ and ‘Indirect’ embedding of SDGs; direct being where the engineering designs explicitly reference the SDGs as providing social or environmental solutions, and indirect being where the SDGs are achieved through engineering education e.g. quality education and gender equality. Direct inclusion of the SDGs tended to focus on reducing energy consumption, and reducing weight and waste, such as through improving the efficiency of the machines/designs. Mitigating the impact of climate change through optimal use of energy was also mentioned. The usage of lifecycle analysis was implemented in several courses, especially for composite materials and their recycling. The full analysis of the spread of the SDGs and their incorporation within different degree programmes can seen in Figure 1.

 

Figure 1 Number of Engineering Modules in which SDGs are Embedded

 

Project-based learning for civic engagement in engineering

Following this mapping process, the modules were reorganized to produce a holistic development of knowledge and skills across programmes, starting from the first year to the final year of the degree programmes. This Integrated Learning Framework was approved by relevant Professional Bodies and has been rolled out annually since 2020, as new learners enter the refreshed degree programmes at UWE Bristol. The core modules covering SDG concepts explicitly are Engineering Practice 1 and 2 (at Level 1 and 2 of the undergraduate degree programme) and ‘Engineering for Society’ (at Level 3 of the undergraduate degree programme and Masters Level). These modules utilise civic engagement with real-world industry problems, and service learning through engagement with industry, schools, and community groups (Fogg-Rogers et al., 2017).

As well as the module redevelopment, a Project-Based Learning approach has been adopted at department level, with the introduction of dedicated Project Weeks to enable cross-curricula and collaborative working. The Project Weeks draw on the Engineering for People Design Challenge (Engineers without Borders, 2021), which present global scenarios to provide university students with “the opportunity to learn and practice the ethical, environmental, social and cultural aspects of engineering design”. Critically, the challenges encourage universities to develop partnerships with regional stakeholders and industry, to provide more context for real-world problems and to enable local service learning and community action (Fogg-Rogers et al., 2017).

A collaboration with the innovation company NewIcon enabled the development of a ‘design thinking’ booklet which guides students through the design cycle, in order to develop solutions for the Project Week scenarios (UWE Bristol, 2021a). Furthermore, a partnership with the initiative for Digital Engineering Technology and Innovation (DETI) has enabled students to take part in the Inspire outreach programme (Fogg-Rogers & Laggan, 2022), which brings together STEM Ambassadors and schools to learn about engineering through sustainability focussed activities. The DETI programme is delivered by the National Composites Centre, Centre for Modelling and Simulation, Digital Catapult, UWE Bristol, University of Bristol, and University of Bath, with further industry partners including Airbus, GKN Aerospace, Rolls-Royce, and Siemens (DETI, 2021). Industry speakers have contributed to lectures, and regional examples of current real-world problems have been incorporated into assignments and reports, touching on a wide range of sustainability and ethical issues.

Reflections and recommendations for future engineering sustainability education

Students have been surveyed through module feedback surveys, and the project-based learning approach is viewed very positively. Students commented that they enjoyed working on ‘real-world projects’ where they can make a difference locally or globally. However, findings from surveys indicate that students were more inclined towards sustainability topics that were relevant to their subject discipline. For instance, Aerospace Engineering students tended to prefer topics relevant to Aerospace Engineering. A survey of USA engineering students by Wilson (2019) also indicates a link between students’ study discipline and their predilection for certain sustainability topics. This suggests that for sustainability education to be effective, the content coverage should be aligned, or better still, integrated, with the topics that form part of the students’ disciplinary studies.

The integration of sustainable development throughout the curricula has been supported at institutional level, and this has been critical for the widescale roll out. An institution-wide Knowledge Exchange for Sustainability Education (KESE) was created to support staff by providing a platform of knowledge sharing. Within the department, Staff Away days were used to hold sustainability workshops for staff to discuss ESD and the topics of interest to students.  In the initial phase of the mapping exercise, a lack of common understanding amongst staff about ESD in engineering was noted, including what it should include, and whether it is necessary for student engineers to learn about it. During the Integrated Learning Framework development, and possibly alongside growing global awareness of climate change, there has been more acceptance of ESD as an essential part of the engineering curriculum amongst staff and students. Another challenge has been the allocation of teaching workload for sustainability integration. In the initial phases, a small number of committed academics had to put in a lot of time, effort, and dedication to push through with ESD integration. There is now wider support by module leaders and tutors, who all feel capable of delivering some aspects of ESD, which eases the workload.

This case study outlines several methods for integrating ESD within engineering, alongside developing partnership working for regionally relevant real-world project-based learning. A recent study of UK higher education institutions suggests that only a handful of institutions have implemented ESD into their curricula in a systemic manner (Fiselier et al., 2018), which suggests many engineering institutions still need support in this area. However, we believe that the engineering profession has a crucial role to play in ESD alongside climate education and action, particularly to develop graduate engineers with the skills required to work upon 21st Century global challenges. To achieve net zero and a low carbon global economy, everything we make and use will need to be completely re-imagined and re-engineered, which will require close collaboration between academia, industry, and the community. We hope that other engineering educators feel empowered by this case study to act with the required urgency to speed up the global transition to carbon neutrality.

References

Bourn, D., & Neal, I. (2008). The Global Engineer Incorporating global skills within UK higher education of engineers.

Bristol City Council. (2019). Bristol City Council Mayor’s Climate Emergency Action Plan 2019.

DETI. (2021). Initiative for Digital Engineering Technology and Innovation. https://www.nccuk.com/deti/

Engineers without Borders. (2021). Engineering for People Design Challenge. https://www.ewb-uk.org/upskill/design-challenges/engineering-for-people-design-challenge/

Fiselier, E. S., Longhurst, J. W. S., & Gough, G. K. (2018). Exploring the current position of ESD in UK higher education institutions. International Journal of Sustainability in Higher Education, 19(2), 393–412. https://doi.org/10.1108/IJSHE-06-2017-0084

Fogg-Rogers, L., & Laggan, S. (2022). DETI Inspire Engagement Report.

Fogg-Rogers, L., Lewis, F., & Edmonds, J. (2017). Paired peer learning through engineering education outreach. European Journal of Engineering Education, 42(1). https://doi.org/10.1080/03043797.2016.1202906

Fogg-Rogers, L., Richardson, D., Bakthavatchaalam, V., Yeomans, L., Algosaibi, N., Lamere, M., & Fowles-Sweet, W. (2021). Educating engineers to contribute to a regional goal of net zero carbon emissions by 2030. Le Développement Durable Dans La Formation et Les Activités d’ingénieur. https://uwe-repository.worktribe.com/output/7581094

Gough, G. (2021). UWE Bristol SDGs Programme Mapping Portfolio.

IPCC. (2022). Impacts, Adaptation and Vulnerability – Summary for policymakers. In Intergovernmental Panel on Climate Change, WGII Sixth Assessment Report. https://doi.org/10.4324/9781315071961-11

Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools. https://doi.org/10.1177/1365480216659733

Lamere, M., Brodie, L., Nyamapfene, A., Fogg-Rogers, L., & Bakthavatchaalam, V. (2021). Mapping and Enhancing Sustainability Literacy and Competencies within an Undergraduate Engineering Curriculum Implementing sustainability education : A review of recent and current approaches. In The University of Western Australia (Ed.), Proceedings of AAEE 2021.

Loyens, S. M. M., Jones, S. H., Mikkers, J., & van Gog, T. (2015). Problem-based learning as a facilitator of conceptual change. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2015.03.002

Lucas, Bill., Hanson, Janet., & Claxton, Guy. (2014). Thinking Like an Engineer: Implications For The Education System. In Royal Academy of Engineering (Issue May). http://www.raeng.org.uk/publications/reports/thinking-like-an-engineer-implications-summary

QAA and Advance HE. (2021). Education for Sustainable Development. https://doi.org/10.21300/21.4.2020.2

Ramirez-Mendoza, R. A., Morales-Menendez, R., Melchor-Martinez, E. M., Iqbal, H. M. N., Parra-Arroyo, L., Vargas-Martínez, A., & Parra-Saldivar, R. (2020). Incorporating the sustainable development goals in engineering education. International Journal on Interactive Design and Manufacturing. https://doi.org/10.1007/s12008-020-00661-0

Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2020). World Scientists’ Warning of a Climate Emergency. In BioScience. https://doi.org/10.1093/biosci/biz088

UK Government. (2021). UK enshrines new target in law to slash emissions by 78% by 2035. https://www.gov.uk/government/news/uk-enshrines-new-target-in-law-to-slash-emissions-by-78-by-2035

UN Department of Economic and Social Affairs. (2021). The 17 Sustainable Development Goals. https://sdgs.un.org/goals

UWE Bristol. (2019). Climate and Ecological Emergency Declaration. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/climate-and-ecological-emergency-declaration

UWE Bristol. (2021a). Engineering Solutions to Real World Problems. https://blogs.uwe.ac.uk/engineering/engineering-solutions-to-real-world-problems-uwe-project-week-2020/

UWE Bristol. (2021b). Sustainability Strategy, Leadership and Plans. https://www.uwe.ac.uk/about/values-vision-strategy/sustainability/strategy-leadership-and-plans Wilson, D. (2019). Exploring the Intersection between Engineering and Sustainability Education. In Sustainability (Vol. 11, Issue 11). https://doi.org/10.3390/su11113134

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Dawn Bonfield MBE (Aston University); Johnny Rich (Engineering Professors’ Council); Professor Chike Oduoza (University of Wolverhampton).

Keywords: Ethical principles; Code of conduct; Engineering professionals; Ethical decision-making; Ethical behaviour.

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for.

 

Premise:

The Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering in 2005 (revised in 2017) contains the recommendations to which all UK engineers should comply. It sets out four fundamental principles that all engineering professionals should aspire to follow in their working habits and relationships.

At the launch of the revised document, the Chair of the Engineering Council said “The profession needs to ensure that the principles are embedded at all stages of professional development for engineers and those technicians, tradespeople, students, apprentices and trainees engaged in engineering.”

These principles are based on the premise that engineering professionals work to enhance the wellbeing of society, and in so doing they are required to maintain and promote high ethical standards, as well as to challenge unethical behaviour. The principles are the foundation for making decisions when faced with an ethical dilemma in engineering.

 

The four principles:

The code defines four fundamental principles of ethical behaviour: Honesty and integrity; Respect for life, law, the environment and public good; Accuracy and rigour; and Leadership and communication.

The requirement for engineers to embody honesty and integrity is based on the expectation that engineers can be trusted. It seeks to position the engineering community as one that possesses the respect and confidence of the public. People should feel confident that the word of an engineer is a reliable one, and that decisions taken by engineers are fair and without compromise or conflict.

Respect for life, law, the environment and public good demands that engineers are law-abiding and have the public’s best interests at heart. This allows people to feel safe when they drive over bridges, fly in aircrafts, and use electrical equipment. It reassures them that engineering designs have been tested, are legally compliant, and that the engineer puts, above all else, the wellbeing of the public, future generations, other members of the profession, and the environment in which we live. This principle also covers the protection of data and privacy of the public.

Accuracy and rigour ensures that engineers are trained, competent and knowledgeable, and that they do not pass themselves off as experts in areas where they are not competent. It requires that engineers keep their knowledge up-to-date, and share their knowledge and understanding with others in their profession. It calls for engineers to take a broad approach to problem-solving, considering a variety of external factors which may influence the risks of any project.

And finally, the principle of leadership and communication ensures that engineers lead by example, that diversity and inclusion are valued, and that people are treated fairly and with respect. It is concerned with the impact of engineering on society in the broadest sense – with how the public sees engineering and how engineering addresses public, social and environmental justice concerns. It requires engineers to be considerate and truthful when acting in a professional capacity, and to raise concerns where necessary.

These four principles underpin professional codes of conduct for engineers, and they provide guidance on how ethical decisions should be made, giving a set of values against which engineers can behave.

 

Using the principles to unpick right from wrong and make the best decision:

While these principles can form a useful basis for ethical decision-making within engineering, it is often the case that conflicts arise that prevent the decision pathway from being straightforward, when there is no obvious right or wrong answer. There may be other principles that need to be considered, relating to the organisation or the institution that the engineer is working for. Furthermore, there may be other considerations associated with a person’s religion, culture or belief system. We shouldn’t forget that other constraints such as cost and time will also impact on the possible options available.

So, decision-making in engineering is rarely straightforward. It is not like a mathematical equation with right and wrong answers, but rather with degrees of rightness, balances of pros and cons and, often, with some costs incurred for the sake of a greater good. Various tools and frameworks exist to help the decision-maker with ethical problems. Probably the simplest logical method considers each of the possible solutions against the ethical principles that are to be complied with. These can then be considered in relation to the stakeholders affected, and a list of pros and cons can be developed. They can even be scored and weighted.

What if a decision is required quickly? How do we ensure that we are likely to make the best one? These questions are partly due to the values that we subscribe to as engineers, and as individuals. They become embedded in our subconsciousness through our training and practice. When decisions need to be made in a hurry, we rely on heuristics, or simple rules or instincts that feel consistent with the ethical knowledge and expertise that we have built up during our career. These heuristics, however, are subject to cognitive biases – psychological patterns of thought that divert us from purely rational approaches. Being aware of these biases can help to minimise or compensate for them.

 

Conclusion:

Engineers should utilise the Statement of Ethical Principles and knowledge of the specific context they are working in, to make the best decisions on the situation or dilemmas at hand. Ultimately, decisions that we make as a professional engineer are our individual responsibility, and whatever decision results, we should be prepared to justify and stand by them, knowing that we have taken these in good faith and for the right reasons. Ethical decision-making can be practised throughout an engineer’s education by using a variety of case studies to explore a range of scenarios an engineer could face. The Royal Academy of Engineering and Engineering Professors’ Council’s Engineering ethics case studies can be used for this.

 

Additional resources:

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website