“A new report from the National Engineering Policy Centre about resource efficiency and demand reduction for critical materials to support the UK’s existing Net Zero Strategy.
This report provides an overview of the underutilised policy options for achieving reductions in demands for critical materials and dependency on imports of scarce materials.
It presents a range of policy and engineering interventions around three main areas of demand-side resource management. These include: infrastructure and technology planning, design and design skills and circular economy.
The report concludes with 25 recommendations for policymakers which will help the UK cut its critical material footprint. Lead recommendations from the report call for: an integrated materials strategy, a National Materials Data Hub, infrastructure planning for material sustainability, and a new target to halve the UK’s material footprint.
The report also makes specific recommendations for targeted action, such as committing to the ban on single-use vapes, and improving repair and recycling of electronics to reduce e-waste.
Without intervention, the UK risks not achieving its Net Zero strategy and exposure to future economic uncertainty.” – The Royal Academy of Engineering
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Gilbert Tang; Dr Rebecca Raper (Cranfield University).
Topic: Considering the SDGs at all stages of new robot creation.
Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes.
Sustainability competency: Systems thinking; Anticipatory; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering.
Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment.
1. During research and problem definition:
Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005.
2. At design and conceptualisation:
Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset.
3.During creation and manufacturing:
The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation.
4. Deployment:
Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life.
5.Disposal:
Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal.
Conclusion:
Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.
Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering.
Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment.
Professional situations: Whistleblowing; Company growth; Communication; Public health and safety.
Educational level: Intermediate.
Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others.
Learning and teaching notes:
This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.
This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibilityand environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.
This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise as an engineer versus a business;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches that resolve interpersonal and/or professional conflict;
integrate technical content on materials design and chemistry;
informally evaluate students’ critical thinking and communication skills.
Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.
Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health.
Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products.
Optional STOP for questions and activities:
1. Discussion:Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?
2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.
3. Activity: Technical integration– Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.
4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?
Dilemma – Part two:
Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.
Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.
“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.”
Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.
Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”
Optional STOP for questions and activities:
1. Discussion: Personal values– What competing personal values or motivations might trigger an internal conflict for Alex?
2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case?
3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities.
4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important?
5. Discussion: How do you think the issue of microplastics should be controlled?
6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?
7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex?
8. Activity: Technical integration related to calculations or experiments on microplastics.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.
Ethical issues: Respect for the environment; Risk.
Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.
Educational level: Intermediate.
Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.
Learning and teaching notes:
This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Learners have the opportunity to:
identify legal, professional, and ethical rules and guidance;
investigate technical and environmental components of circularity;
consider professional roles and associated responsibilities;
practice preparing for a public interview.
Teachers have the opportunity to:
introduce or provide practice in Life Cycle Assessment;
highlight relevant ethical codes and quality standards;
address approaches to professional and/or interpersonal conflict;
informally evaluate critical thinking and analysis.
Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.
Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.
Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.
Optional STOP for questions and activities:
1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?
2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.
3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?
Dilemma: Part two:
After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.
When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.
At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.
Optional STOP for questions and activities:
1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.
2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?
3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?
Dilemma – Part three:
In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.
She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.
Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.
Optional STOP for questions and activities:
1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.
2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.
3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation?
4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?
5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Do engineers have a responsibility to warn the public if there is a chance of risk?
Author: Cortney Holles (Colorado School of Mines, USA).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 1 section of this case: Debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties (“of matters . . . which are of potential detriment to others who may be adversely affected by them” – The Society of Construction Law’s Statement of Ethical Principles).
After introducing or studying the Glass Safety case, teachers may want students to dig deeper into the ethical issues in the case through a debate. The resources and lesson plan below guide teachers through this lesson.
1. Introduce the debate assignment:
Students will debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties. Build in some time for students to prepare their arguments in small groups (either during class or as a homework assignment). Create small groups of 2-5 students that can develop positions on each of the following positions on the question of the debate:
Does Krystyna have a responsibility to warn Sir Robert or future residents of the buildings about the glass?
YES, according to the Society of Construction Laws (or other professional society’s) ethical codes or standards;
YES, according to a personal and ethical obligation of Krystyna as a young professional;
NO, according to the standards of the company and expectations by superiors and/or professional norms or standards;
NO, according to personal or ethical obligations and needs of Krystyna as a young professional.
2. Supporting the arguments in the debate with texts:
Provide students with resources that offer support for the different positions in the debate, listed below. Perhaps you have assigned readings in the class they can be asked to reference for support in the debate. Teachers could also assign students to conduct independent research on these stakeholders and positions if that matches the goals of the class.
In a previous class session or at the start of the debate, ask students to record or anonymously report their personal response to the debate question for comparison and discussion after the debate. These responses could serve as a basis for personal reflection, a progress check, or even as a component of an assessment. You could ask them to report on this question in several different ways: Do engineers have a responsibility to warn? When do engineers have a responsibility to warn? Why do engineers have a responsibility to warn? Who do engineers have a responsibility to warn?
Give students time to talk in their groups before the in-class debate begins so that they can compare notes on their argument and evidence/reasoning, and decide who will speak. You may want to direct how students in the groups will divide the speaking responsibilities for their position, especially for time management or participation according to the limitations or requirements of your teaching situation.
Consider what amount of time you have for the debate and provide students with a structure with time limits for each argument and response. For example, let each of the four positions present their case for 2-3 minutes, followed by a minute for each other position to offer rebuttals and ask questions of that position.
Teachers could also give themselves a minute or two to ask questions or offer insights or ethical issues the groups may have missed in between. At the least, the teacher should monitor the time, provide transitions between positions, and moderate the debate.
As a comprehension and application activity during the debate, you could ask students to take notes on the other positions’ presentations as they listen – you might ask them to restate the positions, identify the underlying values presented, or describe which ethical issues or stakeholders they find most compelling for each position. This could also be done via a “live blog”, or via a role play scenario where other students act as journalists reporting on what is happening in the debate.
After all sides have been presented, allow time for students to revisit their original positions on the debate. They could cast their votes on a web platform anonymously or you can collect paper ballots. In class or as homework, students could reflect on what arguments and values impacted their personal stance on the debate.
Take time to debrief the positions and the ethical decisions presented at the end of this class session or in a subsequent class session. Teachers could ask students to discuss how they navigated conflicting values and needs of stakeholders and which ethical principles were most compelling to them.
Key concepts this debate can cover:
environmental ethics concepts
power dynamics between managers, clients, and engineers
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)
Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure
Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.
The opportunity
Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.
Seed funded taster projects
In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.
Knowledge Transfer Partnership (KTP) Projects
KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.
The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.
The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.
First of a kind (FOAK) projects
The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.
The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.
The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.
The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.
The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.
Additional benefits to University of Huddersfield
In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.
Figure 1. Head-span showing span-wires and span-wire clamp.
Figure 2. Old (left) and new (right) span-wire clamps.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Abstract: The case study is interesting as it combines the engaging topics of smart materials and sports engineering, and showcases the release of a sports product. The work is underpinned by academic papers, include a teaching focus one detailing how materials have influenced tennis rackets dating back to the origins of the game. Effect of materials and design on the bending stiffness of tennis rackets: https://doi.org/10.1088/1361-6404/ac1146. Review of auxetic materials for sports applications: Expanding options in comfort and protection: https://doi.org/10.3390/app8060941.
This case study is about the application of auxetic materials to sports equipment. Particularly, it is about the development of the first ever tennis racket to feature auxetic fibre-polymer composites [1]. In our work, we aim to combine the exciting fields of sport and advanced materials to engage people with science, technology, engineering, and maths (STEM). Indeed, our work is multi-disciplinary. Dr Mohr is the R&D Manager for PreDevelopement at HEAD and brings expertise in tennis racket engineering, Dr Allen and Professor Alderson are academics and bring respective expertise in sports engineering and smart materials.
Dr Allen has been researching the mechanics of sports equipment for many years, with a focus on tennis rackets [2]. One project involved characterising the properties of over 500 diverse rackets dating back to the origins of the game in the 1870s to the present day. The rackets were from various collections, including the Wimbledon Lawn Tennis Museum in London, and HEAD in Kennelbach Austria, where Dr Mohr works. The museum houses particularly old and rare rackets, whereas the collection at HEAD has a broad range of more modern designs. Initial work involved developing techniques for efficiently characterising many rackets [3]. Subsequent publications describe how a shift in construction materials – from wood to fibre-polymer composites – around the 1970s and 1980s led to lighter and stiffer rackets, with shorter handles and larger heads [4], [5]. Indeed, the application of new materials has driven the development of tennis rackets, and further advances are likely to come from developments in materials and manufacturing techniques.
Professor Alderson has been researching smart materials and structures for many years, with a focus on auxetic materials [6]. Auxetic materials have a negative Poisson’s ratio, which means that they fatten when stretched and become thinner when compressed. A negative Poisson’s ratio can enhance other properties, including vibration damping. Dr Allen and Professor Alderson have been working together to apply auxetic materials to sports equipment [7]. Dr Allen discussed this work on auxetic materials with Dr Mohr, and this led to the collaboration between the three parties that resulted in the new racket design [1].
Auxetic fibre-polymer composites were particularly appealing to Dr Mohr for application in tennis rackets, as they can be made using conventional fibres and resins, by simply arranging the fibres in specific orientations [8]. Following a visit to HEAD, where he was able to see the prototyping facilities, Professor Alderson developed various auxetic fibre-polymer composites, using the materials already being used by HEAD to make rackets. HEAD then developed prototype rackets incorporating these auxetic fibre-polymer composites at their research and development facility in Kennelbach. The racket designs were further developed and refined through testing, both in the laboratory and on the tennis court with players providing feedback.
The first tennis racket with auxetic fibre composites was released in late 2021, in the form of the HEAD Prestige (Figure 1a). The Prestige was followed by the release of a new racket silo (collection) in early 2022 in the form of the Boom (Figure 1b). Drs Mohr and Allen and Professor Alderson are now exploring options for further applying auxetic materials to tennis rackets. Dr Allen’s teaching case study on the historical development of the tennis racket [4] has been enriched by including the story behind the development of the new auxetic fibre-polymer composite rackets [1]. He also includes discussion of emerging topics in the case study that could be applied to tennis rackets, such as more automated manufacturing techniques like additive manufacturing, and more environmentally friendly materials, like natural fibres and resins [5]. We hope that the new tennis rackets will raise awareness of auxetic materials amongst the public, and the case study will help inspire others to use topics like sports engineering and advanced materials to support their STEM teaching and public engagement.
Figure 1 Examples of HEAD rackets featuring auxetic fibre-polymer composites, a) Prestige Pro and b) Boom Prom.
References
[1] HEAD Sports, “Auxetic – The Science Behind the Sensational Feel,” 2021. https://www.head.com/en_GB/tennis/all-about-tennis/auxetic-the-science-behind-the-sensational-feel (accessed Feb. 05, 2022).
[2] T. Allen, S. Choppin, and D. Knudson, “A review of tennis racket performance parameters,” Sport. Eng., vol. 19, no. 1, Mar. 2016, doi: 10.1007/s12283-014-0167-x.
[3] L. Taraborrelli et al., “Recommendations for estimating the moments of inertia of a tennis racket,” Sport. Eng., vol. 22, no. 1, 2019, doi: 10.1007/s12283-019-0303-8.
[4] L. Taraborrelli, S. Choppin, S. Haake, S. Mohr, and T. Allen, “Effect of materials and design on the bending stiffness of tennis rackets,” Eur. J. Phys., vol. 42, no. 6, 2021, doi: 10.1088/1361-6404/ac1146.
[5] L. Taraborrelli et al., “Materials Have Driven the Historical Development of the Tennis Racket,” Appl. Sci., vol. 9, no. 20, Oct. 2019, doi: 10.3390/app9204352.
[6] K. E. Evans and A. Alderson, “Auxetic materials: Functional materials and structures from lateral thinking!,” Adv. Mater., vol. 12, no. 9, 2000, doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.
[7] O. Duncan et al., “Review of auxetic materials for sports applications: Expanding options in comfort and protection,” Applied Sciences (Switzerland), vol. 8, no. 6. 2018, doi: 10.3390/app8060941.
[8] K. L. Alderson, V. R. Simkins, V. L. Coenen, P. J. Davies, A. Alderson, and K. E. Evans, “How to make auxetic fibre reinforced composites,” Phys. Status Solidi Basic Res., vol. 242, no. 3, 2005, doi: 10.1002/pssb.200460371.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Prof Tony Dodd (Staffordshire University); Marek Hornak (Staffordshire University) and Rachel Wood (Staffordshire University).
Keywords: Regional Development Funding, Innovation Enterprise Zone
Abstract: The Stoke-on-Trent and Staffordshire region registers low in measures of economic prosperity, research and development expenditure, productivity, and higher skills. Staffordshire University has received funding to support regional growth in materials, manufacturing, digital and intelligent mobility and to develop higher skills. Packaged together into the Innovation Enterprise Zone these projects have made positive impacts in the region. This presentation will provide an overview of our approach to regional support and highlight impact and lessons learnt for companies, academics, and students.
Background
The Stoke-on-Trent and Staffordshire economy underperforms compared to the wider West Midlands and England [1].
Below average productivity – £19,114 produced per person (£27,660 in England) (2017)
Below average higher skills – Level 4+ is 33.4% (39.2% for the UK)
Below average R&D expenditure ranking 29th out of 38 in LEPs for overall R&D expenditure and 23rd out of 38 for R&D expenditure per full-time employee (2013)
38 new business start-ups per 10,000 people which is below regional and national averages
Business density of 410 business per 10,000 population – lower than regional and national averages
Industry is dominated by SMEs with strengths in manufacturing, advanced materials, automotive, logistics and warehousing, agriculture, and digital industries [1].
Aims and Objectives
The aim was to develop an ecosystem for driving innovation, economic growth, job creation and higher skills in Stoke-on-Trent and Staffordshire.
The objectives were to:
Support regional SMEs to improve innovation through knowledge transfer.
Increase employment and productivity.
Increase the number of products/services to the companies and market.
Enhance student experience and employability through placement opportunities
Enhance higher skills to support long term innovation in the region.
Enterprise Zone and Projects
Funding was successfully awarded from ERDF, Research England, and Staffordshire County Council. The themes of the projects were developed in collaboration with regional partners to identify key strengths and potential for growth. Each of the projects is match funded by Staffordshire University including through academic time.
Staffordshire Higher Skills and Engagement Pathways (ESF) providing fully funded continuing professional development.
Staffordshire E-Skills and Entrepreneurship Gateway (ESF) to develop digital skills and entrepreneurship in SMEs, students and graduates.
The projects are part of the wider Staffordshire University Innovation Enterprise Zone (launched November 2020, Research England) to support research collaboration, knowledge exchange, innovation, and skills development. This includes space for business incubation and low-cost shared office space in The Hatchery for new start-ups. We also provide a Creative Lab (funded by Stoke-on-Trent and Staffordshire LEP) for hosting business-academic meetings and access to the SmartZone equipment for rapid prototyping.
Spotlight on Innovation Projects
To highlight the differences between approaches we highlight two innovation projects.
Staffordshire Advanced Manufacturing, Prototyping, and Innovation Demonstrator (SAMPID)
Businesses are often engaging with a university for the first time.
Equipment purchased (SAMPID) has attracted companies to engage and supported innovation. The equipment would not normally be available to SMEs and enhanced the ability for rapid prototyping.
It is important to manage company expectations from the outset in terms of what is achievable in the timescales using undergraduate students.
Engagement with academics during project development is important to understand what is technically achievable.
Projects work best where there is active engagement from the business who have experts to support the student and challenge the direction of the project.
Project length
Recruiting students for the longer 6/12-month SCIMIA projects has proven more difficult due to the commitment and difficulty of fitting projects around studies.
Shorter 12-week, 15 hours per week, SAMPID projects fit more naturally around undergraduate studies so are easier to recruit to.
12-week projects have exceeded expectations with complex prototypes developed.
Student roles and recruitment
Students have exceeded expectations, and several have their work extended beyond the project.
Direct marketing to students on the opportunities available is important to raising awareness.
Unsuccessful students are targeted for future projects based on their skill set.
Unitemps minimise the burden of recruiting students.
Supporting roles
The innovation and enterprise fellows’ positions (SCIMIA) require technical and business experience. They have proven invaluable in engaging with companies alongside business development managers to better understand the technical requirements and to help companies think about what innovations are most valuable.
Technician recruitment has proven difficult for all projects due to the posts being 0.5FTE and fixed term.
It is important for business development managers and programme managers to ensure a smooth transition of the company relationship.
PhD students (SAMPID) have allowed more advanced innovations to be explored in areas of manufacturing and product development that have fed into projects.
Academic involvement
Pioneer academics who could demonstrate the positive impacts to their research and students and the programme manager developing a close relationship with a pool of academics has been key to ensuring academic engagement.
Some projects have led to academic research and publications which we will explore further.
Possible future developments
Peer mentoring to support students new to the innovation projects.
Formal training for student innovators in design thinking and systems/requirement engineering.
Developing successful relationships into Knowledge Transfer Partnerships, InnovateUK funding and support for EPSRC projects.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Sarah Jayne Hitt (NMITE); Dr Matthew Studley (University of the West of England, Bristol); Dr Darian Meacham (Maastricht University); Dr Nik Whitehead (University of Wales Trinity Saint David); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).
Educational aim: To develop ethical awareness. Ethical awareness is when an individual determines that a single situation has moral implications and can be considered from an ethical point of view.
Learning and teaching notes:
This case concerns a construction engineer navigating multiple demands. The engineer must evaluate trade-offs between technical specifications, historical preservation, financial limitations, social needs, and safety. Some of these issues have obvious ethical dimensions, while others are ethically more ambiguous. In addition, the engineer must navigate a professional scenario in which different stakeholders try to influence the resolution of the dilemma.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to the AHEP outcomes specific to a programme under these themes, access AHEP4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
Learners have the opportunity to:
determine if an engineering situation has ethical dimensions and identify what these are;
identify where tensions might arise between professionals;
practise stakeholder mapping;
debate possible solutions to an ethical dilemma.
Teachers have the opportunity to:
highlight professional codes of ethics and their relevance to engineering situations;
address approaches to resolve interpersonal and / or professional conflict;
integrate technical content on glass – such as strength, failure, and manufacture;
integrate construction industry codes and / or specifications;
informally evaluate students’ critical thinking and communication skills.
Krystyna is a construction engineer working as part of a team that is retrofitting a Victorian-era factory into multi-unit housing. As an amateur history buff, she is excited to be working on a listed building for the first time in her career after finishing university three years ago. However, this poses additional challenges: she must write the specification for glass windows that will maintain the building’s heritage status but also conform to 21st century safety standards and requirements for energy efficiency. In addition, Krystyna feels under pressure because Sir Robert, the developer of the property, is keen to maximise profits while maintaining the historic feel valued by potential buyers. He also wants to get the property on the housing market as soon as possible to help mitigate a housing shortage in the area. This is the first of many properties that Dave, the project’s contractor who is well-regarded locally and has 30 years of experience working in the community, will be building for Sir Robert. This is the first time that Krystyna has worked with Dave.
Optional STOP for questions and activities:
1. Discussion: What competing values or motivations might conflict in this scenario?
2. Discussion: What codes, standards and authority bodies might be relevant to this scenario?
3. Activity: Assemble a bibliography of relevant professional codes, standards, and authorities.
4. Activity: Undertake a technical project relating to testing glass for fire safety and / or energy efficiency.
5. Activity: Research the use of glass as a building material throughout history and / or engineering innovations in glass production.
Dilemma – Part one:
On her first walk through the property with Dave, Krystyna discovers that the factory building has large floor-to-ceiling windows on the upper stories. Dave tells her that these windows were replaced at some point in the past 50 years before the building was listed, at a time when it wasn’t used or occupied, although the records are vague. The glass is in excellent condition and Sir Robert has not budgeted either the time or the expense to replace glass in the heritage building.
While writing the specification, Krystyna discovers that the standards for fire protection as well as impact safety and environmental control have changed since the glass was most likely installed. After this research, she emails Dave and outlines what she considers to be the safest and most responsible form of mitigation: to fully replace all the large windows with glass produced by a supplier with experience in fire-rated safety glass for heritage buildings. To justify this cost, she highlights the potential dangers to human health and the environment of not replacing the glass.
Dave replies with a reassuring tone and refers to his extensive experience as a contractor. He feels that too many additional costs would be incurred such as finding qualified installers, writing up new architectural plans, or stopping work altogether due to planning permissions related to historic properties. He argues that there is a low probability of a problem actually arising with the glass. Dave encourages Krystyna not to reveal these findings to Sir Robert so that “future conflicts can be avoided.”
Optional STOP for questions and activities:
1. Discussion: What ethical issues that can be identified in this scenario?
2. Discussion: What interpersonal dynamics might affect the way this situation can be resolved?
3. Discussion: If you were the engineer, what action would you take, if any?
4. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities using the SERM found in the Learning and teaching resources section.
5. Activity: Role-play the engineer’s response to the contractor or conversation with the developer.
6. Discussion: How do the RAEng/Engineering Council Statement of Ethical Principles and the Society of Construction Law Statement of Ethical Principles inform what ethical issues may be present, and what solutions might be possible?
Dilemma – Part two:
After considerable back and forth with Dave, Krystyna sees that she is unlikely to persuade him to make the changes to the project that she has recommended. Now she must decide whether to go against his advice and notify Sir Robert that they have disagreed about the best solution. Additionally, Krystyna has begun to wonder whether she has a responsibility to future residents of the building who will be unaware of any potential dangers related to the windows. Meanwhile, time is moving on and there are other deadlines related to the project that she must turn her focus to and complete.
Optional STOP for questions and activities:
The Society of Construction Law’s Statement of Ethical Principles advises “provid[ing] information and warning of matters . . . which are of potential detriment to others who may be adversely affected by them.”
2. Discussion: If Krystyna simply warns them, is her ethical responsibility fulfilled?
3. Activity: Map the value conflicts and trade-offs Krystyna is dealing with. Use theMapping Actors and Processes article in the Learning and teaching resources section.
4. Discussion: If you were Krystyna, what would you do and why?
5. Discussion: In what ways are the professional codes helpful (or not) in resolving this dilemma?
6. Discussion: ’Advises’ or ‘requires’? What’s the difference between these two words in their use within a code of ethics? Could an engineer’s response to a situation based on these codes of ethics be different depending on which of these words is used?
Enhancements:
An enhancement for this case study can be found here.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.