EPC Launches Inclusive Employability Toolkit to Advance Equity, Diversity, and Inclusion in Engineering Education
London, 30 September 2025 – The Engineering Professors’ Council (EPC) has launched a new Inclusive Employability Toolkit designed to support engineering educators and students in embedding Equity, Diversity, and Inclusion (EDI) principles into employability learning.
Developed with funding from the Royal Academy of Engineering Impact Fund, and in partnership with Canterbury Christ Church University, Wrexham University, Equal Engineers, and the Royal Academy of Engineering, the Toolkit addresses persistent inequities in engineering graduate outcomes and workplace progression.
The Toolkit equips the engineering higher education community to:
Empower employers and students to navigate employment challenges
Educate on employability, EDI, and allyship
Equip individuals to foster inclusive workplaces
Encourage reflection, growth, and engagement with EDI initiatives
Tackling Inequalities in Graduate Outcomes
Despite progress, disparities remain in engineering graduate outcomes. According to the Office for Students (2024), 73% of white male engineering graduates progress into employment compared with 71.6% of female graduates, 68.7% of Asian graduates, and 69.8% of Black graduates. Inequities are also evident for LGBTQ+ students and those from lower socio-economic backgrounds.
Bias in recruitment practices can compound these issues. Research indicates that AI-based recruitment may amplify discrimination, particularly affecting women and minority candidates. Diversity, however, remains a priority for the profession: 81% of engineers say it is an important factor when considering an employer, and 82% of female applicants cite the presence of role models as significant (Royal Academy of Engineering, 2024).
Impact on Students
Early classroom use of the Toolkit has shown positive results. Academics report that it helps students develop reflective practice, engage critically with employability resources, and recognise their personal responsibility in shaping career journeys. Students have also reported improvements in collaboration and group work:
“It has improved me… [Previously] I didn’t even think about any steps [when completing coursework or group work]. I used to just jump straight into [it]… even in our group activity.” — Level 4 CCCU Student A
“[The Toolkit’s game activity] built quite a lot of patience in me… I could give [peers in group work] more time, explain things in more detail, and help them instead of arguing over the work.” — Level 4 CCCU Student B
“I’m still finding my feet [at university] with interacting in a group setting… I think a lot more about other people… I’m constantly conscious [of this] in group work.” — Level 4 CCCU Student C
The Inclusive Employability Toolkit provides a practical framework to embed EDI into engineering education, helping students and educators alike to build more inclusive, equitable, and reflective learning and workplace environments.
For further information, please contact: Contact: Johnny Rich Email: press@epc.ac.uk
The EPC’s Inclusive Employability Toolkit is supported by Canterbury Christ Church University, Equal Engineers, The Royal Academy of Engineering, and Wrexham University. This resource is designed to help engineering educators integrate EDI principles and practices in engineering, computing, design and technology – across education, employer engagement, career preparation, and progression into the workplace.
Introduction
This resource was formerly known as the EDGE Toolkit, and was developed in partnership with Canterbury Christ Church University, Wrexham University, Equal Engineers and The Royal Academy of Engineering. The two Universities have now joined forces with the Engineering Professors Council to launch the newly renamed Inclusive Employability Toolkit, working together to improve usability and ensure broader access to this valuable resource.
The Inclusive Employability Toolkit supports inclusive employment in engineering, computing, design, and technology, enhancing diversity and authentic voices in the workplace.
Our commitment to fostering an environment where every individual feels valued and empowered has led us to develop the Inclusive Employability Toolkit. This comprehensive toolkit is designed to guide students, faculty, and staff in understanding and practicing EDI principles, ensuring that our campus is a place where diversity thrives and every voice is heard.
The Inclusive Employability Toolkit is more than just a set of resources – it’s a commitment to continuous learning, understanding, and action. We invite you to explore the toolkit, participate in the activities, and engage with the wealth of available resources. Together, we can build an engineering community that truly reflects the world’s diversity, united in our pursuit of equity and inclusion.
Begin by exploring this page; it provides a comprehensive background on the importance of EDI in the world of engineering and sets the stage for your learning journey.
Welcome
The world is incredibly diverse, but navigating the complexities of equity, diversity, and inclusion (EDI) can be challenging, especially for minority groups who face significant hurdles. In the video below, Professor Anne Nortcliffe invites you to explore the Inclusive Employability Toolkit, offering guidance on how to make the most of its features and resources.
The Inclusive Employability Toolkit aims to
Empower individuals to circumvent hurdles and deal with challenges they may face.
Educate together core concepts of EDI allyship to benefit of all of society.
Equip individuals with the tools and knowledge to enable inclusive environment. Encourage individual ongoing reflection, growth, and active participation in EDI initiatives.
Contents
How to use this toolkit effectively:
Embarking on your journey through Inclusive Employability Toolkit is a step towards fostering an inclusive and diverse environment within the engineering community. This guide will help you navigate the toolkit, ensuring you make the most of the resources, challenges, and learning opportunities it offers.
Activities: Explore each activity, designed to deepen your understanding and application of EDI principles across contexts. You can also explore our University Career Services Library here, where you’ll find a range of helpful resources.
Reflect and grow:Use this tool to gauge your current understanding and identify areas for growth.
Next steps: Guidance on continuing your EDI learning journey, including resources from Wenite and Equal Engineers.
Case studies: Case studies on inclusive employability for application in educational and teaching contexts.
Blogs: Personal experience, news and updates on the Inclusive Employability Toolkit.
Get involved:A guide to how you can contribute to the Inclusive Employability Toolkit and community.
Our contributors: We’d like to thank all our contributors for making this toolkit such a valuable resource.
Our supporters: We’d like to thank Canterbury Christ Church University, Equal Engineers, The Royal Academy of Engineering and Wrexham University for supporting this project.
Goals
🌍 Diversity matters: The toolkit emphasizes that diverse voices enrich the workplace, offering unique perspectives that drive innovation and creativity. 💪 Empowering students: By focusing on technical students, the toolkit equips them with the skills and confidence to navigate their career paths successfully. 🎤 Encouraging authenticity: Bringing your authentic voice to work fosters an environment of trust and openness, leading to stronger team dynamics. 🤝 Role of allies: Supporting individuals from minority backgrounds (female, LGBTQ, disabled, mature, low socio-economic status, global majority) not only aids their success but enriches the workplace culture for everyone involved. 📈 Business impact: Companies that prioritise equity and inclusion see improved employee retention and higher morale, translating into better performance metrics. 🛠️ Better solutions: Diverse teams in engineering and technology are proven to develop more effective solutions, addressing a wider range of needs and challenges. 🏛️ Societal benefits: Promoting equity and inclusion not only benefits organisations but also contributes to a more just and equitable society overall.
Licensing
To ensure that everyone can use and adapt the toolkit in a way that best fits their teaching or purpose, most of this work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Under this licence you are free to share and adapt this material, under terms that you must give appropriate credit and attribution to the original material and indicate if any changes are made.
Further details
CommitmentOur roleWhat we knowChallenges in the industryIndustry EmployersStudent feedback
To leading the charge in creating new opportunities for diversity and inclusion of engineering, technology and design to address regional skills gap. Our vision for all engineering, technology and design students regardless of their background have opportunity to thrive in engineering, technology and design industry.
As game changers we have researched and developed the Inclusive Employability Toolkit to empower students and employers in building bridges between academia, students, and industry to enable gainful graduate employment and more inclusive, dynamic, and diverse opportunities in engineering, technology and design.
A higher proportion of Global Majority and low socioeconomic students’ study at Post-92 universities, and yet, employment outcomes for graduates from these universities often lag behind their Russell Group peers.
Ethnicity, gender, and socioeconomic factors continue to shape the employability landscape However more inclusive engineering, technology and design teams create better solutions to problems for all of society.
Gain insights from industry employers as they discuss the toolkit and its impact.
Gain insights from students as they reflect on the usefulness and impact of the toolkit.
Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.
The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Assessment. This example demonstrates how the questions provided in Assessing ethics: Rubric can be used to assess the competencies stipulated at each level.
Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).
This example demonstrates how the questions provided in the accompanying rubric can be used to assess the competencies stipulated at each level. Although we have focused on ‘Water Wars’ here, the suggested assessment questions have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma.
Year 1
Personal values: What is your initial position on the issue? Do you see anything wrong with how DSS are using water? Why, or why not?
Students should provide a stance, but more importantly their stance should be justified. In this instance this may involve reference to common moral values such as environmental sustainability, risk associated with power issues and questions of ownership.
Professional responsibilities: What ethical principles and codes of conduct are relevant to this situation?
Students should refer to relevant principles (e.g. from the Joint Statement of Ethical Principles). For example, in this case some of the relevant principles may include (but not be limited to) “protect, and where possible improve, the quality of built and natural environment”, “maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations” and “take due account of the limited availability of natural resources”.
Ethical principles and codes of conduct can be used to guide our actions during an ethical dilemma. How does the guidance provided in this case align/differ with your personal views? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)
Students’ answers will depend upon those given to the previous questions but should include some discussion of similarities and differences between their own initial thoughts and principles/codes of conducts, and allude to the tensions involved in ethical dilemmas and the impact on decision making.
What are the moral values involved in this case and why does it constitute an ethical dilemma? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)
Students should be able to identify relevant moral values and explain that an ethical dilemma constitutes a problem in which two or more moral values or norms cannot be fully realised at the same time.
There are two (or a limited number of) options for action and whatever they choose they will commit a moral wrong. The crucial feature of a moral dilemma is not the number of actions that are available but the fact that all possible actions are morally unsatisfactory.
What role should an engineer play in influencing the outcome? What are the implications of not being involved? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)
Engineers are responsible for the design of technological advancements which necessitate data storage. Although this brings many benefits, engineers need to consider the adverse impact of technological advancement such as increased water use. Students may therefore want to consider the wider implications of data storage on the environment and how these can be mitigated.
Year 2
Formulate a moral problem statement which clearly states the problem, its moral nature and who needs to act. (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)
An example could be: “Should the civil engineer working for DSS remain loyal to the company and defend them against accusations of causing environmental hazards, or defend their water rights and say that they will not change their behaviour”. It should be clear what the problem is, the moral values at play and who needs to act.
Stakeholder mapping: Who are all the stakeholders in the scenario? What are their positions, perspective and moral values?
Below is a non-exhaustive list of some of the relevant stakeholders and values that may come up.
Stakeholder
Perspectives/interests
Moralvalues
DataStorageSolutions (DSS)
Increasing production in a profitable way; meeting legal requirements; good reputationtomaintain/grow customer base.
Representviewsofthose concerned about biodiversity. May be interested in opening ofgreenbattery plant.
Human welfare; environmental sustainability;justice.
LocalCouncil
Represent views of all stakeholders and would needtoconsidereconomic benefits of DSS (tax and employment), the need of theuniversityandhospital, as well as the needs of local farmers and environmentalists. May beinterestedinopeningof green battery plant.
This may depend on their beliefs as an individual, their employment status and their use of services such as the hospital and university. Typically interested in low taxes/responsible spending of public money. May be interested in opening of green batteryplant.
Reliable storage. They mayalsobeinterestedin being part of an ethical supply chain.
Trust; privacy; accountability;autonomy.
Non-humanstakeholders
Environmental sustainability.
What are some of the possible courses of action in the situation. What responsibilities do you have to the various stakeholders involved? What are some of the advantages and disadvantages associated with each? (Reworded from case study.)
Students should provide a stance but may recognise the tensions involved. For example, at a micro level, tensions between loyalty to the profession and loyalty to the company/personal financial stability. Responsibilities to fellow employees may include the degree to which you risk their jobs by being honest. They may also feel that they should protect environmental and natural resources.
At a macro level, they may consider the need for engineers to inform decisions regarding issues that engineering and technology raise for society (e.g. increased water being needed for data storage) and listen to the aspirations and concerns of others, and challenging statements or policies that cause them professional concern.
What are the relevant facts in this scenario and what other information would you like to help inform your ethical decision making? (This is a question we had created in addition to those provided within the case study to meet the requirements stipulated in the accompanying rubric.)
Students should identify which facts within the case study are relevant in terms of making an ethical decision. In this case, some of the relevant facts may include:
Water use permissible by law (“the data centre always uses the maximum amount legally allotted to it.”)
This centre manages data which is vital for the local community, including the safe running of schools and hospitals, and that its operation requires sufficient water for cooling.
In more arid months, the nearby river almost runs dry, resulting in large volumes of fish dying.
Water levels in farmers’ wells have dropped, making irrigation much more expensive and challenging.
A new green battery plant is planned to open nearby that will create more data demand and has the potential to further increase DSS’ water use.
Obtaining water from other sources will be costly to DSS and may not be practically possible, let alone commercially viable.
Studentsshouldbeawarethatincompleteinformationhindersdecisionmakingduring ethical dilemmas, and that in some cases, further information will be needed to help inform decisions. In this case, some of the questions may pertain to:
Exactly how much water is being used and the legal rights.
Relationship between farmer and DSS/contractual obligations.
How costly irrigation is to the farmers (economic impact), as well as the knock-on impact to their business and supply chain.
How many people DSS employ and how important they are for local economy.
Detail regarding biodiversity loss and its wider impact.
How likely it is that the green battery plant will open and whether DSS is the only eligible supplier.
How much the green battery plant contract is worth to DSS.
How much water the green battery plant will use in the case that DSS get the contract.
Whether DSS is the only option for hospital and university.
What will happen if the services DSS provide to the hospital and university stop or becomes unreliable.
Year 2/Year 3
(At Year 2, students could provide options; at Year 3 they would evaluate and form a judgement.)
Make use of ethical frameworks and/or professional codes to evaluate the options for DSS both short term and long term. How do the uncertainty and assumptions involved in this case impact decision making?
Students should list plausible options. They can then analyse them with respect to different ethical frameworks (whilst we don’t necessary make use of normative ethical theories, analysis according to consequences, intention or action may be a useful approach to this). Below we have included a non-exhaustive list of options with ideas in terms of analysis.
Option
Consequences
Intention
Action
Keepusing water
May lead to expansion and profit of DSS and thus tax revenue/employment and supply.
Reputational damage of DSS may increase. Individual employee piece of mind may be at risk.
Farmers still don’t have water and biodiversity still suffers which may have further impact long term.
Intentionbehindaction notconsistentwith that expected by an engineer, other than with respect to legality
Actionfollowslegalnormsbut not social norms such as good will and concern for others.
Keep using the water but limit furtherwork
May limit expansion and profit of DSS and thus tax revenue/employment and supply.
Farmers still don’t have water and biodiversity still suffers and may have further impact long term. This could still result in reputation damage.
Intentionbehindaction partially consistent with that expected by an engineer.
Actionfollowslegalnormsbut only partially follow social norms such as good will and concern for others.
Makeuseof other sources of water
Data storage continues.
Potential for reputation to increase.
Potential increase in cost of water resulting in less profit potentially less tax revenue/employment.
Farmers have water and biodiversity may improve.
Alternativewatersourcesmaybeassociated with the same issues or worse.
Intention behind action seems consistent with that expected by an engineer. However, this is dependent upon
whether they chose to source sustainablewaterwithlessimpact on biodiversity etc.
Thismaybedependenton the degree to which DSS proactively source sustainable water.
Reduce worklevels or shut down
Impact on profit and thus tax revenue/employment and supply chain. Farmers have water and biodiversity may improve.
May cause operational issues for those whose data is stored.
Seems consistent with those expected of engineer. Raises questions more generally about viability and feasibility of datastorage.
Action doesn’t follow social norms of responsibility to employeesandshareholders.
Investigate othercooling methods which don’t require as much water/don’t take on extra work untilanother method identified.
May benefit whole sector.
May cause interim loss of service.
This follows expectations of the engineeringprofession in terms of evidence-baseddecisionmaking and consideration for impact of engineering in society.
It follows social norms in termsofresponsibledecision making.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr. Natalie Wint (UCL); Dr. William Bennett (Swansea University).
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate ethics into the engineering and design curriculum or module design.
As engineering educators, it is uncommon that we were taught or assessed on ethical thinking within our own degree programmes. Although we may be able to think of plenty of ethical scenarios from our own experience, we may not necessarily be able to identify the best way to assess the ability of a student to engage in ethical thinking in a systematic and robust manner, something which is critical for both the evaluation of learning and teaching (as explained further here).
Furthermore, the complex, ill-structured nature of ethical dilemmas, which often involve a variety of diverse stakeholders, perspectives and cultural norms, necessitates an ability to navigate tensions and compromise. This results in situations in which multiple possible courses of action can be identified, meaning that there is not one single ‘good’ or ‘correct’ answer to ethical questions posed.
It is also necessary to evidence that students are able to meet the criteria outlined by accreditation bodies. Within the UK context, it is the Engineering Council (EC) that is responsible for providing the principal framework which guides engineering course content and sets accreditation threshold standards of competence through AHEP, the Accreditation of Higher Education Programs, as part of The UK Standard for Professional Engineering Competence (UKSPEC).
The knowledge, skills and attributes expected of engineering graduates constantly shifts, and since the advent of AHEP in 2004 there has been increased focus on strengthening design, and consideration for economic, ethical, environmental, legal, and social factors.
In-keeping with a need to assess engineering ethics in a robust manner, this article provides step-by-step considerations for designing assessment and is primarily intended to be used in conjunction with an existing ethics case study, such as those available through the EPC’s Engineering Ethics Toolkit (we later make use of the existing ‘Water Wars’ case study to exemplify the points made).
The guidance and accompanying rubric have been designed in a way that encourages students to grapple with the numerous tensions involved in ethical decision making, and the focus is thus on assessment of the decision-making process as opposed to the ‘answer’ given, the decision made or the outcome of the scenario.
Assessment purpose:
The first consideration is the year group you are assessing, and the competencies they have already acquired (for example in the case of Level 5 and Level 6 students). You may want to consider the (partial) learning outcome (LO) as defined by AHEP4 LO8 (Table 1). Whilst this shouldn’t act to limit what you choose to assess, it is a good place to start in terms of the level of ability your students should be demonstrating.
Note that the Engineering Council (EC) claim “This fourth edition of AHEP has reduced the total number of learning outcomes in order to focus attention on core areas, eliminate duplication and demonstrate progression between academic levels of study”. They are thus interested in the differences between level. You are recommended to make this explicit in module specification and associated assessment description. Key differentiations are shown in Table 1. For example, at Level 5 you may be more interested in students’ abilities to identify an ethical situation, whereas at Level 6 you may want them to be able to reason through options or make a judgement.
Table 1: AHEP4 Learning Outcomes
Year 1 (Level 4)
Year 2 (Level 5)
Year 3 (Level 6)
M Level (Level 7)
LO8
Apply ethical principles and recognise the need for engineers to exercise their responsibilities in an ethical manner and in line with professional codes of conduct.
Identify ethical concerns and make reasoned ethical choices informed by professional codes of conduct.
Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct.
Identify and analyse ethical concerns and make reasoned ethical choices informed by professional codes of conduct (MEng).
Interpretation
Awareness of issues, obligations, and responsibilities; sensitising students to ethical issues.
Ability to resolve practical problems; identify ethical issues and to examine opposing arguments.
Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments.
Ability to resolve practical problems; identify ethical issues and examine and evaluate/critique opposing arguments.
The final row in Table 1 provides our interpretation of the LO, making use of language similar to that within the EPC’s Ethics Learning Landscape. We believe this is more accessible and more easily operationalised.
The following steps outline the process involved in designing your assessment. Throughout we make reference to an existing EPC case study (Water Wars) to exemplify the points made.
1.) The first consideration is how much time you have and how much of the case study you want to use. Many of the case studies have multiple stages and could be spread over several sessions depending on time constraints.
2.) Linked to this is deciding whether you want to assess any other LOs within the assessment. For example, many of the case studies have technical elements. Furthermore, when using reports, presentations, or debates as methods of assessment you may also want to assess communication skills. Whatever you decide you should be careful to design the assessment in such a way that assesses LO8 in a robust manner, whereby the student could not pass the element without demonstrating they have met the individual LO to the required level (this is a key requirement to meet AHEP4). For example, in an assessment piece where ethics is worth 50% of the grade, a student could still pass the element as a whole (with 40%) by achieving high scores in the other grading criteria without the need to demonstrate their ability to meet LO8.
3.) Once you are aware how much of a case study you have time for and have decided which LOs (other than LO8) you are assessing, you should start to determine which questions are aligned with the level of study you are considering and/or the ability of the students (for example you may query whether students at Level 5 have already developed the skills and competencies suggested for Level 4). At each level you can make use of the accompanying rubric to help you consider how the relevant attributes might be demonstrated by students. As an example, please refer to the accompanying document where we provide our thoughts about how we would assess Water Wars at Levels 4-6.
4.) Once you have selected questions you could look to add any complementary activities or tasks (that do not necessarily have to be assessed) to help the students broaden their understanding of the problem and ability to think through their response. For example, in the Water Wars case study, there are multiple activities (for example Part 1, Q3 and Part 2, Q3, Q4, Q6, Q7) aimed at helping students understand different perspectives which may help them to answer further ethical questions. There are also technical questions (for example Part 1, Q5) which help students understand the integrated nature of technical and social aspects and contextualise scenarios.
5.) Once you have selected your questions you will need to make a marking rubric which includes details of the weightings given for each component of the assessment. (This is where you will need to be careful in selecting whether other LOs are assessed e.g., communication, and whether a student can pass the assessment/module without hitting LO8). You can then make use of the guidance provided in terms of expectations at a threshold and advanced level, to write criteria for what is expected at each grade demarcation.
Although we have focused on ‘Water Wars’ here, the suggested assessment questions within the accompanying rubric have been designed in such a way that they can be used in conjunction with the case studies available within the toolkit, or with another case study that has been created (by yourself or elsewhere) to outline an ethical dilemma.
Other considerations:
As acknowledged elsewhere within the toolkit (see here), there are “practical limits on assessment” (Davis and Feinerman, 2012) of ethics, including demands on time, pressure from other instructors or administrators, and difficulty in connecting assessment of ethics with assessment of technical content. These are some other considerations you may wish to make when planning assessment.
• Number of students and/or marking burden: With large student numbers you may be more inclined to choose a group assessment method (which may also be beneficial in allowing students to share perspectives and engage in debate), or a format which is relatively quick to mark/allows automated marking (e.g. a quiz). In the case of group work it is important to find a way in which to ensure that all students within each group meet the LO in a robust manner. Whilst assessment formats such as quizzes may be useful for assessing basic knowledge, they are limited in their ability to ensure that students have developed the higher-level competencies needed to meet the LO at output level.
• Academic integrity: As with any LO there is a need to ensure academic integrity. This may be particularly difficult for large cohorts and group work. You may wish to have a range of case studies or ensure assessment takes place in a controlled environment (e.g. an essay/report under exam conditions). This is particularly important at output level where you may wish to provide individual assessment under exam conditions (although competencies may be developed in groups in class).
• Logistics/resourcing: Many of the competencies associated with ethics are heavily linked to communication and argumentation, and answers tend to be highly individual in nature. Role play, debates, and presentations may therefore be considered the most suitable method of assessment. However, their use is often limited by staffing, room, and time constraints. Many of these methods could, instead, be used within class time to help students develop competencies prior to formal assessment. You may also choose to assess ethics in another assessment which is more heavily resourced (for example design projects or third year projects).
• Staged assessment: The ethical reasoning process benefits from different perspectives. It may therefore be desirable to stage assessment in such a way that individuals form their own answer (e.g. a moral problem statement), before sharing within a group. In this way a group problem statement, which benefits from multiple perspectives and considerations, can be formed. Similarly, individuals may take the role of an individual stakeholder in an ethical dilemma before coming together as a group.
• Use of exams: Whilst we see an increasing movement away from exams, we feel that a (closed book) exam is a suitable method of assessment of ethics based LOs in the situation that:
o There is a need to ensure academic integrity, and that each student meets the LO at output level.
o The exam is assessing competencies (e.g. ethical argumentation) as opposed to knowledge.
o All the relevant information needed is provided and there is limited content for students to learn in advance (aside from argumentation, justification, decision making skills etc developed in class).
Their use may therefore be limited to Level 6.
Rubric
This document provides the partial AHEPLO8 at each level. The competences involved in meeting this LO have then been identified, along with what students would need to demonstrate to evidence meeting a threshold level, or advanced level. Example questions are given to show how students may demonstrate their competence at each level. For each question there is an explanation of how the question supports achievement of LO at that level. The rubrics should be used alongside the accompanying guidance document which offers practical suggestions and advice.
Year 1: This year focuses on developing awareness of issues, obligations, and responsibilities, and sensitising students to ethical issues.
Year 2: This year focuses on developing the ability to identify ethical issues and to examine opposing arguments, all of which is needed to examine, analyse, and evaluate ethical dilemmas in Year 3.
Year 3: This year focuses on ensuring that students can satisfy LO8 at an output level in a robust manner.
References:
Davis, M. and A. Feinerman. (2012). ‘Assessing graduate student progress in engineering ethics’, Science and Engineering Ethics, 18(2), pp. 351-367.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: The Lemelson Foundation; Cynthia Anderson, Sarah Jayne Hitt and Jonathan Truslove (Eds.)
Topic: Accreditation mapping for sustainability in engineering education.
Tool type: Guidance.
Engineering disciplines: Any.
Keywords: Accreditation and standards; Learning outcomes; AHEP; Student support; Sustainability; Higher education; Students; Teaching or embedding sustainability.
Sustainability competency: Critical thinking; Systems thinking; Integrated problem-solving; Collaboration.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4). See details about mapping within the guide.
Related SDGs: SDG 12 (Responsible consumption and production).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Learning and teaching notes:
This guide, currently under review by the Engineering Council, maps the Engineering for One Planet (EOP) Framework to AHEP4. The EOP Framework is a practical tool for curricular supplementation and modification, comprising 93 sustainability focused learning outcomes in 9 topic areas.
The Lemelson Foundation, VentureWell, and Alula Consulting stewarded the co-development of the EOP Framework with hundreds of individuals mostly situated in the United States. Now, in collaboration with the EPC and Engineers Without Borders UK, the EOP Framework’s student learning outcomes have been mapped to AHEP4 at the Chartered Engineer (CEng) level to ensure that UK educators can more easily align these outcomes and corresponding resources with learning activities, coursework, and assessments within their modules.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Dr Homeira Shayesteh (Senior Lecturer/Programme Leader for Architectural Technology, Design Engineering & Mathematics Department, Faculty of Science & Technology, Middlesex University),Professor Jarka Glassey(Director of Education, School of Engineering, Newcastle University).
Topic: How to integrate the SDGs using a practical framework.
Type: Guidance.
Relevant disciplines: Any.
Keywords: Accreditation and standards; Assessment; Global responsibility; Learning outcomes; Sustainability; AHEP; SDGs; Curriculum design; Course design; Higher education; Pedagogy.
Sustainability competency: Anticipatory; Integrated problem-solving; Strategic.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4):The Engineer and Society(acknowledging that engineering activity can have a significant societal impact) andEngineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4hereand navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Authentic assessment; Active pedagogies and mindset development.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum, module, and / or programme design.
Premise:
The critical role of engineers in developing sustainable solutions to grand societal challenges is undisputable. A wealth of literature and a range of initiatives supporting the embedding of sustainability into engineering curricula already exists. However, a practicing engineering educator responsible for achieving this embedding would be best supported by a practical framework providing a step-by-step guide with example resources for either programme or module/course-level embedding of sustainability into their practice. This practical framework illustrates a tested approach to programme wide as well as module alignment with SDGs, including further resources as well as examples of implementation for each step. This workflow diagram provides a visual illustration of the steps outlined below. The constructive alignment tool found in the Ethics Toolkit may also be adapted to a Sustainability context.
b. Review government targets and discipline-specific guidance.
c. Review accreditation body requirements such as found in AHEP4 and guidance from professional bodies. For example, IChemE highlights the creation of a culture of sustainability, not just a process of embedding the topic.
e. Consider convening focus groups with employers in general and some employers of course alumni in particular. Carefully select attendees to represent a broad range of employers with a range of roles (recruiters, managers, strategy leaders, etc.). Conduct semi-structured focus groups, opening with broad themes identified from steps a through d. Identify any missing knowledge, skills, and competencies specific to particular employers, and prioritize those needed to be delivered by the programme together with the level of competency required (aware, competent, or expert).
2. Look back. The outcome of this phase is a programme map (see appendix) of the SDGs that are currently delivered and highlighting gaps in provision.
b. Conduct a SWOT analysis as a team, considering the strengths, weaknesses, opportunities, and threats of the programme from the perspective of sustainability and relevance/competitiveness.
c. Convene an alumni focus group to identify gaps in current and previous provision, carefully selecting attendees to represent a broad range of possible employment sectors with a range of experiences (fresh graduates to mid-career). Conduct semi-structured discussions opening with broad themes identified from steps 1a-e. Identify any missing knowledge, skills, and competencies specific to particular sectors, and those missing or insufficiently delivered by the programme together with the level of competency required (aware, competent, or expert).
d. Convene a focus group of current students from various stages of the programme. Conduct semi-structured discussions opening with broad themes identified from steps 1a-e and 2a-c. Identify student perceptions of knowledge, skills, and competencies missing from the course in light of the themes identified.
e. Review external examiner feedback, considering any feedback specific to the sustainability content of the programme.
3. Look ahead. The goal of this phase is programme delivery that is aligned with the SDGs and can be evidenced as such.
b. Revise module descriptors so that there are clear linkages to sustainability competencies or the SDGs generally within the aims of the modules.
c. Revise learning outcomes according to which SDGs relate to the module content, projects or activities. The Reimagined Degree Map and the Constructive Alignment Tool for Ethics provides guidance on revising module outcomes. An example that also references AHEP4 ILOS is:
“Apply comprehensive knowledge of mathematics, biology, and engineering principles to solve a complex bioprocess engineering challenge based on critical awareness of new developments in this area. This will be demonstrated by designing solutions appropriate within the health and safety, diversity, inclusion, cultural, societal, environmental, and commercial requirements and codes of practice to minimise adverse impacts (M1, M5, M7).”
e. Create an implementation plan with clear timelines for module descriptor approvals and modification of delivery materials.
For module-wide alignment:
1. Look around. The outcome of this phase is a confirmed approach to embedding sustainability within a particular module or theme.
a. Seek resources available on the SDGs and sustainability teaching in this discipline/theme. For instance, review these examples for Computing, Chemical Engineering and Robotics.
b. Determine any specific guidelines, standards, and regulations for this theme within the discipline.
2. Look back. The outcome of this phase is a module-level map of SDGs currently delivered, highlighting any gaps.
b. Conduct a SWOT analysis as a module team that considers the strengths, weaknesses, opportunities, and threats of the module from the perspective of sustainability and relevance of the module to contribute to programme-level delivery on sustainability and/or the SDGs.
c. Review feedback from current students on the clarity of the modules links to the SDGs.
d. Review feedback from external examiners on the sustainability content of the module.
3. Look ahead.
a. Create introduction slides for the modules that explicitly reference how sustainability topics will be integrated.
b. Embed specific activities involving the SDGs in a given theme, and include students in identifying these. See below for suggestions, and visit the Teaching resources in this toolkit for more options.
Appendix:
A. Outcome I.2 (programme level mapping)
B. Outcome II.5 (module level mapping) – same as above, but instead of the modules in individual lines, themes delivered within the module can be used to make sure the themes are mapped directly to SDGs.
C. II.6.b – Specific activities
Activity 1: Best carried out at the start of the module and then repeated near the end of the module to compare students perception and learning. Split students into groups of 3-4, at the start of the module use the module template (attached as a resource) to clearly outline the ILOs. Then present the SDGs and ask students to spend no more than 5 min identifying the top 3 SDGs they believe the material delivered in the module will enable them to address. Justify the selection. Can either feed back or exchange ideas with the group to their right. Capture these SDGs for comparison of the repeat exercise towards the end of the module. How has the perception of the group changed following the delivery of the module and why?
Activity 2: Variation on the above activity – student groups to arrange the SDGs in a pyramid with the most relevant ones at the top, capture the picture and return to it later in module delivery
Activity 3: Suitable particularly for the earlier stages. Use https://go-goals.org/ to increase the general awareness of SDGs.
Activity 4: The coursework geared to the SDGs, with each student choosing a goal of their choice and developing a webmap to demonstrate the role of module-relevant data and analysis in tackling that goal.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving, Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Authentic assessment; Active pedagogies and mindset development. The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels of higher education looking to embed and integrate sustainability into curriculum design. It may also be of interest for students practising lifelong learning to articulate and explore how their learning translates into competency development as they embark on their careers.
Premise:
Today we know that how we engineer is changing – and this change is happening at a quicker pace than in previous decades. The decisions engineers make throughout their careers shape the world we all inhabit. Consequently, the education of engineers has a profound impact on society. Ensuring our degrees are up to date is of pressing importance to prepare all future practitioners and professionals. Arguably, it is especially important for engineers to act sustainably, ethically and equitably.
How do engineers understand their roles when sustainability becomes a key driver in the context of their work? What does sustainability look like in learning journeys, and how can it be incorporated into assessments? This article does not advocate for simply adding ‘sustainability’ to degrees; rather, it encourages the connection between sustainability competencies and engineering assessments.
Developing 21st-century engineers
Choosing to become an engineer is a great way to be useful to society. Studying an engineering degree can develop what people can do (skills), what they know (knowledge) and how they think (mindset), as well as open up a diverse range of career opportunities.
The path to becoming an engineer can start at university (though there are other routes in). Weaving in a focus on globally responsible engineering throughout a degree course is about embracing the need to develop a broader set of competencies in engineers and expand the types of projects they practise on during their degree to reflect the problems they may encounter during their career.
This doesn’t mean that engineering degrees as they are aren’t valuable or useful. It’s about strengthening the building blocks of degrees to ensure that 21st-century engineers have space to play their role in addressing 21st-century societal challenges. These building blocks are what learning outcomes are prioritised, what pedagogies are used, the types of projects students work on, who they work with and the way we assess learning. All of these elements can be aggregated to develop competence in sustainable engineering practice.
What are sustainability competency frameworks saying?
There are many frameworks exploring what are the competencies most needed today (such as UNESCO Education for Sustainable Development competencies, EU GreenComp, Inner Development Goals). Many frameworks are calling for similar things that allow us to shift focus, attention and energy onto how to truly develop a person over the three to five plus years of experience they might gain at university.
By designing education to meet learning outcomes, you build and evidence a range of competencies, including developing the mindsets of learners. Practically, it is the use of different competency frameworks, and the associated updates to learning outcomes, and how we deliver education and assessment that really matters. The table below, in the second column, synthesises various competency frameworks to clearly articulate what it means a learner can then do. Rather than argue different frameworks, focusing on what a student can do as a result is really key.
By reading through this table, you can see that this is more than just about ‘sustainability’ – these are useful things for a person to be able to do. Ask yourself, what if we don’t develop these in our graduates? Will they be better or worse off?
Graduates can then build on this learning they have had at university to continue to develop as engineers working in practice. The Global Responsibility Competency Compass for example points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves. It is made up of 12 competencies and is organised around the four guiding principles of global responsibility – Responsible, Purposeful, Inclusive and Regenerative.
What needs to shift in engineering education?
The shifts required to the building blocks of an engineering degree are:
To adapt and repurpose learning outcomes.
To integrate more real-world complexity within project briefs.
To be excellent at active pedagogies and mindset development.
To ensure authentic assessment.
To maximise cross-disciplinary experience and expertise.
All of the above need to be designed with mechanisms that work at scale. Let’s spotlight two of these shifts, ‘to adapt and repurpose learning outcomes’ and ‘to integrate authentic assessment’ so we can see how sustainability competence relates.
Adapt and repurpose learning outcomes.
We can build on what is already working well within a degree to bring about positive changes. Many degrees exhibit strengths in their learning outcomes such as, developing the ability to understand a concept or a problem and apply that understanding through a disciplinary lens focused on simple/complicated problems. However, it is crucial to maintain a balance between addressing straightforward problems and tackling more complex ones that encourage learners to be curious and inquisitive.
For example, a simple problem (where the problem and solution are known) may involve ‘calculating the output of a solar panel in a community’. A complex problem (where the problem and solution are unknown) may involve ‘how to improve a community’s livelihood and environmental systems, which may involve exploring the interconnectedness, challenges and opportunities that may exist in the system.
Enhancing the learning experience by allowing students to investigate and examine a context for ideas to emerge is more reflective of real-world practice. Success is not solely measured by learners accurately completing a set of problem sets; rather, it lies in their ability to apply concepts in a way that creates a better, more sustainable system.
See how this rebalancing is represented in the visual below:
Figure 2. Rebalancing learning within degrees to be relevant to the future we face. Source: Engineers Without Borders UK.
Keeping up to date and meeting accreditation standards is another important consideration. Relating the intended learning outcomes to the latest language associated with accreditation requirements, such as AHEP4 (UK), ABET (US) or ECSA (SA), doesn’t mean you have to just add more in. You can adapt what you’ve already got for a new purpose and context. For instance, the Engineering for One Planet framework’s 93 (46 Core and 46 Advanced) sustainability-focused learning outcomes that hundreds of academics, engineering professionals, and other key stakeholders have identified as necessary for preparing all graduating engineers — regardless of subdiscipline — with the skills, knowledge, and understanding to protect and improve our planet and our lives. These outcomes have also been mapped to AHEP4.
Integrate authentic assessment:
It is important that intended learning outcomes and assessment methods are aligned so that they reinforce each other and lead to the desired competency development. An important distinction exists between assessment of learning and assessment as or for learning:
Assessment OF learning e.g. traditional methods of assessment of student learning against learning outcomes and standards that typically measure students’ knowledge-based learning.
Assessment AS/FOR learning e.g. reflective and performance-based (e.g. self-assessments, peer assessments and feedback from educators using reflective journals or portfolios) where the learning journey is part of the assessment process that captures learners’ insights and critical thinking, and empowers learners to identify possibilities for improvement.
Assessment should incorporate a mix of methods when evaluating aspects like sustainability, to bring in authenticity which strengthens the integrity of the assessment process and mirrors how engineers work in practice. For example, University College London and Kings College London both recognise that critical evaluation, interpretation, analysis, and judgement are all key skills which will become more and more important, and making assessment rubrics more accessible for students and educators. Authentic assessment can mirror professional practices, such as having learners assessed within design reviews, or asking students to develop a portfolio across modules.
Engineers Without Borders UK | Assessing competencies through design challenges:
Below is an example of what Engineers Without Borders UK has done to translate competencies into assessment through our educational offerings. The Engineering for People Design Challenge (embedded in-curriculum focuses on placing the community context at the heart of working through real-world project-based learning experiences) and Reshaping Engineering (a co-curricular voluntary design month to explore how to make the engineering sector more globally responsible). The competencies in the Global Responsibility Competency Compass are aligned and evidenced through the learning outcomes and assessment process in both challenges.
Please note – the Global Responsibility Competency Compass points practitioners to the capabilities needed to stay relevant and provides practical ways to develop themselves.
For educators looking to keep curriculum and learning outcomes relevant, the Compass provides a useful framing to inform learning outcomes throughout the curriculum that encourages lifelong learning for emerging engineers or supports the reskilling of engineering professionals (to pursue topics that may have been absent from the user’s formal education), and constantly evolving their competency through educational activities.
For students, this may be of interest as you begin your journey as future engineering professionals and student members of professional engineering institutions exploring what continued professional development you wish to pursue in your careers.
See below an example of the logic behind translating competencies acquired by participants to assessment during the design challenges.
Figure 3. Example of the logic behind translating the Global Responsibility Competency Compass to assessment during the design challenges. Source: Engineers Without Borders UK.
The Competencies developed through the educational offering are orientated around the Global Responsibility Competency Compass to align with the learning journey from undergraduate to practising globally responsible individuals in learners’ future careers.
We then align learning outcomes to the competency and purpose of the design challenge using simple and concise language.
a. Useful resources that were used to help frame, align and iterate the learning outcomes and marking criteria are shared at the end of this article.
The Marking Criteria draws on the assessment methods previously mentioned under ‘Assessment OF’ and ‘Assessment AS/FOR’ while aligning to the context of intended learning i.e. design focussed, individual journals reflecting on the learning journey, and collaborating in teams.
We frame and align key action words from Competency to learning outcome to marking criteria using Bloom’s taxonomy (in Figure 2) to scale appropriately, the context of learning and what the intended outcome of learning/area of assessment would be.
Conclusions:
How your students think matters. How they engage in critical conversations matters. What they value matters. How we educate engineers matters.
These may feel like daunting shifts to make but developing people to navigate our future is important for them, and us. Sustainability competencies are actually about competencies that are useful – the label ‘sustainability’ may or may not help but it’s the underlying concepts that matters most. The interventions that we make to instil these competencies in the learning journeys of future engineers are required – so degrees can be continuously improved and will be valuable over the long term. Making assessment mirror real practice helps with life-long learning. That’s useful in general, not just about sustainability. This is a major opportunity to attract more people into engineering, keep them and enable them to be part of addressing urgent 21st century challenges.
“Sustainability is more than a word or concept, it is actually a culture, and if we aim to see it mirrored in the near future, what better way exists than that of planting it in the young hearts of today knowing they are the leaders of the tomorrow we are not guaranteed of? It is possible.”
2021 South African university student (after participating in the Engineering for People Design Challenge during their degree course)
Useful resources:
There are some excellent resources out there that help us understand and articulate what sustainability competencies and learning outcomes look like, and how to embed them into teaching, learning and assessment. Some of them were used in the example above. Here are some resources that we have found useful in translating the competencies in the Compass into learning outcomes in our educational offerings:
Bloom’s Taxonomy: a hierarchical model that categorises learning objectives into levels of complexity is a useful model to explore the proficiency of learning outcomes (and used in many of the resources in this list). You can use the verbs outlined in Bloom’s Taxonomy to modify or scale up the proficiency of your learning outcomes within the context of the programme and accreditation requirements. This is useful if you are unable to replace or introduce new learning outcomes into your module or programme.
Engineering for One Planet Framework and guide to teaching core learning outcomes: contains a curated list of core and advanced sustainability-focused student learning outcomes to help educators embed sustainability into engineering education, which can be adapted as needed to the context of learning.
Engineers Professors Council Ethics Toolkit Using a constructive alignment tool to plan ethics teaching: a tool to reinforce the ethical dimension of engineering and encourages the ethical development of engineer used at Aston University and endorsed by the CDIO.
UNESCO’s Education for Sustainable Development Goals 2017: emphasises that to develop competencies in sustainable development, education needs to transition to learning that is ‘action-orientated and supports self-directed learning, participation and collaboration, problem-orientation, inter-and transdisciplinarity, and links formal and informal learning together’.
UNESCO’s Engineering for Sustainable Development 2021: describes how the Cynefin framework is a useful way of understanding how teaching and learning methods are combined with the increasing need to understand complexities that nurture different competencies.
The World Economic Forum Future of Skills Report 2020 and 2023: highlights the skills needed for 2025 including creativity, critical thinking and navigating complexity.
Redman et al. (2021) Current practice of assessing students’ sustainability competencies: a review of tools (2021): explores tools are currently used for assessing students’ sustainability competencies and provides guidance to sustainability (science) instructors, researchers, and program directors who are interested in using competencies assessment tools in more informed ways.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Sustainability competency: Integrated problem-solving; Collaboration.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: All.
Reimagined Degree Map Intervention: Adapt learning outcomes; Active pedagogies and mindsets; More real-world complexity; Cross-disciplinarity; Authentic assessment.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Projects, and thus project-based learning, offer valuable opportunities for integrating sustainability education into engineering curricula by promoting active, experiential learning through critical and creative thinking within problem-solving endeavours and addressing complex real-world challenges. Engaging in projects can have a lasting impact on students’ understanding and retention of knowledge. By working on projects related to sustainability, students are likely to internalise key concepts and develop a commitment to incorporating sustainable practices into their future engineering endeavours.
Building a brief:
Project briefs are a powerful tool for integrating sustainability into engineering education through project-based learning. They set the tone, define the scope, and provide the parameters for students to consider sustainability in their engineering projects, ensuring that future engineers develop the knowledge, skills, and mindset needed to address the complex challenges of sustainability.
To ensure sustainability has a central and/or clear role within an engineering project, consider the following as you develop the brief:
1. Sustainability as part of goals, objectives, and requirements. By explicitly including sustainability objectives in the project brief, educators communicate the importance of considering environmental, social, and economic factors in the engineering design and implementation process. This sets the stage for students to integrate sustainability principles into their project work.
2.Context: Briefs should always include the context of the project so that students understand the importance of place and people to an engineered solution. Below are aspects of the context to consider and provide:
What is the central problem for the project?
Where is the problem/project located? What data will be given to students to describe the context of the problem? Why is the context important and how does it relate to expectations of solving of the problem or the project solution
Who are the people directly impacted by the scenario and central to the context? What is the problem that they face and why? How are they associated with the project and why do they need to be considered?
When in time does this scenario/context exist? How does the data or information re. the context support the time of the scenario?
3. Stakeholders: Sustainability is intertwined with the interests and needs of various stakeholders. Project briefs can include considerations for stakeholder engagement, prompting students to identify and address the concerns of different groups affected by the project. This reinforces the importance of community involvement and social responsibility in engineering projects. Below are aspects of the stakeholders to consider and provide:
Who are the main stakeholders (i.e. users) and why are they important to the context? (see above) What are their needs and what are their power positions
Who else should be considered stakeholders in the project? How do they influence the project by their needs, interest and power situations?
Have you considered the earth and its non-human stakeholders, its inhabitants or its landscape?
Do you want to provide this information to the students or is this part of the work you want them to do within the project?
4.Ethical decision-making: Including ethical considerations related to sustainability in the project brief guides students in making ethical decisions throughout the project lifecycle. The Ethics Toolkit can provide guidance in how to embed ethical considerations such as:
Explicitly state ethical expectations and frame decisions as having ethical components.
Prompt and encourage students to think critically about the consequences of their engineering choices on society, the environment, and future generations.
5. Knowns and unknowns: Considering both knowns and unknowns is essential for defining the project scope. Knowing what is already understood and what remains uncertain allows students to set realistic and achievable project goals. Below are aspects of considering the knowns and unknowns aspects of a project brief to consider and provide:
What key information needs to be provided to the students to address the problem given?
What is it that you want the students to do for themselves in the early part of the project – i.e. research and investigation and then in the process of their problem solving and prototyping/testing and making?
6. Engineering design process and skills development: The Project Brief should support how the educator wants to guide students through the engineering design cycle, equipping them with the skills, knowledge, and mindset needed for successful problem-solving. Below are aspects of the engineering design process and skills development to consider and provide:
What process will the students follow in order to come to a final output or problem solution? What result is required of the students (i.e. are they just coming up with concepts or ideas? Do they need to justify and thus technical argue their chosen concept? Do they need to design, build/make and test a prototype or model to show their design and building/making skills as well? Do they need to critically analyse it using criteria based on proof of concept or sustainability goals – ie. It is desirable? Viable? Responsible? Feasible?)
What skills should students be developing through the project? Some possibilities are (depending on how far they expect students to complete the solution), however the sustainability competencies are relevant here too:
a. Research – investigate,
b. Creative thinking – divergent and convergent thinking in different parts of the process of engineering design,
c. Critical thinking – innovation model analysis or other critical thinking tools,
d. Decision making – steps taken to move the project forward, justifying the decision making via evidence,
e. Communication, collaboration, negotiation, presentation,
f. Anticipatory thinking – responsible innovation model AREA, asking in the concept stages (which ideas could go wrong because of a double use, or perhaps thinking of what could go wrong?),
g. Systems thinking.
7.Solution and impact: Students will need to demonstrate that they have met the brief and can demonstrate that they understand the impact of their chosen solution. Here it would need to be clear what the students need to produce and how long it is expected to take them. Other considerations when designing the project brief to include are:
Is the brief for a module or a short activity? What is the ideal number of students in a team? Is it disciplinary-based or interdisciplinary (and in this case – which disciplines would be encouraged to be included).
We would want the students to understand and discuss the trade-offs that they had to consider in their solution.
Important considerations for embedding sustainability into projects:
1. Competences or content?
Embedding and/or developing competences is a normal part of project work. When seen as a set of competences sustainability is crosscutting in the same way as other HE agendas such as employability, global citizenship, decolonisation and EDI. See the Global Responsibility competency compass for an example of how competencies can be developed for engineering practice.
Embedding sustainability content often requires additional material, even if it is only in adapting one of the project phases/outcomes to encourage students to think through sustainable practice. For more guidance on how to adapt learning outcomes, see the Engineering for One Planet Framework (aligned to AHEP4).
2. Was any content added or adapted?
Was any content adapted to include sustainability awareness?
– What form of content, seminars, readings, lectures, tutorials, student activity
Were learning objectives changed?
Did you have to remove material to fit in the new or adapted content?
Were assessments changed?
3. Competencies
UNESCO has identified eight competencies that encompass the behaviours, attitudes, values and knowledge which facilitate safeguarding the future. These together with the SDGs provide a way of identifying activities and learning that can be embedded in different disciplinary curricula and courses. For more information on assessing competences, see this guidance article.
Did you map the competences that you already support before changing anything?
What kind of activities did you add to support the development of the competences you wish to target?
Did you explain to the students that these were the competences that you were targeting and that they are considered necessary for all who go on to work and live in a warming world?
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Keywords: SDGs; AHEP; Sustainability; Design; Life cycle; Local community; Environment; Circular economy; Recycling or recycled materials; Student support; Higher education; Learning outcomes.
Sustainability competency: Systems thinking; Anticipatory; Critical thinking.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 9 (Industry, innovation, and infrastructure); SDG 12 (Responsible consumption and production).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; More real-world complexity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article is for educators working at all levels of higher education who wish to integrate Sustainability into their robotics engineering and design curriculum or module design. It is also for students and professionals who want to seek practical guidance on how to integrate Sustainability considerations into their robotics engineering.
Part of the strategy to ensure that engineers incorporate sustainability into their solution development is to ensure that engineering students are educated on these topics and taught how to incorporate considerations at all stages in the engineering process (Eidenskog et al., 2022). For instance, students need not only to have a broad awareness of topics such as the SDGs, but they also need lessons on how to ensure their engineering incorporates sustainable practice. Despite the increased effort that has been demonstrated in engineering generally, there are some challenges when the sustainability paradigm needs to be integrated into robotics study programs or modules (Leifler and Dahlin, 2020). This article details one approach to incorporate considerations of the SDGs at all stages of new robot creation: including considerations prior to design, during creation and manufacturing and post-deployment.
1. During research and problem definition:
Sustainability considerations should start from the beginning of the engineering cycle for robotic systems. During this phase it is important to consider what the problem statement is for the new system, and whether the proposed solution satisfies this in a sustainable way, using Key Performance Indicators (KPIs) linked to the SDGs (United Nations, 2018), such as carbon emissions, energy efficiency and social equity (Hristov and Chirico, 2019). For instance, will the energy expended to create the robot solution be offset by the robot once it is in use? Are there long-term consequences of using a robot as a solution? It is important to begin engagement with stakeholders, such as end-users, local communities, and subject matter experts to gain insight into these types of questions and any initial concerns. Educators can provide students with opportunities to engage in the research and development of robotics technology that can solve locally relevant problems and benefit the local community. These types of research projects allow students to gain valuable research experience and explore robotics innovations through solving problems that are relatable to the students. There are some successful examples across the globe as discussed in Dias et al., 2005.
2. At design and conceptualisation:
Once it is decided that a robot works as an appropriate solution, Sustainability should be integrated into the robot system’s concept and design. Considerations can include incorporating eco-design principles that prioritise resource efficiency, waste reduction, and using low-impact materials. The design should use materials with relatively low environmental footprints, assessing their complete life cycles, including extraction, production, transportation, and disposal. Powered systems should prioritise energy-efficient designs and technologies to reduce operational energy consumption, fostering sustainability from the outset.
3.During creation and manufacturing:
The robotic system should be manufactured to prioritise methods that minimise, mitigate or offset waste, energy consumption, and emissions. Lean manufacturing practices can be used to optimise resource utilisation where possible. Engineers should be aware of the importance of considering sustainability in supply chain management to select suppliers with consideration of their sustainability practices, including ethical labour standards and environmentally responsible sourcing. Robotic systems should be designed in a way that is easy to assemble and disassemble, thus enabling robots to be easily recycled, or repurposed at the end of their life cycle, promoting circularity and resource conservation.
4. Deployment:
Many robotic systems are designed to run constantly day and night in working environments such as manufacturing plants and warehouses. Thus energy-efficient operation is crucial to ensure users operate the product or system efficiently, utilising energy-saving features to reduce operational impacts. Guidance and resources should be provided to users to encourage sustainable practices during the operational phase. System designers should also implement systems for continuous monitoring of performance and data collection to identify opportunities for improvement throughout the operational life.
5.Disposal:
Industrial robots have an average service life of 6-7 years. It is important to consider their end-of-life and plan for responsible disposal or recycling of product components. Designs should be prioritised that facilitate disassembly and recycling (Karastoyanov and Karastanev, 2018). Engineers should identify and safely manage hazardous materials to comply with regulations and prevent environmental harm. Designers can also explore options for product take-back and recycling as part of a circular economy strategy. There are various ways of achieving that. Designers can adopt modular design methodologies to enable upgrades and repairs, extending their useful life. Robot system manufacturers should be encouraged to develop strategies for refurbishing and reselling products, promoting reuse over disposal.
Conclusion:
Sustainability is not just an option but an imperative within the realm of engineering. Engineers must find solutions that not only meet technical and economic requirements but also align with environmental, social, and economic sustainability goals. As well as educating students on the broader topics and issues relating to Sustainability, there is a need for teaching considerations at different stages in the robot development lifecycle. Understanding the multifaceted connections between sustainability and engineering disciplines, as well as their impact across various stages of the engineering process, is essential for engineers to meet the challenges of the 21st century responsibly.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Topic: Pedagogical approaches to integrating sustainability.
Tool type: Knowledge.
Relevant disciplines: Any.
Keywords: Education for Sustainable Development; Teaching or embedding sustainability; Course design; AHEP; Learning outcomes; Active learning; Assessment methods; Pedagogy; Climate change; Bloom’s Taxonomy; Project-based learning; Environment; Interdisciplinary; Higher education; Curriculum.
Sustainability competency: Integrated problem-solving competency.UNESCO has developed eight key competencies for sustainability that are aimed at learners of all ages worldwide. Many versions of these exist, as are linked here*. In the UK, these have been adapted within higher education by AdvanceHE and the QAA with appropriate learning outcomes. The full list of competencies and learning outcome alignment can be found in the Education for Sustainable Development Guidance*. *Click the pink ''Sustainability competency'' text to learn more.
AHEP mapping: This resource addresses two of the themes from the UK’s Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice(the practical application of engineering concepts, tools and professional skills). To map this resource to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Related SDGs: SDG 4 (Quality education); SDG 13 (Climate action).
Reimagined Degree Map Intervention: Adapt and repurpose learning outcomes; Active pedagogies and mindset development; Authentic assessment; Cross-disciplinarity.The Reimagined Degree Map is a guide to help engineering departments navigate the decisions that are urgently required to ensure degrees prepare students for 21st century challenges. Click the pink ''Reimagined Degree Map Intervention'' text to learn more.
Who is this article for? This article should be read by educators at all levels in higher education who are seeking an overall perspective on teaching approaches for integrating sustainability in engineering education. Engaging with this topic will also help to prepare students with the soft skill sets that employers are looking for.
Premise:
As stated in the 1987 United Nations Brundtland Report, ‘sustainability’ refers to “meeting the needs of the present without compromising the ability of future generations to meet their own needs” (GH, 1987 p.242). It is underpinned by a tripartite definition encompassing environmental, social and economic sustainability. The necessity for embracing sustainability is underscored by several pressing challenges we face as a global society, ranging from climate change to economic crises.
Against the backdrop of these global challenges, the role of the engineering profession assumes significant importance. While the scientific principles that underpin the various engineering disciplines remain largely the same, the responsibility of the engineering profession is to leverage these principles to address current and future challenges. Consequently, education for sustainable development (ESD) becomes a vital aspect of an engineer’s training, since the profession will guide the design and implementation of innovative solutions to challenges crosscutting environmental impact, judicious use of resources and social wellbeing.
Integrated course design:
Integrating ESD in engineering education requires programme and module designers to take a deliberate approach. Drawing on initial attempts to integrate sustainability in management and business education (Rusinko, 2010), four pedagogical approaches of ESD can be identified:
piggybacking,
mainstreaming,
specialising,
connecting.
The last two approaches are for creating new curriculum structures with a narrow discipline-specific focus and a broad transdisciplinary focus, respectively. The other two, piggybacking and mainstreaming, are approaches to embed sustainability within existing curriculum structures. Although piggybacking is the easier-to-implement approach, achieved by additional sessions or resources on sustainability being tagged onto existing course modules, mainstreaming enables a broader cross-curricular perspective that intricately intertwines sustainability with engineering principles.
The mainstreaming approach is also an elegant fit with the accreditation requirements for sustainability; the latest edition of the Accreditation of Higher Education Programmes (AHEP) emphasises competence in evaluating ‘environmental and societal impact of solutions’ to ‘broadly-defined’ and ‘complex’ problems. In order to foster this ability, where sustainability is a guiding principle for developing engineering solutions, a holistic (re)consideration of all elements of constructive alignment (Biggs, 1996) – intended learning outcomes (ILOs), teaching and learning activities, and student assessment – is needed. To this end, the Integrated Course Design (ICD) pedagogical framework can be leveraged for a simultaneous and integrated consideration of course components for embedding sustainability.
Sustainability learning outcomes:
Bloom’s taxonomy (also see here), which conventionally guides formulation of ILOs, can be extended to incorporate sustainability-based learning outcomes. The action verb in the AHEP guidance for the learning outcome on sustainability is ‘evaluate’, signifying a high cognitive learning level. ILOs framed at this level call for application of foundational knowledge through practical, critical and creative thinking. Although the cognitive domain of learning is the main component of engineering education, sustainability competence is greater than just a cognitive ability. For more information, see the Reimagined Degree Map.
ESD is a lifelong learning process and as stated by UNESCO, it ‘enhances the cognitive, socio-emotional and behavioural dimensions of learning’. This integration of cognitive learning outcomes with affective aspects, referred to as ‘significant learning’ in the ICD terminology, is of utmost importance to develop engineers who can engage in sustainable and inclusive innovation. Furthermore, mapping programme and module ILOs to the UN Sustainable Development Goals (SDGs) is another way to integrate sustainability in engineering with connections between technical engineering competence and global sustainability challenges becoming more explicit to students and educators. Similarly, the ILOs can be mapped against UNESCO’s sustainability competencies to identify scope for improvement in current programmes. See the Engineering for One Planet Framework for more information and guidance on mapping ILOs to sustainability outcomes and competencies.
Teaching and learning activities:
Activities that engage students in ‘active learning’ are best placed to foster sustainability skills. Additional lecture material on sustainability and its relevance to engineering (piggybacking approach) will have limited impact. This needs to be supplemented with experiential learning and opportunities for reflection. To this end, design and research projects are very effective tools, provided the problem definition is formulated with a sustainability focus (Glassey and Haile, 2012). Examples include carbon capture plants (chemical engineering),green buildings (civil engineering) and renewable energy systems (mechanical and electrical engineering).
Project-based learning enables multiple opportunities for feedback and self-reflection, which can be exploited to reinforce sustainability competencies. However, with project work often appearing more prominently only in the latter half of degree programmes, it is important to consider other avenues. Within individual modules, technical content can be contextualised to the background of global sustainability challenges. Relevant case studies can be used in a flipped class environment for a more student-led teaching approach, where topical issues such as microplastic pollution and critical minerals for energy transition can be taken up for discussion (Ravi, 2023). Likewise, problem sheets or simulation exercises can be designed to couple technical skills with sustainability.
Student assessment:
With sustainability being embedded in ILOs and educational activities, the assessment of sustainability competence would also need to take a similar holistic approach. In other words, assessment tasks should interlace engineering concepts with sustainability principles. These assessments are more likely to be of the open-ended type, which is also the case with design projects mentioned earlier. Such engineering design problems often come with conflicting constraints (technical, business, societal, economic and environmental) that need careful deliberation and are not suited for conventional closed-book time-limited examinations.
More appropriate tools to assess sustainability, include scaled self-assessment, reflective writing and focus groups or interviews (Redman et al., 2021). In a broader pedagogical sense, these are referred to as authentic assessment strategies. Given the nexus between sustainability and ethics, inspiration can also be drawn from how ethics is being assessed in engineering education. Finally, pedagogical models such as the systems thinking hierarchical model (Orgill et al., 2019), can be used to inform the design of assessment rubrics when evaluating sustainability skills.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.