Authors: Paola Seminara (Edinburgh Napier University); Alasdair Reid (Edinburgh Napier University).

Topic: Sustainable materials  in construction.

Engineering disciplines: Civil engineering; Manufacturing; Construction.

Ethical issues: Sustainability; Respect for the environment; Future generations; Societal impact; Corporate Social Responsibility.

Professional situations: EDI; Communication; Conflicts with leadership/management; Quality of work; Personal/professional reputation.

Educational level: Intermediate.

Educational aim: Practising Ethical Analysis: engaging in a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.

 

Learning and teaching notes:

This case involves an early-career consultant engineer working in the area of sustainable construction. She must negotiate between the values that she, her employer, and her client hold in order to balance sustainability goals and profit. The summary involves analysis of personal values and technical issues, and parts one and two bring in further complications that require the engineer to decide how much to compromise her own values.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

News articles:

Business:

Journal articles:

Educational institutions:

Citizen engagement organisation:

Professional organisation:

NGOs:

 

Suggested pre-reading:

Learners and teachers might benefit from pre-reading the above resources about EDI and enacting global responsibility, as well as introductory material on construction with mass timber such as information from Transforming Timber or the “How to Build a Wood Skyscraper” video.

 

Summary:

Originally from rural Pakistan, Anika is a construction engineer who has recently finished her postgraduate degree, having been awarded a fully funded scholarship. During her studies, Anika was introduced to innovative projects using mass timber and off-site methods of construction. After completing her studies, she was inspired to start her own consultancy practice in the UK, aiming to promote the use of sustainable materials within the construction industry.

James is the director of a well-established, family-owned architectural firm, originally started by his great-grandfather who was also a prominent societal figure. In the last year, James and his colleagues have sought to develop a sustainability policy for the firm. A key feature of this new policy is a commitment to adopt innovative, sustainable construction solutions wherever possible. James has been contacted by an important client who wants to commission his firm to work on a new residential development.

James first met Anika at university when they were both studying for the same postgraduate degree. Having a high regard for Anika’s capability and professionalism, James contacts Anika to propose working together to develop a proposal for the new residential development.

James hopes that Anika’s involvement will persuade the client to select construction solutions that are aligned with the new sustainability policy adopted by his firm. However, the important client has a reputation for prioritising profit over quality, and openly admits to being sceptical about environmental issues.

Anika schedules a meeting with the client to introduce herself and discuss some initial ideas for the project.

 

Optional STOP for questions and activities:

1. Discussion: Personal values – What are the different personal values for Anika, James, and the client? How might they conflict with each other?

2. Activity: Professional communication – Elevator pitch activity part 1 – Working in groups of 2-3 and looking at the three different stakeholders’ personal values, each group will create a persuasive pitch of 1 minute used by Anika to convince the client to focus on sustainability.

3. Activity: Technical Analysis – Assemble a bibliography of relevant projects using mass timber and off-site methods of construction, and identify the weaknesses and strengths of these projects in terms of sustainability and long- and short-term costs and benefits.

4. Activity:  Professional communication – Elevator pitch activity part 2 – After conducting your technical analysis, work in groups of 2-3 to revise your elevator pitch and role play the meeting with the client. How should Anika approach the meeting?

 

Dilemma – Part one:

After the first meeting, the client expresses major concerns about Anika’s vision. Firstly, the client states that the initial costings are too high, resulting in a reduced profit margin for the development. Secondly, the client has serious misgivings about the use of mass timber, citing concerns about fire safety and the durability of the material.

Anika is disheartened at the client’s stance, and is also frustrated by James, who has a tendency to contradict and interrupt her during meetings with the client. Anika is also aware that James has met with the client on various occasions without extending the invitation to her, most notably a drinks and dinner reception at a luxury hotel. However, despite her misgivings, Anika knows that being involved in this project will secure the future of her own fledgling consulting company in the short term – and therefore, reluctantly, suspects she will have to make compromises.

 

Optional STOP for questions and activities:

1. Discussion: Leadership and Communication – Which global responsibilities does Anika face as an engineer? Are those personal or professional responsibilities, or both? How should Anika balance her ethical duties, both personal and professional, and at the same time reach a decision with the client?

2. Activity: Research – Assemble a bibliography of relevant projects where mass timber has been used. How might you design a study to evaluate its structural and environmental credentials? What additional research needs to be conducted in order for more acceptance of this construction method?

3. Activity: Wider impact – Looking at Anika’s idea of using mass timber and off-site methods of construction, students will work in groups of 3-4 to identify the values categories of the following capital models: Natural, Social, Human, Manufactured and Financial.

4. Activity: Equality, Diversity, and Inclusion – Map and analyse qualities and abilities in connection with women and how these can have a positive and negative impact in the construction industry.

5. Discussion: Leadership and Communication – Which are the competitive advantages of women leading sustainable businesses and organisations? Which coping strategy should Anika use for her working relationship with James?

 

Dilemma – Part two:

Despite some initial misgivings, the client has commissioned James and Anika to work on the new residential development. Anika has begun researching where to locally source mass timber products. During her research, Anika discovers a new off-site construction company that uses homegrown mass timber. Anika is excited by this discovery as most timber products are imported from abroad, meaning the environmental impact can be mitigated.

 

Optional STOP for questions and activities:

1. Activity: Environmental footprint – Research the Environmental Product Declaration of different construction materials and whole life carbon assessment.

2. Discussion: Is transportation the only benefit of using local resources? Which other values (Natural, Social, Human, Manufactured and Financial) can be maximised with the use of local resources? How should these values be weighted?

3. Discussion: Professional responsibility – How important is Corporate Social Responsibility (CSR) in Construction? How could the use of local biogenic materials and off-site methods of construction be incorporated into a strategic CSR business plan?

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Martin Griffin (Knight Piésold Consulting, United Kingdom). 

Keywords: Equity; Equality, diversity and inclusion (EDI); Collaboration; Bias; Social responsibility; Design. 

Who is this article for? This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for. 

 

Premise:

No engineer is an island; it is not good for an engineer to act in isolation. Rather engineers need to be part of a welcoming community in order to thrive.  How an engineering professional interacts with either other engineers and non-engineers is essential for building a culture and professional environment of collaboration, creating environments where engineers can create meaningful bonds with one another and feel comfortable communicating openly. This requires recognising and understanding how unconscious bias and privileges can create divides and foster negative professional (toxic) environments, and being committed to establishing standards of conduct for and addressing issues related to EDI. There is a great need to advocate for fellow engineers providing places to belong and empowering them to thrive in their chosen profession and career pathways. This includes people who are part of one or more underrepresented groups that have been historically, persistently, and systemically marginalised in society based on their identity, such as race, colour, religion, marital status, family status, disability, sex, sexual orientation, gender identity, and age. 

The Royal Academy of Engineering and EngineeringUK (2018) frequently publish reports on the demographics of engineers and the skills shortage in the workforce.  These reports highlight the under-representation of people from ethnic and minority groups, those with a disability or impairment, or those who are LGBTQ+.  In addition, the Institute of Engineering and Technology  recently reported that only 9% of businesses take particular action to increase underrepresented groups into their workforces.   

Engineering and technology are for everyone. It is morally right to ensure that everyone has equal opportunities and by doing so we can improve our world, shape our future, and solve complex global challenges. In order to accomplish these moral imperatives, we need to include a diversity of talent and knowledge. Furthermore, in the UK we still face a nationwide skills shortage threatening our industry. To address this and ensure the sustainability of our industry we must support equal opportunities for all and be truly inclusive. 

 

The three values: 

The three values of EDI are timeless and should be embedded into the way that engineering professionals act, starting with recognition that the unfair treatment of others exists. This unfair treatment may take the form of bullying, harassment, discrimination (either direct or indirect), victimisation, microaggressions, gaslighting, bias and inequity. An engineer’s role must also include advocating for the support of others in this regard too.  Each of the three values are very different, but all three together are essential to create opportunities for engineers to grow and thrive, and for a productive and creative engineering community to flourish. 

Equity encourages fair processes, treatment, and possibilities for everyone, resulting in an equal playing field for all. It acknowledges that oppressive systems have created varied circumstances for different engineers. By valuing equity, engineers must commit to fairly redistributing resources and power to address inequalities that systems have intentionally or unintentionally created, diminishing the impact of such circumstances and ensuring equitable opportunities.  Equality relates to ensuring engineers and groups are treated fairly and have access to equal opportunities. Note, it should be emphasised that equity is not the same as equality; in the simplest terms, equality means ‘sameness,’ and equity means ‘fairness’.  Thus, equality has become synonymous with ‘levelling the playing field’, whereas equity is synonymous with ‘more for those who need it’. 

Diversity refers to how diverse or varied a particular environment is, be it an engineering consultancy, academic funded research team, interdisciplinary joint venture designing as part of a national megaproject, and so on. Diversity involves professional openness and conscientiousness towards diverse social interactions. Therefore, diversity also involves intentional representation and collaboration with others from different demographic characteristics, identities, and differing experiences. Engineers should feel welcome to be their full self without the need to mask, being able to contribute and bring fresh perspectives where they are in attendance. 

Inclusion refers to a state of conscious belonging, meaning all are respected, empowered, and valued. Inclusivity should therefore be ingrained in an engineer’s daily operations and surrounding culture, being able to feel comfortable being their authentic selves. Inclusion involves extensive representation across roles, levels (grades) and the aforementioned demographic characteristics, recognising who is and is not in the room and the valuable perspectives and experiences they can bring. Inclusion also relates to ensuring all engineers feel valued and supported, where the benefits of creativity, innovation, decision making and problem solving are realised.   

 

Incorporating EDI in engineering education:

It is not possible to place EDI in a box and open it occasionally such as for annual awareness weeks or as an induction week module. It is a lifestyle, a conscious choice, and it needs to be embedded in an engineer’s values, approach and behaviours. Making engineering EDI an integral part of engineering ethics education will not involve an abstract ethical theory of EDI but rather a case-based approach. The teaching of EDI within engineering ethics through case studies helps students consider their philosophy of technology, recognise the positive and negative impact of technology, imagine ethical conduct, and then apply these insights to engineering situations. Moreover, when similar ethical modules have touched students, they are likely to remember the lessons learned from those cases. Several case studies found in the Ethics Toolkit that reference EDI concerns are listed at the end of this article. 

Good contemporary practical examples should be presented alongside case studies to promote and demonstrate why EDI ought to be embedded into a professional engineer’s life. The need to raise awareness, highlight the issues faced, and accelerate inclusion of Black people is provided in the Hamilton Commission report, focusing on all aspects of UK Motorsport including engineering. The importance of gender inclusivity in engineering design and how user-centred practices address this are addressed by Engineers Without Borders UK. Creating accessible solutions for everyone, including those who are disabled, is seen in the ongoing development of Microsoft’s Accessibility Technology & Tools. BP has launched a global framework for action to help them stay on track and progress in a positive way. The further benefits EDI brings to design and delivery in construction engineering are demonstrated by Mott Macdonald.   

Inclusive Engineering (similar to the principles of Universal Design) ensures that engineering products and services are accessible and inclusive of all users. Inclusive Engineering solutions aim to be as free as possible from discrimination and bias, and their use will help develop creative and enlightened engineers. Ethical responsibility is key to all aspects of engineering work, but at the design phase it is even more important, as we can literally be designing biases and discrimination into our technological solutions, thus amplifying existing biases. Recommended guidance is provided within PAS 6463:2022 as part of the engineering design process; this is a new standard written to give guidance on designing the built environment for our neurodiverse society. With the right design and management, it is possible to eliminate, reduce or adjust potentially negative impacts to create places where everyone can flourish equally.  

It is vital to recognise that achieving true equality, diversity, and inclusion is complex and cannot be ‘fixed’ quickly. An engineer must participate in active learning and go on a six stepped journey of self-awareness from being ‘not listening,’ ‘unaware,’ ‘passive,’ ‘curious,’ and ‘ally,’ to ‘advocate.’ A ‘not listening’ attitude involves shaming the unaware, speaking on behalf of others, invalidating others, clumsy behaviours, being bigoted, prejudiced, antagonistic and unwilling to listen and learn. Cultivating an ‘ally’ attitude is being informed and committed, routinely and proactively championing inclusion by challenging accepted norms, and taking sustained action to make positive change. It is for this reason the values of EDI should be part of an engineering professional’s ongoing lifestyle to have any real and lasting effect on engineering environments. 

Therefore, the importance of EDI needs to influence how an engineering professional thinks, acts, includes others and where engineers seek collaborative input. The concept of engineering is far more important than any individual engineer and sometimes engineers need to facilitate opportunities for voices to be heard. This involves respect and empathy to create trusted relationships and the need for self-awareness and self-development. Sometimes this means stepping back so that other engineers can step forward.   

 

Resources and support: 

Specific organisations representing protected characteristics such as InterEngineering have the goal to connect, inform and empower LGBTQ+ engineers.  Likewise, the Women’s Engineering Society (WES) and the Association for Black Engineers (AFBE-UK) provide support and promote higher achievements in education and engineering.  The aforementioned organisations are partnered with the Royal Academy of Engineering to highlight unheard voices, raise awareness of the barriers faced by minority groups, and to maximise impact. Many other umbrella groups, for instance Equal Engineers, also raise awareness of other underrepresented groups, such as the neurodivergent in engineering, by documenting case studies, undertaking surveys, holding regular careers events and annual conferences, and more.   

There is evidence to support the widely accepted view that supporting and managing EDI is a crucial element in increasing productivity and staff satisfaction. Diverse experiences and perspectives bring about diversity of thought which leads to innovation. It allows everybody to be authentic at work and provides the opportunity for diverse voices to be heard. Consequently, implementing EDI has proven to increase performance, growth, and innovation, as well as improvements in health, safety and wellbeing. EDI will therefore help to prepare students with the fundamental attitudes that are needed as practitioners and human beings.  

Finally, engineering with EDI embedded into a professional engineer’s lifestyle will make a difference to those most in need. In a globalised world it will put us in a good position to bring innovation and creativity to some of the biggest challenges we face together. Equitable, diverse and inclusive engineering must be at the heart of finding sustainable solutions to help shape a bright future for all. 

 

References: 

Resources in the Ethics Toolkit that link to EDI: 

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case enhancement: Facial recognition for access and monitoring

Activity: Prompts to facilitate discussion activities. 

Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

 

Overview:

There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be. The discussion prompts for Dilemma Part three are already well developed in the case study, so this enhancement focuses on expanding the prompts in Parts one and two.

 

Dilemma Part one – Discussion prompts:

1. Legal Issues. Give students ten minutes to individually or in groups do some online research on GDPR and the Data Protection Act (2018). In either small groups or as a large class, discuss the following prompts. You can explain that even if a person is not an expert in the law, it is important to try to understand the legal context. Indeed, an engineer is likely to have to interpret law and policy in their work. These questions invite critical thinking and informed consideration, but they do not necessarily have “right” answers and are suggestions that can help get a conversation started.

a. Are legal policies clear about how images of living persons should be managed when they are collected by technology of this kind?

b. What aspects of these laws might an engineer designing or deploying this system need to be aware of?

c. Do you think these laws are relevant when almost everyone walking around has a digital camera connected to the internet?

d. How could engineers help address legal or policy gaps through design choices?

2. Sharing Data. Before entering into a verbal discussion, either pass out the suggested questions listed in the case study on a worksheet or project on a screen. Have students spend five or ten minutes jotting down their personal responses. To understand the complexity of the issue, students could even create a quick mind map to show how different entities (police, security company, university, research group, etc.) interact on this issue. After the students spend some time in this personal reflection, educators could ask them to pair/share—turn to the person next to them and share what they wrote down. After about five minutes of this, each pair could amalgamate with another pair, with the educator giving them the prompt to report back to the full class on where they agree or disagree about the issues and why.

3. GDPR Consent. Before discussing this case particularly, ask students to describe a situation in which they had to give GDPR consent. Did they understand what they were doing, what the implications of consent are, and why? How did they feel about the process? Do they think it’s an appropriate system? This could be done as a large group, small group, or through individual reflection. Then turn the attention to this case and describe the change of perspective required here. Now instead of being the person who is asked for consent, you are the person requiring consent. Engineers are not lawyers, but engineers often are responsible for delivering legally compliant systems. If you were the engineer in charge in this case, what steps might you take to ensure consent is handled appropriately? This question could be answered in small groups, and then each group could report back to the larger class and a discussion could follow the report-backs.

4. Institutional Complexity. The questions listed in the case study relate to the fact that the building in which the facial recognition system will be used accommodates many different stakeholders. To help students with these questions, educators could divide the class into small groups, with each group representing one of the institutions or stakeholder groups (college, hospital, MTU, students, patients, public, etc.). Have each group investigate whether regulations related to captured images are different for their stakeholders, and debate if they should be different. What considerations will the engineer in the case have to account for related to that group? The findings can then be discussed as a large class.

 

Dilemma Part two – Discussion prompts:

The following questions relate to macroethical concerns, which means that the focus is on wider ethical contexts such as fairness, equality, responsibility, and implications.

1. Benefits and Burdens. To prepare to discuss the questions listed in the case study, students could make a chart of potential harms and potential benefits of the facial recognition system. They could do this individually, in pairs or small groups, or as a large class. Educators should encourage them to think deeply and broadly on this topic, and not just focus on the immediate, short-term implications. Once this chart is made, the questions listed in the case study could be discussed as a group, and students asked to weigh up these burdens and benefits. How did they make the choices as to when a burden should outweigh a benefit or vice versa?

2. Equality and Utility. To address the questions listed in the case study, students could do some preliminary individual or small group research on the accuracy of facial recognition systems for various population groups. The questions could then be discussed in pairs, small groups, or as a large class.

3. Engineer Responsibility. Engineers are experts that have much more specific technical knowledge and understanding than the general public. Indeed, the vast majority of people have no idea how a facial recognition system works and what the legal requirements are related to it, even if they are asked to give their consent. Does an engineer therefore have more of a responsibility to make people aware and reassure them? Or is an engineer just fulfilling their duty by doing what their boss says and making the system work? What could be problematic about taking either of those approaches?

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Case enhancement:
Business growth models in engineering industries within an economic system

Activity: Defending a profit-driven business versus a non-profit-driven business.

Author: Dr Sandhya Moise (University of Bath).

 

Overview:

This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

 

Session structure:

1. As pre-class work, the students can be provided the case study in written format.

2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):

3. Group activity (15 min +)

4. Whole class discussion/debate (15 min +)

 

Learning resources:

Ethics in Engineering resources:

Professional Codes of Conduct resources:

Corporate Social Responsibility Resources:

ESG Mandate Resources:

In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:

In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?

Further reading:

 

Group Activity – Structure:

Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.

 

Group activity 1:

Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.

Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).

 

Pros and Cons of each approach:

Group 1: Defend a profit-driven business model:

Advantages and ethical impact:

Disadvantage and ethical impacts:

Group 2: Defend a non-profit driven business:

Advantages and ethical impact:

Disadvantage and ethical impacts:

 

Relevant ethical codes of conduct examples:

Royal Academy’s Statement of Ethical Principles:

Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.

 

Discussion and summary:

This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.

If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.

However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.

If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr Fiona Truscott (UCL). 

Keywords: Ethical theories; Societal impact; Decision making; Equality, diversity and inclusion (EDI); Health. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to better understand ethics and its connection to engineering education. It is also useful for students who are being introduced to this topic. 

 

Premise: 

Engineering, technology, and society have always had a close relationship, with changes and innovations in each affecting the other two. For instance, being able to communicate and access information instantaneously and 24/7 has changed our relationships with family, friends and colleagues as well as with employers and governments. While this certainly has some benefits, such as being able to work from home during the Covid-19 pandemic, is always being connected a good thing? We’ve seen a blurring of the lines between work and home with both positive and negative impacts. Social media algorithms bring us cute cat photos but they also spread misinformation. Ethics in engineering invites us to question how we should respond to the development and deployment of new technologies like these.   

Ethics can especially be seen through engineering innovations that mean life or death. For example, pacemakers are medical devices developed in the late 1950s that can regulate a person’s heart rate when their natural cells are damaged or misfunctioning. This diagnosis used to be a death sentence, but now millions of patients have pacemakers, completely changing their life expectancy and standard of living. At the time, however, there were ethical questions to answer about how they should be tested and implemented.  

Technology and engineering do not just affect society; society also influences engineering. This can be seen through the discovery of Viagra, which was originally developed as a treatment for heart disease but in clinical trials it was found to have little effect on heart disease but a much more interesting – and lucrative – side effect. The market for Viagra and similar drugs is worth billions of dollars, directing research and funds towards treating a condition that is not necessarily a life or death situation just because we are willing to pay for it. What engineering focuses on, or doesn’t, is determined by what society wants, thinks is important, or will pay for. Ethics invites us to identify and consider our values and how those influence what problems engineers identify and which ones they choose to work on. 

Clearly our decisions as engineers have an impact on society, so how might we approach making these decisions? Luckily there are people who have been thinking about how to make society-impacting decisions for thousands of years – ethicists! Ethics gives us a framework for balancing different opinions, needs, and values when making decisions, big or small. There are three lenses that we can use when thinking about ethics within Engineering: Professional, Theoretical, and Practical. 

 

Professional ethics: 

Professional engineering ethics is the question of how an engineer should behave in a professional setting or situation. Typically, professional engineering bodies, such as the Institute of Chemical Engineers, produce codes of conduct which outline how members are expected to behave in professional contexts. Members agree to follow these codes when they join the professional body. Many professional bodies’ codes of conduct are based on the joint statement on ethics from the Royal Academy of Engineering and the Engineering Council (2017). 

This is similar to an ethical theory, Virtue Ethics. The key question in virtue ethics is what makes a good person? A good person is one who fulfils their purpose. By following behaviours called virtues that fulfil that purpose, and avoiding ones that don’t, called vices, a person can always make the right ethical decision (Blackburn, 2003; Johnson, 2020).  

Coming from another angle we can look at what the responsibilities of an engineer are, and ask who they are responsible to. Typically, an engineer has a client that they are working for but they are also responsible to the wider community and the public. Buildings must fulfil the clients’ needs but must also comply with regulations. Where these responsibilities are in opposition, law and codes of conduct can help an engineer decide a path forward.  

 

Theoretical ethics: 

Besides Virtue Ethics, first propounded by Aristotle, there are several other ethical theories that influence engineering ethics. Utilitarianism is a theory developed by Jeremy Bentham and John Stuart Mill. A basic description of Utilitarianism is that the best ethical action is the one that produces the most happiness for the largest number of people. Here the approach centres not on an action itself but on the consequences of it. Utilitarianism is very context dependent, with all potential actions on the table, and it requires a collective or community-based approach. However, there appears to be a big flaw which is that it could justify harm to a few if it brought happiness to the many. Bentham and Mill both emphasised a key caveat: that we should select the action which produces the most happiness for as many as possible without causing harm to individuals (Blackburn, 2003; Johnson, 2020). 

Also writing in the late 18th and early 19th centuries but coming at ethical decision making from a very different angle is Immanuel Kant and his duty-based theory of ethics, also called deontology. Kant argued that sentient beings are ends in themselves and not means to achieve something else. The ethics of an action therefore should not be decided by its outcomes but is inherent in the action itself. When making an ethical decision, you should choose the course of action that you would be willing to follow under all circumstances, otherwise known as the categorical imperative. While this approach aligns with many legal systems, we can all think of circumstances when typically unacceptable actions become acceptable (Blackburn, 2003; Johnson, 2020). 

While no individual person follows Aristotle, Bentham, or Kant all the time, they do give us some insight into how people make ethical decisions. In general people will want the most happiness for the most people but they also have personal, legal or societal red lines that they won’t cross; or, that they will cross depending on the situation.  

 

Practical ethics: 

Practical Ethics is focused on the reality of making decisions when faced with an ethical issue. One useful approach for engineers outlined by Caroline Whitbeck (1998) is the analogy to solving design problems, something engineers are very familiar with! In design problems, we have a series of constraints and requirements that any successful solution needs to fulfil. We come up with a range of potential solutions, some that don’t fulfil the criteria, and some that do. We then select a successful solution based on our own experience, priorities, or interpretation of the brief. Other people will select different successful solutions. The same is true for ethical problems: there are criteria that must be achieved for a successful solution and each individual might choose a different successful solution.  

Engineers are very familiar with what constraints and requirements look like in design problem solving but what about ethical problem solving? This is where Aristotle, Bentham, and Kant pop back up again. Some criteria will involve harms that we want to avoid or ways to produce the most happiness, while others will be values that we hold to under any circumstances.  

 

Conclusion: 

While it may not always be clear how much impact a single engineer’s actions can have on the ethical decisions of a whole project or company, one area where we can have a significant impact is in design. Who can and can’t use our creations? Who are we excluding or favouring in our design decisions? Until recently crash test dummies were modelled on the 50th percentile man (Criado Perez, 2020). Car safety systems were designed around this dummy ensuring they survived the safety tests. Female drivers tend to be shorter, so they move their seat further forward and higher up, meaning that they are more likely to be an ‘out of position’ driver. Additionally, car seats are too firm for female drivers, throwing them forward faster on impact and not deforming as much, dispersing less of the energy of the crash. The effects of this engineering design decision is that in car crashes, women are 17% more likely to die, 47% more likely to be seriously injured and 71% more likely to be moderately injured because of the design choices made (Criado Perez, 2020). Who engineers do, or don’t, design for is an ethical question that has real world impact. 

Given the impact that engineering and technology has already had and will continue to have on society, we need to include ethical thinking in our day-to-day practise to ensure that we understand the consequences of our actions and decisions, and that our work makes positive impacts and minimises negative ones.   

 

References: 

Blackburn, S. (2003) Ethics: A very short introduction. Oxford: OUP. 

Criado Perez, C. (2020) Invisible women. Vintage. 

Johnson, D.G. (2020) Engineering ethics. Yale University Press. 

RAEng and Engineering Council joint Statement of Ethical Principles. 

Whitbeck, C. (1998) Ethics in engineering practice and research. Cambridge University Press. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Professor Manuela Rosa (Algarve University). 

Keywords: Societal impact; Equity; Equality, diversity and inclusion (EDI); Design; Justice; Equity; Communication; Global responsibility. 

Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for. 

 

Premise: 

The Declaration on the Rights of Disabled Persons, adopted by the General Assembly of United Nations on 9 December 1975, stipulated protection of the rights of people with disabilities. The United Nations 2030 Agenda for Sustainable Development, a plan of action for people, planet, and prosperity, demands that all stakeholders, acting in collaborative partnership, must recognise that the dignity of the human person is fundamental and so the development of the 17 Sustainable Development Goals must meet all segments of society in a way that “no one will be left behind”.  

In relation to engineering, The Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering in 2005 and revised in 2017, articulates one of its strategic challenges to be positioning engineering at the heart of society, enhancing its wellbeing, improving the quality of the built environment, and promoting EDI. To uphold these principles, engineering professionals are required to promote social equity, guaranteeing equal opportunities to access the built environment and transportation systems, enabling the active participation of all citizens in society, including vulnerable groups. The universal design approach is one method that engineers can use to ensure social sustainability. 

 

The challenges of universal and inclusive design: 

Every citizen must have the same equality of opportunities in using spaces because the existence of an accessible built environment is fundamental to guarantee vitality, safety, and sociability. These ethical values associated with the technical decision-making process were considered by the American architect Ronald Lawrence Mace (1941-1998) who defined the universal design concept as “designing all products, buildings and exterior spaces to be usable by all people to the greatest extent possible” (Mace et al., 1991), thus contributing to social inclusion.  

Universal accessibility according to this universal design approach is “the characteristic of an environment or object which enables everybody to enter into a relationship with, and make use of, that object or environment in a friendly, respectful and safe way” (Aragall et al., 2003). It focuses on people with reduced mobility, such as people with disabilities (mobility, vision, hearing and cognitive dimensions), children and elderly people. Built environment and transport systems must be designed considering this equity attribute which is associated with social sustainability and inclusion. 

The Center for Universal Design of the North Carolina State University developed seven principles of universal design (Connell et al., 1997):  

1. Equitable use 

2. Flexibility in use  

3. Simple and intuitive use  

4. Perceptible information  

5. Tolerance for error  

6. Low physical effort  

7. Size and space for approach and use.    

These principles must always be incorporated in the conception of products and physical environments, so as to create a ‘fair built’ environment, where all have the right to use it, in the same independent and natural way. This justice design must guarantee autonomy in the use of spaces and transport vehicles, contributing to the self-determination of citizens.   

The perceptions of the space users are fundamental to be considered in the design process to achieve the usability of the built environment and transport systems. Pedestrian infrastructure design and modal interfaces demand user-centred approaches and therefore processes of co-design and co-creation with communities, where people are effectively involved as collaborators and participants. 

Achieving an inclusive society is a great challenge because there are situations where the needs of users are divergent: technical solutions created for a specific group of people are inadequate for others. For example, wheelchair users and elderly people need smooth surfaces and, on the contrary, blind people need tactile surfaces.  

Consequently, in the process of universal design, some people can feel excluded because they need other technical solutions. It is then necessary to consider precise inclusive design when projecting urban spaces for all.   

Universal design is linked with designing one-space-suits-almost-all, and inclusive design focuses on one-space-suits-one, for example design a space for everyone (collective perspective) versus design a space for one specific group (particular perspective). As the built environment must be understandable to and usable by all people, both are important for social sustainability. Universal design contributes to social inclusion, but added inclusive design is needed, matching the excluded users to the object or space design.  

In order to promote social inclusion and quality of life, to which everyone is entitled, universal and inclusive co-design of the built environment and the transportation systems demands specific approaches that have to be integrated in engineering education: 

 

Conclusion: 

Universal and inclusive co-design of the built environment and transportation systems must be seen as an ethical act in engineering. Co-design for social sustainability can be strengthened through engineering acts. Ethical responsibility must be assumed to create inclusive solutions considering human diversity, empowering engineers to act and design justice.  

There is a strong need for engineers to possess a set of skills and competencies related to the ability to work with other professionals (for example from the social sciences),  users, or collaborators. In the 21st century, beyond the use of technical knowledge to solve problems, engineers need communication skills to achieve the sustainable development goals, requiring networking, cooperating in teams, and working with communities.  

Engineering education must consider transdisciplinary approaches which make clear progress in tackling urban challenges and finding human-centred solutions. Universal and inclusive co-design must be incorporated routinely into the practice of engineers and assumed in Engineering Ethics Codes.  

 

References: 

Aragall, F. and EuCAN members, (2003) European Concept for Accessibility: Technical Assistance Manual. Luxemburg: EuCAN – European Concept for Accessibility Network.  

Connell, B. R., Jones, M., Mace, R., Mueller, J., Mullick, A., Ostroff, E., Sanford, J., Steinfeld, E., Story, M. and Vanderheiden, G. (1997) The Principles of Universal Design, Version 2.0. Raleigh: North Carolina State University, The Center for Universal Design. USA.  

Mace, R. L., Hardie G. J. and Place, J. P. (1991) ‘Accessible environments: Toward universal design,’ in W.E. Preiser, J.C. Vischer, E.T. White (Eds.). Design Intervention: Toward a More Human Architecture. New York: Van Nostrand Reinhold, pp. 155-180.  

Declaration on the Rights of Disabled Persons. (1975). Proclaimed by G/A/RES 3447 of 9 December 1975. 

United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the United Nations General Assembly on 25 September 2015, New York.  

Additional resources: 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

The decisions engineers make on a daily basis can have significant consequences for underrepresented and disadvantaged groups in society. Prof Dawn Bonfield, Visiting Professor of Inclusive Engineering at Aston University, Royal Society Entrepreneur in Residence at King’s College London and a member of the EPC’s Engineering Ethics Advisory Group explains…

In the recent ethics report published by the RAEng (1) you might have noticed the explicit references, in an ethics context, to the societal and social justice implications of our engineering solutions that can lead to biased or discriminatory outcomes for different groups of people. This prioritisation of inclusive outcomes is a welcome expansion of the conventional focus of engineering ethics, which is often rooted in issues such as safety, corruption, and competence.

Reference was made in the first page of the report to the use of crash test dummies that have been designed to represent male drivers, leaving women (and pregnant women in particular) at greater risk in car accidents; the potential for algorithms and internet search engines to influence our thoughts on the world; issues arising from facial recognition technology failing to accurately identify those from Black, Asian and Ethnic Minority communities; and the use of artificial intelligence systems that will make safety-critical, legal, and other life changing decisions, which are often based on historical and biased datasets. You can further explore some of the issues with facial recognition technology in one of the ethics case studies produced by the EPC for their RAEng-supported Engineering Ethics Toolkit.

These are all examples of how, as engineers, we can inadvertently create solutions that are biased against minoritized groups of people if we are not careful. This generally occurs as a direct result of the fact that these groups of people are poorly represented in the engineering sector, and so their inputs are missing in the specification, design, and testing of new technologies (2).

But even before we get to a truly diverse engineering workforce, all engineers must be mindful of the ways in which the decisions they take can be discriminatory or can promulgate bias. In situations like the ones mentioned above it is relatively easy to spot the opportunity for discrimination, but in other cases it can be much more difficult. For example, there are ethical implications associated with the sort of ducting that gets chosen for a new building, where one material causes more pollution to socially and economically disadvantaged populations than another. It is in cases like this that a little more thought is required to spot whether the outcomes of these decisions are inclusive and ethical, or not.

Recently, the Covid-19 pandemic has shown us very clearly what the ethical implications are of our built environment decisions and designs, where people living in densely populated and overcrowded urban areas with minimal access to outdoor space have had significantly worse health outcomes than those with access to outdoor and green spaces. Inclusive design of the built environment is now a growing and recognised area of our engineering work, and as well as the more obvious examples of ensuring equitable access to those with disability issues, it also recognises that public spaces should be equitable and accessible to all communities. Everybody needs to see themselves represented in these environments and feel able to use them safely and fully. These are issues of ethics and inclusion, as well as social justice and equality, and the requirement we have as engineers to consider all of these perspectives as the creators of our future world must be a part of our systems engineering mindset. Several of the EPC’s ethics case studies focus on responsibility, equity, and stakeholder engagement, such as the Ageing Pipeline and its Impact on Local Communities case.

The importance of systems, design, iterative thinking, and the focus on ensuring that the whole life cycle of a product, including maintenance, repair, deconstruction, and end of life decommissioning, requires true stakeholder engagement, means that these inclusive outcomes can be considered at the very start of projects, rather than as an afterthought, where any changes are much more difficult and costly to integrate. The strengthening of the Social Value Act (3), which requires people who commission public services to explicitly evaluate how they can secure wider social, economic and environmental benefits, also puts emphasis on ensuring the outcomes of any procurement are inclusive and ethical. Similarly, the Sustainable Development Goals ethos of Leave No One Behind (4) requires that outcomes are considered from all perspectives, and that solutions taking all of the goals into account are balanced and not considered in silos. The EPC’s ethics case study on Business Growth Models allows engineering students to explore many of these issues.

Designing with the gender perspective in mind, especially in parts of the world where women have very different societal roles based on culture, stereotypes, local norms, and religion, is key to ensuring that the differences and disadvantages that women face are not exacerbated. Understanding these differences is the first step in addressing them, and in many cases, technology can act as a real enabler in situations where women have limited access to traditional education, information, and independence. For example, the widespread use of microfinance in many parts of Africa – a technology not aimed specifically at women – is nevertheless giving women much better access to loans and financial independence than the traditional banking structures did, which women are not always able to access easily. Other examples include understanding the need for sanitation facilities in public spaces such as schools, government offices, transportation hubs and health clinics, without which women’s access to these facilities becomes restricted and their participation curtailed (5).

Another ethical issue comes into play here too. Do we design just to remove bias and discrimination, or do we design to reverse historical bias and discrimination? For example, women have traditionally worked in certain sectors such as care giving roles, and not in sectors like engineering and technology. Algorithmic decision-making tools can use this historical data to preferentially show stereotypical job opportunities based on past trends and evidence, which could foreseeably prevent women from being targeted for engineering related roles. Adapting these tools to make these job opportunities open to all in an equitable way is one thing, but what if we decided to preferentially show engineering roles to women and caring roles to men – a kind of social engineering, if you will? What are the ethics of this, and would that be going too far to remove biases? I will leave you to think about this one yourselves!  If you would like to write a case study about it, we are currently looking for contributors to the toolkit!

The decisions we make daily as engineers have consequences to individuals and communities that have not always been understood or considered in the past, but by understanding the need for inclusive outcomes for all stakeholders, we also ensure that our solutions are ethical, and that we leave no on behind. The ethics case studies in the EPC’s recently launched Engineering Ethics Toolkit reveal the ethical concepts that comprise our everyday activities and what lies behind those decisions – resources like this should be used to ensure ethical decision making is integrated throughout an engineers’ education and continuing professional development.

This blog is also available here.

 

References

  1. RAEng Ethics Report https://raeng.org.uk/policy-and-resources/education-policy/the-engineering-profession/global-responsibility-and-progressive-engineering-leadership/ethics
  2. inceng.org website
  3. Social Value Act https://www.gov.uk/government/publications/social-value-act-information-and-resources/social-value-act-information-and-resources
  4. Sustainable Development Goals ethos of Leave No One Behind https://unsdg.un.org/2030-agenda/universal-values/leave-no-one-behind
  5. Towards Vision Website ‘Gender Perspective in Engineering’ http://www.towardsvision.org/the-gender-perspective-in-engineering.html

 

Dawn Bonfield MBE CEng FIMMM FICE HonFIStructE FWES is Visiting Professor of Inclusive Engineering at Aston University and Royal Society Entrepreneur in Residence at King’s College London.

 

This blog is also available here.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Research

Author: Dr Salma .M.S. Al Arefi (University of Leeds)

Keywords: Science and Social Capitals, Sense of Belonging, Intersectionality, Student Success

Abstract: Being in a marginalised position due to feeling of otherness because of one’s gender as well as intersecting identity can create psychological hidden barriers. Coupled with science and social capitals such variables are key determines of student’s self-concept of engineering self-efficacy, competencies, and abilities. The impact of being othered may not only be limited to interest for participation in engineering but could extend beyond and significantly affect student engagement, success, and affiliation with engineering. This could impact students’ sense of belonging to their degree programme, university, and discipline, leading to adverse impacts ranging from low engagement to low attainment, or discontinuations. Such experiences can be greatly exacerbated for students with intersecting identities (‘double, triple, jeopardy’), e.g., a female student who identifies as a first-generation, working-class, disabled, commuter, carer, neurodiverse or mature student. This report presents work on progress on a student-centred interventional case study on exploring the impact of the intersectional lived experiences of underrepresented, disadvantaged and minoritised student groups in engineering beyond obvious gender and pre-university qualifications characteristics.

 

1.     Problem Statement

Initiatives on closing the technical skills gap remain limited to access to either engineering education or the workplace.  Identifying and supporting students facing barriers to continuation can be key to enhancing student success in a way that bridges the gap between the ignition of interest and transition to the engineering industry.  Early but sustained engagement throughout the life cycle of an engineering student is however vital to cultivate students’ sense of belonging to their modules, degree programmes and the wider industry. That would in turn support the formation of their engineering identity.

Gendered identity, as well as pre-university qualifications, are yet perceived to exert the strongest force for marginalisation and underrepresentation in engineering education and the workplace. The impact intersecting identities can have in relation to ignition of interest, participation, as well as the formation of engineering identity, also need consideration.  Along with gender, characteristics such as race, class, age, or language can have an added impact on already minoritized individuals (the ‘double, triple, quadrant…. jeopardy’), whereby the experience of exclusion and otherness can be exacerbated by overlapping marginalised identities. Coupled with the self-concept of own science capital, efficacies, and competencies [1-2], the formation of engineering identity could be expressed as a direct function of a sense of inclusion or otherwise exclusion [3]. Within this context, such an inherent feeling of connectedness describes the extent to which the lived experience of individuals is acknowledged valued and included [4], which is a healthy fertilizer for the formation of engineering identity. Perceived threats to one’s belonging due to a feeling of exclusion or rejection could on the contrary negatively impact one’s perception of self-efficacy and hence affiliation with engineering.

2.     Project Aims

The role of effect in learning to foster a sense of belonging and enhance a coherent sense of self and form the engineering identity has attracted growing pedagogical research interest. In academia, a sense of belonging has been shown to excrete the largest force on one’s intent to participate in engineering and to be the key sustainable vehicle for successful progressions. Because engineering learning activities are pursued in complex social interactions, acknowledging, and understanding the role of belonging in academic success is key to fostering an inclusive culture that encourages and recognises contributions from all.  It is hoped that the project outcomes can advise on understanding to support underrepresented, marginalised and minoritised students overcome self-perceived psychological barriers to their degree programme, university, or engineering workplace. The intersectional lens of the project is aimed to uncover key culprits that impact engineering identity formation for traditionally underrepresented, disadvantaged and minoritised students beyond obvious gender and pre-university education characteristics.

Outcomes will role model fostering an inclusive culture where engineering students from all backgrounds feel that they belong in an effort to support engineering higher education institutions to adhere to the changes introduced by the Engineering Council to the U.K. Standards for Professional Engineering Competency and Commitment around recognising inclusivity and diversity. This should be applicable to other STEM-related disciplines.

3.     Decolonial partnership

The project centres on students’ voices through a decolonial participation approach that acknowledges participants as co-researchers and enables them to take an active role in the co-creation of the project deliverables. Participation will be incentivised through recognition (authorship, certifications) as well as financial incentives.  The use of evidence-based active listening to enable students to share their lived experiences of belonging through storytelling and story sharing is hoped to create a safe space to empower and acknowledge student voices so that every student feel that they matter to their degree programme, university, and discipline. That in turn would cultivate authentic learner identity and a sense of belonging.

4.     Outcomes and future work

The findings are hoped to advise on a sustainable support approach whereby early and sustained engagement (throughout the student lifecycle from access to continuation, attainment, and progression) are prioritised to facilitate the transition of students into and from Engineering. Co-created artefacts from the project will be used to support access and continuation by providing examples of lived experiences for prospective students to associate with. Fostering a sense of belonging is hoped to have a direct impact on learner engagement, success, and attainment as well as enhancing students’ ability to progress towards achieving their unique goals beyond their degree.

The second phase of the 2-year project will involve student recruitment and selection, interventional listening, storytelling-based approaches and co-creation of artefacts.

Acknowledgement

The work is carried out as part of the fellowship of the Leeds Institute for Teaching Excellence in partnership with Dr Kendi Guantai, from Leeds Business School, Marketing Division and Dr Nadine Cavigioli Lifelong Learning Centre at the University of Leeds.

References

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Raffaella Ocone OBE FREng FRSE (Heriot Watt University); Johnny Rich (Engineering Professors’ Council); Dr Matthew Studley (University of the West of England, Bristol); Dr Nik Whitehead (University of Wales Trinity Saint David); Dr Darian Meacham (Maastricht University); Professor Mike Bramhall (TEDI-London); Isobel Grimley (Engineering Professors’ Council).

Topic: Data security of smart technologies.

Engineering disciplines: Electronics, Data, Mechatronics.

Ethical issues: Autonomy, Dignity, Privacy, Confidentiality.

Professional situations: Communication, Honesty, Transparency, Informed consent.

Educational level: Intermediate.

Educational aim: Practise ethical analysis. Ethical analysis is a process whereby ethical issues are defined and affected parties and consequences are identified so that relevant moral principles can be applied to a situation in order to determine possible courses of action.

 

Learning and teaching notes:

This case involves a software engineer who has discovered a potential data breach in a smart home community. The engineer must decide whether or not to report the breach, and then whether to alert and advise the residents. In doing so, considerations of the relevant legal, ethical, and professional responsibilities need to be weighed. The case also addresses communication in cases of uncertainty as well as macro-ethical concerns related to ubiquitous and interconnected digital technology.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired

Learners will have the opportunity to:

Teachers will have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Smart homes have been called “the road to independent living”. They have the potential to increase the autonomy and safety of older people and people with disabilities. In a smart home, the internet of things (IoT) is coupled with advanced sensors, chatbots and digital assistants. This combination enables residents to be connected with both family members and health and local services, so that if there there are problems, there can be a quick response.

Ferndale is a community of smart homes. It has been developed at considerable cost and investment as a pilot project to demonstrate the potential for better and more affordable care of older people and people with disabilities. The residents have a range of capabilities and all are over the age of 70. Most live alone in their home. Some residents are supported to live independently through: reminders to take their medication; prompts to complete health and fitness exercises; help completing online shopping orders and by detecting falls and trips throughout the house. The continuous assessment of habits, diet and routines allows the technology to build models that may help to predict any future negative health outcomes. These include detecting the onset of dementia or issues related to dietary deficiencies. The functionality of many smart home features depends on a reliable and secure internet connection.

 

Dilemma – Part one:

You are the software engineer responsible for the integrity of Ferndale’s system. During a routine inspection you discover several indicators suggesting a data breach may have occurred via some of the smart appliances, many of which have cameras and are voice-activated. Through the IoT, these appliances are also connected to Amazon Ring home security products – these ultimately link to Amazon, including supplying financial information and details about purchases.

 

Optional STOP for questions and activities: 

1. Activity: Technical analysis – Before the ethical questions can be considered, the students might consider a number of immediate technical questions that will help inform the discussion on ethical issues. A sample data set or similar technical problem could be used for this analysis. For example:

2. Activity: Identify legal and ethical issues. The students should reflect on what might be the immediate ethical concerns of this situation. This could be done in small groups or a larger classroom discussion.

Possible prompts:

3. Activity: Determine the wider ethical context. Students should consider what wider moral issues are raised by this situation. This could be done in small groups or a larger classroom discussion.

Possible prompts:

 

Dilemma – Part two:

You send an email to Ferndale’s manager about the potential breach, emphasising that the implications are possibly quite serious. She replies immediately, asking that you do not reveal anything to anyone until you are absolutely certain about what has happened. You email back that it may take some time to determine if the software security has been compromised and if so, what the extent of the breach has been. She replies explaining that she doesn’t want to cause a panic if there is nothing to actually worry about and says “What you don’t know won’t hurt you.” How do you respond?     

 

Optional STOP for questions and activities: 

1. Discussion: Professional values – What guidance is given by codes of ethics such as the Royal Academy of Engineering/Engineering Council’s Statement of Ethical Principles or the Association for Computing Machinery Code of Ethics?

2. Activity: Map possible courses of action. The students should think about the possible actions they might take. They can be prompted to articulate different approaches that could be adopted, such as the following, but also develop their own alternative responses.

3. Activity: Hold a debate on which is the best approach and why. The students should interrogate the pros and cons of each possible course of action including the ethical, technical, and financial implications. They should decide on their own preferred course of action and explain why the balance of pros and cons is preferable to other options.

4. Activity: Role-play a conversation between the engineer and the manager, or a conversation between the engineer and a resident.

5. Discussion: consider the following questions:

6. Activity: Change perspectives. Imagine that you are the child of one of Ferndale’s residents and that you get word of the potential data security breach. What would you hope the managers and engineers would do?

7. Activity: Write a proposal on how the system might be improved to stop this happening in the future or to mitigate unavoidable risks. To inform the proposal, the students should also explore the guidance of what might be best practice in this area. For example, in this instance, they may decide on a series of steps.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website