Author: Dr. Natalie Wint (UCL). 

Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.  

Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering. 

Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment. 

Professional situations: Whistleblowing; Company growth; Communication; Public health and safety. 

Educational level: Intermediate. 

Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others. 

 

Learning and teaching notes: 

This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.  

This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibility and environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.  

This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:   

Teachers have the opportunity to:    

 

Learning and teaching resources: 

Professional organisations: 

EU agencies: 

Industry publications: 

EU law: 

 

Dilemma – Part one: 

Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.  

Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health. 

Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products. 

 

Optional STOP for questions and activities:  

1. Discussion: Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?

2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.  

3. Activity: Technical integration – Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.  

4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?  

 

Dilemma – Part two: 

Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.  

Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.  

“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.” 

Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.  

Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”  

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – What competing personal values or motivations might trigger an internal conflict for Alex? 

2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case? 

3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities. 

4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important? 

5. Discussion: How do you think the issue of microplastics should be controlled? 

6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?

7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex? 

8. Activity: Technical integration related to calculations or experiments on microplastics. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.

Topic: Materials sourcing and circularity.

Engineering disciplines: Materials engineering; Manufacturing; Environmental engineering; Construction.

Ethical issues: Respect for the environment; Risk.

Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.

Educational level: Intermediate.

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.

 

Learning and teaching notes:

This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

NGOs:

Government site:

Business:

Journal articles:

Professional organisations:

 

Dilemma – Part one:

Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.

Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.

Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.

 

Optional STOP for questions and activities:

1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?

2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.

3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?

  

Dilemma: Part two:

After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.

When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.

At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.

 

Optional STOP for questions and activities:

1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.

2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?

3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?

 

Dilemma – Part three:

In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.

She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.

Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.

 

Optional STOP for questions and activities:

1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.

2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.

3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation? 

4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?

5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Case Enhancement: Choosing to install a smart meter

Activity: Technical integration – Practical investigation of electrical energy.

Author: Mr Neil Rogers (Independent Scholar).

 

Overview:

This enhancement is for an activity found in the Dilemma Part two, Point 1 section of the case: “Technical integration – Undertake an electrical engineering technical activity related to smart meters and the data that they collect.”

This activity involves practical tasks requiring the learner to measure parameters to enable electrical energy to be calculated in two different scenarios and then relate this to domestic energy consumption. This activity will give technical context to this case study as well as partly address two AHEP themes:

This activity is in three parts. To fully grasp the concept of electrical energy and truly contextualise what could be a remote and abstract concept to the learner, it is expected that all three parts should be completed (even though slight modifications to the equipment list are acceptable).

Learners are required to have basic (level 2) science knowledge as well as familiarity with the Multimeters and Power Supplies of the institution.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Suggested pre-reading:

To prepare for these practical activities, teachers may want to explain, or assign students to pre-read articles relating to electrical circuit theory with respect to:

 

Learning and teaching resources:

 

Activity: Practical investigation of electrical energy:

Task A: Comparing the energy consumed by incandescent bulbs with LEDs.

1. Power in a circuit.

By connecting the bulbs and LEDs in turn to the PSU with a meter in series:

a. Compare the wattage of the two devices.

b. On interpretation of their data sheets compare their luminous intensities.

c. Equate the quantity of each device to achieve a similar luminous intensity of approximately 600 Lumens (a typical household bulb equivalent).

d. now equate the wattages required to achieve this luminous intensity for the two devices.

 

2. Energy = Power x Time.

The units used by the energy providers are kWh:

a. Assuming the devices are on for 6 hours/day and 365 days/year, calculate the energy consumption in kWh for the two devices.

b. Now calculate the comparative annual cost assuming 1 kWh = 27p ! (update rate).

 

3.  Wider implications.

a. Are there any cost-benefit considerations not covered?

b. How might your findings affect consumer behaviour in ways that could either negatively or positively impact sustainability?

c. Are there any ethical factors to be considered when choosing LED lightbulbs? For instance, you might investigate minerals and materials used for manufacturing and processing and how they are extracted, or end-of-life disposal issues, or fairness of costs (both relating to production and use).

 

Task B: Using a plug-in power meter.

1. Connect the power meter to a dishwasher or washing machine and run a short 15/30 minute cycle and record the energy used in kWh.

2. Connect the power meter to a ½ filled kettle and turn on, noting the instantaneous power (in watts) and the time taken. Then calculate the energy used and compare to the power meter.

3. Connect the power meter to the fan heater and measure the instantaneous power. Now calculate the daily energy consumption in kWh for a fan heater on for 6 hours/day.

4. Appreciation of consumption of electrical energy over a 24 hour period (in kWh) is key. What are the dangers in reading instantaneous energy readings from a smart meter?

 

Task C: Calculation of typical domestic electrical energy consumption.

1. Using the list of items in Appendix A, calculate the typical electrical energy usage/day for a typical household.

2. Now compare the electrical energy costs per day and per year for these three suppliers, considering how suppliers source their energy (i.e. renewable vs fossil fuels vs nuclear etc).

 

Standing charge cost / day Cost per kWh Cost / day Cost / year
A) 48p 28p
B) 45p 31p
C) 51p 27p

 

3. Does it matter that data is collected every 30 minutes by your energy supplier? What implications might changing the collection times have?

4. With reference to Sam growing marijuana in the case, how do you think this will show up in his energy bill?

 

Appendix A: Household electrical devices power consumption:

Typical power consumption of electrical devices on standby (in Watts).

Wi-Fi router 10
TV & set top box 20
Radios & alarms 10
Dishwasher  5
Washing machine  5
Cooker & heat-ring controls 10
Gaming devices 10
Laptops x2 10

 

Typical consumption of electrical devices when active (in Watts) and assuming Gas central heating.

TV & set top box (assume 5 hours / day) 120
Dishwasher (assume 2 cycles / week) Use calculated
Washing machine (assume 2 cycles / week) Use calculated
Cooking (oven, microwave etc 1 hour / day) 1000
Gaming devices (1 hour / day) 100
Laptop ( 1 hour / day) 70
Kettle (3 times / day) Use calculated
Heating water pump (2 hours / day) 150
Electric shower (8 mins / day) 8000

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Graduate employability and recruitment

Author: James Ford (University College London)

Keywords: Civil Engineering Design, Timber Design, Industry, Collaboration

Abstract: A project, developed jointly by UCL and engineers from ARUP, allowed students to work on redesigning the fire damaged roof of the Notre Dame Cathedral. Industry expertise complemented academic experience in civil engineering design to create a topical, relevant and creative project for students. The project combined technical learning in timber design with broader considerations such as costs, health and safety, buildability and environmental impacts. Final presentations being made to engineering teams at ARUP offices also developed wider professional skills.

 

Background

Following the 2019 fire in the Notre Dame Cathedral, Civil Engineering Students at University College London (UCL) were tasked with designing a replacement. The project was delivered, in collaboration with engineers from ARUP, within a Design module in Year 2 of the programme. The project was run as a design competition with teams competing against one another. The project built on learning and design project experience built up during years 1 and 2 of the course.

The collaboration with ARUP is a long-standing partnership. UCL academics and ARUP engineers have worked on several design projects for students across all years of the Civil Engineering Programme.

The Brief

Instead of designing a direct replacement for the roof the client wanted to create a modern, eye-catching roof extension which houses a tourist space that overlooks the city. The roof had to be constructed on the existing piers so loading limits were provided. The brief recognised the climate emergency and a key criterion for evaluation was the sustainability aspects of the overall scheme. For this reason, it also stipulated that the primary roof and extension structure be, as far as practicable, made of engineered timber.

 

Figure 1. Image from the project brief indicating the potential building envelopes for the roof design

 

Given the location all entries had to produce schemes that were quick to build, cause minimal disruption to the local population, not negatively impact on tourism and, most importantly, be safe to construct.

Requirements

Teams (of 6) were required to propose a minimum of 2 initial concept designs with an appraisal of each and recommendation for 1 design to be taken forward.

The chosen design was developed to include:

Teams had to provide a 10xA3 page report, a set of structural calculations, 2xA3 drawings and a 10-minute presentation.

Figure 2. Connection detail drawing by group 9

 

Delivery

Course material was delivered over 4 sessions with a final session for presentations:

Session 1: Project introduction and scheme designing

Session 2: Timber design

Session 3: Construction and constructability

Session 4: Fire Engineering and sustainability

Session 5: Student Presentations

Sessions were co-designed and delivered by a UCL academic and engineers from ARUP. The sessions involved a mixture of elements incl. taught, tutorial and workshop time. ARUP engineers also created an optional evening workshop at their (nearby) office were groups or individuals could meet with a practicing engineer for some advice on their design.

These sessions built on learning from previous modules and projects.

Learning / Skills Development

The project aimed to develop skills and learning in the following areas:

Visiting the ARUP office and working with practicing engineers also enhanced student understanding of professional practice and standards.

Benefits of Collaborating

The biggest benefit to the collaboration was the reinforcement of design approaches and principles, already taught by academics, by practicing engineers. This adds further legitimacy to the approaches in the minds of the students and is evidenced through the application of these principles in student outputs.

 

Figure 3. Development of design concepts by group 12

 

The increased range in technical expertise that such a collaboration brings provides obvious benefit and the increased resource means more staff / student interaction time (there were workshops where it was possible to have one staff member working with every group at the same time).

Working with an aspirational partner (i.e. somewhere the students want to work as graduates) provides extra motivation to improve designs, to communicate them professionally and impress the team. Working and presenting in the offices of ARUP also helped to develop an understanding of professional behaviour.

Reflections and Feedback

Reflections and feedback from all staff involved was that the work produced was of a high quality. It was pleasing to see the level of creativity that the students applied in their designs. Feedback from students gathered through end of module review forms suggested that this was due to the level of support available which allowed them to develop more complex and creative designs fully.

Wider feedback from students in the module review was very positive about the project. They could see that it built on previous experiences from the course and enjoyed that the project was challenging and relevant to the real world. They also valued the experiences of working in a practicing design office and working with practicing engineers from ARUP. Several students posted positively about the project on their LinkedIn profiles, possibly suggesting a link between the project and employability in the minds of the students.

 

Figure 4. Winning design summary diagram by group 12

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Raffaella Ocone OBE FREng FRSE (Heriot-Watt University); Professor Thomas Lennerfors (Uppsala University); Professor Sarah Hitt SFHEA (NMITE); Isobel Grimley (Engineering Professors’ Council).

Topic: Soil carbon sequestration and Solar geoengineering.

Engineering disciplines: Chemical engineering; Energy and Environmental engineering.

Ethical issues: Respect for the environment; Social responsibility; Risk.

Professional situations: Public health and safety, Communication.

Educational level: Beginner.

Educational aim: To develop ethical awareness. Ethical awareness is when an individual determines that a single situation has moral implications and can be considered from an ethical point of view.

 

Learning and teaching notes:

This case involves a dilemma that most engineering students will have to face at least once in their careers: which job offer to accept. This study allows students to consider how personal values affect professional decisions. The ethical aspect of this dilemma comes from weighing competing moral goods –that is, evaluating what might be the better choice between two ethically acceptable options. In addition, the case offers students an introduction to ethical principles underpinning EU environmental law, and a chance to debate ethical aspects surrounding emerging technologies. Finally, the case invites consideration of the injustices inherent in proposed solutions to climate change.

This case study addresses two AHEP 4 themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Olivia is a first-generation university student who grew up on a farm in rural Wales and was often frustrated by living in such a remote environment. When she received excellent A levels in maths and sciences, she took a place on a chemical engineering course in London.

Olivia became passionate about sustainability and thrived during her placements with companies that were working on innovative climate solutions. One of the most formative events for her  was COP26 in Glasgow. Here, she attended debates and negotiations that contributed to new global agreements limiting global warming to 1.5°C. Following this experience, Olivia has been looking for jobs that would allow her to work on the front line combating climate change.

 

Dilemma – Part one:

Olivia has received two job offers. One is a very well-paid position at CarGro, a small firm not far from her family farm. This company works on chemical analysis for soil carbon storage – the ability of soil’s organic matter to sequester carbon-rich compounds and therefore offset atmospheric CO2

The other offer is for an entry-level position at EnSol, a company developing the feasibility of stratospheric aerosol injection. This technology aims to mimic the effect that volcanic eruptions have on the atmosphere when they eject particles into the stratosphere that reflect sunlight and subsequently cool the planet. EnSol is a start-up located in Bristol that has connections with other European companies working on complementary technologies.

While considering these two offers, Olivia recalls an ethics lesson she had in an engineering design class. This lesson examined the ethical implications of projects that engineers choose to work on. The example used was of a biomedical engineer who had to decide whether to work on cancer cures or cancer prevention, and which was more ethically impactful. Olivia knows that both CarGro and EnSol have the potential to mitigate climate change, but she wonders if one might be better than the other. In addition, she has her own goals and motivations to consider: does she really want to work near her parents again, no matter how well-paid that job is?

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – what personal values will Olivia have to weigh in order to decide which job offer to accept? 

2. Activity: research the climate mitigation potential of soil carbon sequestration (SCS) and stratospheric aerosol injection (SAI).

3. Discussion: Professional values – based on the research, which company is doing the work that Olivia might feel is most ethically impactful? Make an argument for both companies.

4. Discussion: Wider impact – what impact does the work of these two companies have? Consider this on local, regional, and global scales. Who benefits from their work, and who does not?

5. Discussion: Technical integration – undertake a technical activity in the areas of chemical engineering, energy and / or environmental engineering related to the climate mitigation potential of SCS and SAI.

 

Dilemma – Part two:

To help her with the decision, Olivia talks with three of her former professors. The first is Professor Carrera, whom Olivia accompanied to COP26. Professor Carrera specialises in technology policy, and tells Olivia about the precautionary principle, a core component of EU environmental law. This principle is designed to help governments make decisions when outcomes are uncertain.

The second is Professor Adams, Olivia’s favourite chemical engineering professor, who got her excited about emerging technologies in the area of climate change mitigation. Professor Adams emphasises the opportunity at EnSol provides, to be working on cutting-edge research and development – “the sort of technology that might make you rich, as well!”

Finally, Olivia speaks to Professor Liu, an expert in engineering ethics. Professor Liu’s latest book on social responsibility in engineering argues that many climate change mitigation technologies are inequitable because they unfairly benefit rich countries and have the potential to be risky and burdensome to poorer ones.

Based on these conversations, Olivia decides to ask the hiring managers at CarGro and EnSol some follow-up questions. Knowing she was about to make these phone calls, both her mother and her best friend Owen (who has already secured a job in Bristol) have messaged her with contradictory advice.  What does Olivia ask on the calls to CarGro and EnSol to help her make a decision? Ultimately, which job should Olivia take?

 

Optional STOP for questions and activities:

1. Activity and discussion: research the precautionary principle – what have been the potentially positive and negative aspects of its effect on EU policy decisions related to the environment?

2. Activity: identify the risks and benefits of SCS and SAI for different communities.

3. Activity: map the arguments of the three professors. Whose perspective might be the most persuasive to Olivia and why?

4. Activity: rehearse and role play phone calls with both companies.

5. Activity: debate which position Olivia should take.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Mike Sutcliffe (TEDI-London); Professor Mike Bramhall (TEDI-London); Prof Sarah Hitt SFHEA (NMITE); Johnny Rich (Engineering Professors’ Council); Professor Dawn Bonfield MBE (Aston University); Professor Chike Oduoza (University of Wolverhampton); Steven Kerry (Rolls-Royce); Isobel Grimley (Engineering Professors’ Council).

Topic: Smart meters for responsible everyday energy use.

Engineering disciplines: Electrical engineering

Ethical issues: Integrity, Transparency, Social responsibility, Respect for the environment, Respect for the law

Professional situations: Communication, Privacy, Sustainability

Educational level: Beginner

Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action. 

 

Learning and teaching notes:

This case is an example of ‘everyday ethics’. A professional engineer must give advice to a friend about whether or not they should install a smart meter. It addresses issues of ethical and environmental responsibility as well as public policy, financial burdens and data privacy. The case helps to uncover values that underlie assumptions that people hold about the environment and its connection to human life and services. It also highlights the way that those values inform everyday decision-making.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in three parts that build in complexity. If desired, a teacher can use Part one in isolation, but Part two and Part three develops and complicates the concepts presented in Part one in order to provide additional learning. The case allows teachers the opportunity to stop at various points to pose questions and/or set activities.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary – Part one:

Sam and Alex have been friends since childhood. As they have grown older, they have discovered that they hold very different political and social beliefs, but they never let these differences of opinion get in the way of a long and important friendship. In fact, they often test their own ideas against each other in bantering sessions, knowing that they are built on a foundation of respect.

Sam works as an accountant and Alex has become an environmental engineer. Perhaps naturally, Alex often asks Sam for financial advice, while Sam depends on Alex for expert information related to sustainability and the environment. One day, knowing that Alex is knowledgeable about the renewable energy industry and very conscious of the impact of energy use at home, Sam messages Alex to say he is getting pressure from his energy company to install a smart meter.

Sam has been told that smart metering is free, brings immediate benefits to customers by helping them to take control of their energy usage, and is a key enabler for the transition away from fossil fuels use and towards the delivery of net zero emissions by 2050. Smart meters give consumers near real-time information on energy use, and the associated cost, enabling them to better manage their energy use, save money and reduce emissions. A further benefit is that they could charge their electric car far more cheaply using a smart meter on an overnight tariff.

Yet Sam has also read that smart meters ‘go dumb’ if customers switch providers and, as a pre-payment customer, this option may not be available with a smart meter. In addition, Sam suspects that despite claims that the smart meter roll out is free, the charge is simply being passed on to customers through their energy bills instead. Alex tries to give Sam as much good information as possible, but the conversation ends with the decision unresolved.

 

Optional STOP for questions and activities: 

1. Discussion and activity: Personal values – We know that Sam and Alex have different ideas and opinions about many things. This probably stems from a difference in how they prioritise values. For instance, valuing transparency over efficiency, or sustainability over convenience. Using this values activity as a prompt, what personal values might be competing in this particular case?

2. Discussion and activity: Everyday ethics – Consider what values are involved in your everyday choices, decisions, and actions. Write a reflective essay on three events in the past week that, upon further analysis, have ethical components.

3. Discussion: Professional values – Does Alex, as an environmental engineer, have a responsibility to advocate installing smart meters? If so, does he have more responsibility than a non-engineer to advocate for this action? Why, or why not?

4. Discussion: Wider impact – Are there broader ethical issues at stake here?

5. Activity: Role-play a conversation between Sam and Alex that includes what advice should be given and what the response might be.

 

Dilemma – Part two:

After getting more technical information from Alex, Sam realises that, with a smart meter, data on the household’s energy usage would be collected every 30 minutes.  This is something they had not anticipated, and they ask a number of questions about the implications of this. Furthermore, while Sam has already compared tariffs and costs as the main way to choose the energy provider, Alex points out that different providers use different energy sources such as wind, gas, nuclear, coal, and solar. Sam is on a tight budget but Alex explains that the cheaper solution is not necessarily the most environmentally responsible choice. Sam is frustrated: now there is something else to consider besides whether or not to install the smart meter.

 

Optional STOP for questions and activities:  

1. Activity: Technical integration Undertake an electrical engineering technical activity related to smart meters and the data that they collect.

2. Activity: Research what happens with the data collected by a smart meter. Who can access this data and how is privacy protected? How does this data inform progress towards the energy transition from fossil fuels?

3. Activity: Research different energy companies and their approach to responsible energy sourcing and use. How do these companies communicate that approach to the public? Which company would you recommend to your friend and why?

4. Activity: Cost-benefit analysis – Sometimes the ethical choice is the more expensive choice. How do you balance short- and long-term benefits in this case? When, if ever, would it be ethically right to choose energy from non-renewable sources? How would this choice differ if the context being considered was different? For example, students could think about responsible energy use in industrialised economies versus the developing world and energy justice.

 

Dilemma – Part three:

Following this exchange with Sam, Alex becomes aware that one of the main obstacles in energy transition concerns communication with the public. Ideally, Alex wants to persuade family and other friends to make more responsible choices; however, it is clear that there are many more factors involved than can be seen in one glance. This includes what kinds of pressure is put on consumers by companies and the government. Alex begins to reflect on how policy drives what engineers think and do, and joins a new government network on Engineering in Policy.  

Alex and Sam meet up a little while later, and Sam announces that yes, a smart meter has been installed. At first Alex is relieved, but then Sam lets it slip that they are planning to grow marijuana in their London home. Sam asks whether this spike in energy use will be picked up as abnormal by a smart meter and whether this would lead to them being found out.

 

Optional STOP for questions and activities:  

1. Discussion: Personal values – What are the ethics involved in trying to persuade others to make similar choices to you?

2. Discussion and activity: Legal responsibility – What should Alex say or do about Sam’s disclosure? Role-play a conversation between Sam and Alex.

3. Discussion: Professional responsibility – What role should engineers play in setting and developing public policy on energy?

4. Activity: Energy footprint – Research which industries use the most energy and, on a smaller scale, which home appliances use the most energy.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website