Objectives: This activity amplifies the stories of underrepresented individuals overcoming barriers in their careers, highlighting resilience, diversity, and inclusion. This challenge aims to inspire action and illustrate how diversity drives innovation and growth. By sharing success stories from diverse engineering professionals, we aim to motivate and guide students on similar paths.

Introduction: Voices of Change is an activity designed to highlight the powerful stories of underrepresented individuals in engineering and STEM. Through a collection of personal narratives, including those of Black researchers, this resource showcases the challenges they’ve overcome, the contributions they’ve made, and the importance of diversity in driving innovation. By exploring these stories, students are encouraged to reflect on issues of equity and inclusion, gain insight into diverse career pathways, and feel empowered to pursue their own ambitions within an inclusive engineering community.

Topic: Inspiring diversity and resilience: stories of underrepresented engineers driving innovation and inclusion.

Keywords: Equity, Diversity and Inclusion; Students; Employability and skills; Mentoring; Job or career impact; Early careers; Higher education institutions; Engineering professionals; Curriculum or course; Social responsibility; Societal impact; Corporate social responsibility; Apprenticeships or work based learning; Personal or professional reputation

 

Voices of change

IntroductionJanetLeonetteSamuelLewisLeonPurvi

Click on each accordion tab to discover inspiring success stories from a diverse range of engineering professionals, showcasing their journeys and achievements. Let their experiences motivate and empower you to reach new heights in your career.

Video summary:

Janet shares her journey from a hesitant industry worker to a successful engineer, highlighting the importance of education, networking, and self-improvement. 

Key insights:

🚀 Career transformation: Janet’s shift from a technical operator to an engineer illustrates the potential for personal and professional growth through unexpected opportunities. Her journey shows that initial discomfort can lead to fulfilling careers. 

📚 Importance of education: Pursuing further education, such as her BTech and bachelor’s degree, was crucial for Janet. This highlights the value of continuous learning in adapting to industry demands and personal aspirations. 

🤝 Networking matters: Joining groups like “Women in STEM” helped Janet connect with others and gain valuable insights. Networking can provide support and open doors in competitive fields. 

💡 Embrace uniqueness: Janet’s willingness to present herself authentically during interviews exemplifies how being true to oneself can set candidates apart and lead to unexpected success. 

🌱 Growth mindset: Janet’s commitment to continuous improvement and lifelong learning reflects a growth mindset that is essential in rapidly evolving industries, showcasing that education is an ongoing journey. 

👩‍🔧 Advocacy for diversity: Janet’s observations about the lack of female engineers in her workplace highlight the need for diversity. Her passion for inclusivity can inspire change and encourage young women to pursue engineering careers. 

🛠️ Real-world experience: Janet’s technical background provided her with practical skills that helped in job interviews. This emphasiszes the importance of gaining hands-on experience in any field, as it can enhance employability and confidence

Video summary:

Leonette emphasizes the importance of networking and mentorship in her journey from chemical engineering to data science, highlighting diversity and empowerment.

Key insights:

🤝 The power of networking: Building professional relationships can significantly enhance job prospects. Networking opens doors that might otherwise remain closed.

🎓 Mentorship impact: Guidance from mentors, such as professors, can provide invaluable insights and job referrals in your field.

💬 Active engagement: Participating in events and volunteering fosters visibility and rapport with key industry players.

🌈 Diversity matters: A commitment to diversity and inclusion can drive positive change in the workplace and society.

🌟 Role model influence: Being a visible success for underrepresented groups can inspire future generations to pursue their dreams.

🌱 Empowerment through change: Actively working to reduce gaps in representation fuels personal motivation and broader societal progress.

🛡️ Resilience is key: Perseverance through challenges is essential for long-term success and personal growth.

Video summary:

Samuel is a biomedical engineering graduate from Canterbury Christ Church University, emphasizes the importance of EDI in engineering and shares his experiences at ICU Medical.  

Key insights:

🎓 Education’s role in EDI: Samuel’s education at Canterbury Christ Church University shaped his understanding of equality, diversity, and inclusion, highlighting how universities can instil these values early on. 

💼 Career impact: Working at ICU Medical, Samuel experiences first-hand how EDI initiatives can create a supportive work environment, demonstrating EDI’s influence on professional development. 

🌍 Importance of EDI events: By participating in EDI events, organisations can foster a culture of inclusion, encouraging diverse participation in engineering fields. 

🤝 Diversity in problem-solving: Different perspectives lead to innovative solutions, proving that EDI is crucial for effective teamwork and project success in engineering. 

🗣️ Listening to diverse voices: Brooks emphasizes the significance of hearing different viewpoints, suggesting that diversity in thought is essential for addressing complex challenges. 

📈 Future of EDI: The need for increased awareness and opportunities in EDI is vital for fostering an inclusive environment, ensuring everyone has equal chances for success. 

🌟 Organisational responsibility: Companies should prioritise creating EDI teams and strategies, making inclusivity a fundamental part of their operational framework. 

Video summary:

Lewis a former transport manager, transitioned to teaching computer science, aiming to inspire diverse students in computing and engineering fields.  

Key insights:

🚀 Diverse backgrounds enhance innovation: Engaging individuals from various backgrounds can lead to more innovative solutions in tech. Diverse teams bring different perspectives, critical for problem-solving in engineering and computing. 

🏫 Importance of early education: Introducing computing concepts at a young age can inspire future interest and career paths among students. Early exposure is key to nurturing talent from diverse demographics. 

🔍 Awareness of gender & racial gaps: Understanding existing disparities in education allows educators to implement targeted strategies. 

Video summary:  

Leon is a Computing graduate from East London, is a grassroots football coach passionate about technology and inclusivity in sports. 

Key insights  

🌐 Diversity and inclusion: Leon highlights the importance of fostering an inclusive environment in sports, which can positively influence players’ development and teamwork. Embracing diversity enriches the community within the club. 

Passion for football: His love for football not only drives his coaching but also builds resilience. The challenges faced in sports translate into valuable life lessons applicable in various contexts. 

💡 Technology enthusiasm: Leon’s interest in technology reflects a growing trend where tech plays a crucial role in sports and society, indicating the need for professionals to adapt and innovate. 

🛠️ Work-life balance: By learning to separate work from personal life, Leon emphasizes self-care, which is essential for maintaining mental health and productivity in high-pressure environments. 

Video summary:

Final-year mechanical engineering student Purvi shares insights on job offers, the value of practical experience, and leadership skills from his projects. 

Key insights:

🎓 Practical experience matters: Purvi emphasized that hands-on experience, such as internships and projects, can set candidates apart in competitive industries. This underscores the importance of seeking practical opportunities during academic studies. 

🚀 Diverse skill application: The realisation that skills from various experiences, not just academic knowledge, can be leveraged in interviews showcases the value of a well-rounded background in job applications. 

🔍 Importance of leadership: Participation in projects like the Formula Student provided Purvi with leadership experiences that he effectively communicated during interviews. This highlights how extracurricular activities can enhance employability. 

⚖️ Health and safety knowledge: Understanding industry-specific regulations, such as health and safety in aviation and defence, can significantly strengthen a candidate’s position in interviews, demonstrating readiness for real-world challenges. 

🤝 Support systems matter: Purvi’s positive experience with university support in navigating job offers illustrates the role of academic institutions in preparing students for the workforce. 

🌟 Expectations vs. reality: The contrast between Purvi’s initial expectations of the industry and the actual diversity he encountered suggests a shift in perception is possible through direct experience. 

📈 Utilising unique skills: Purvi’s insight that uniqueness stems from skill utilisation rather than background alone promotes the notion that every candidate has something valuable to offer, regardless of their starting point. 

 

Stories of Black Researchers in STEM

Explore the inspiring journeys of Black researchers in STEM, highlighting their achievements and contributions despite challenges. Their stories showcase resilience and the vital role of diversity in science, technology, engineering, and mathematics. Initiatives like #BlackBirdersWeek and #BlackInSciComm emphasize the importance of community and representation, celebrating successes while addressing systemic obstacles.

Explore these narratives and learn more about the experiences of Black researchers in STEM through Science News’ feature on the diversity, equity, and inclusion efforts within the science community.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: This activity aims to raise awareness of language’s impact in professional settings, particularly for underrepresented groups. Students will explore verbal and non-verbal communication to foster an inclusive environment. Students will receive strategies for handling challenging situations and building confidence in interactions with leaders, and managing conflicts.

Introduction: This activity explores how language, both verbal and non-verbal, impacts professional settings, particularly for underrepresented groups. Through video insights and practical strategies, students will learn to navigate difficult conversations, address microaggressions, and build confidence in communicating with leaders. The activity also highlights the role of gendered language in interviews and recruitment, encouraging inclusive and self-aware communication in the workplace.

Topic: Building confidence and inclusion through mindful communication in the workplace.

Keywords: Equity, Diversity and Inclusion; Communication; Students; Mentoring; Job or career impact; Early careers; Engineering professionals; Curriculum or course; Personal or professional reputation; Societal impact; Social responsibility; Corporate social responsibility; Higher education institutions; Apprenticeships or work based learning; Leadership or management; Gender.

 

Navigating difficult workplace conversations 

In the video below, Abisola Ajani, a process technology engineer and founder of BW, highlights the critical role of communication skills in effectively navigating challenging workplace conversations.

Video summary: 

Abisola Ajani, a process technology engineer and founder of BW, emphasises the importance of skills for navigating difficult workplace conversations. 

Key insights:

💡 Importance of communication skills: Effective communication in engineering helps convey expertise and resolve conflicts, making it vital for career success. 

⏸️ Power of pausing: Taking a moment to pause during tough conversations allows for clearer thinking and more productive responses, promoting better outcomes. 

🤝Role of mentorship: Seeking guidance from mentors equips individuals with strategies and confidence to tackle challenging discussions, enhancing professional growth. 

🤔 Valuing past experiences: Skills gained from previous jobs, even in unrelated fields, can be leveraged in engineering roles, demonstrating that every experience contributes to personal development. 

 Growth through mistakes: Embracing the inevitability of mistakes in difficult conversations encourages continuous improvement and resilience in professional settings. 

🌍 Diversity and inclusion: An inclusive environment empowers individuals to express their authentic selves, leading to greater innovation and collaboration within teams. 

💪 Empowerment through visibility: Initiatives like BW highlight the importance of representation in engineering, inspiring future generations of diverse engineers to thrive. 

 

 

Resources: 

Thriving Together Series:  Strengthening Diversity and Inclusion through Communication 

This resource emphasizes communication’s role in fostering diversity and inclusion at work. It covers: 

 

 

“I” versus “We” 

Interviews can be stressful, often reinforcing learned gender habits in language use. Women tend to use “We” instead of “I” for work they have done, and use hedge words like “think” due to societal expectations of modesty and humility. Men, on the other hand, typically use “I” and fewer hedge words, reflecting societal norms of assertiveness and leadership. 

If you catch yourself using “We” when you mean “I,” pause and correct it, but explain it’s a habit from societal norms. Both “We” and “I” answers are important: “We” for teamwork, “I” for leadership and initiative. 

Employers we recommend you recognise that “We” and “I” can be interchangeable for many women and some cultures, and understand the biases involved. 

 

 

Gender Decoder

The Gender Decoder analyses job descriptions to identify and correct gendered language, promoting gender-neutrality and inclusivity in recruitment. Try it to see how small language changes can foster a more inclusive work environment. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives:   Networking is an important career tool as it enables you to: 

Introduction: Networking is a vital career skill that helps you access opportunities, build meaningful connections, and grow professionally. This activity explores how strategic networking – especially for underrepresented students, can enhance visibility, open doors, and foster resilience in STEM fields. Through real stories and practical guidance, you’ll learn how to develop social capital, navigate professional spaces, and promote inclusivity in your industry journey.

Topic: Building social capital: networking strategies for underrepresented students in STEM

Keywords: Equity, Diversity and Inclusion; Students; Job or career impact; Early Careers; Engineering professionals; Apprenticeships or Work based learning; Mentoring; Personal or professional reputation; Social responsibility; Corporate Social Responsibility; Higher Education Institutions; Gender; Networking; STEM.

 

The importance of networking and inclusivity in the industry

In the video below, Donna Otchere discusses her path from engineering graduate to PhD student, stressing the importance of networking and promoting inclusivity in the industry. 

Video summary: 

Donna Otchere shares her journey from engineering graduate to PhD student, emphasizing the importance of networking and inclusivity in the industry. 

Key insights: 

🎉Networking is a vital skill: Donna highlights that networking isn’t just about professional connections; it’s about forming friendships and support systems that can enhance career growth. 

💪 The power of resilience: Rejection in networking is normal and should be viewed as a stepping stone rather than a setback, encouraging a mindset of perseverance. 

🌟Utilise online platforms: Leveraging LinkedIn and other online resources can significantly expand one’s professional network and visibility in the industry. 

🤗 Community involvement is key: Engaging with communities focused on shared interests fosters a sense of belonging and opens doors to new opportunities. 

🎯Goal-oriented networking: Having a clear objective when attending networking events can lead to more meaningful interactions and outcomes. 

🌈 Importance of diversity: Diverse teams bring various perspectives, which are critical in engineering problem-solving, thus promoting inclusivity in the field. 

🛠️ Engineering is for everyone: Donna stresses that engineering is a universal field where everyone, regardless of background, can thrive and contribute. 

 

 

Stories of resilience in STEM  

Explore the inspiring stories of Black and Latinx STEM professionals at the Broad Institute who overcame systemic barriers through mentorship, resilience, and strategic networking. These narratives highlight the challenges and the power of diversity in driving success and innovation in science. 

 

 

Building social capital for underrepresented students  

Social capital is the ability to build networks and relationships to enhance educational, career, and business opportunities. For underrepresented students, building social capital is crucial to you accessing opportunities and advancing your career. 

Video summary: 

Our Cultivating Connections Centre defines social capital as access to resources and relationships to help students achieve their goals, alongside educating them on mobilising these assets. 

Key insights: 

🌍 Access to resources: Students who can tap into various resources have a greater chance of pursuing their educational and career goals. This access is foundational in creating opportunities. 

👥 Importance of relationships: Building strong relationships is essential for students. These connections can provide support, advice, and opportunities that enhance their learning journey. 

📖 Educating on mobilisation: It’s not enough to have resources; students must learn how to effectively mobilise these assets. This knowledge is vital for achieving long-term success. 

🎯 Goal achievement: The combination of access to resources and the ability to mobilise them is what enables students to reach their aspirations, making both aspects equally important. 

🛠️ Providing tools: The Centre plays a crucial role in equipping students with the necessary tools to navigate their social capital, ensuring they can leverage their networks effectively. 

🌱 Fostering growth: Social capital is not just about immediate access; it fosters long-term personal and professional growth, helping students adapt and thrive in various environments. 

🔑 Empowerment through knowledge: Educating students about social capital empowers them, allowing for greater agency in their educational and career journeys, ultimately leading to more fulfilling outcomes. 

 

 

Navigating microaggressions in professional settings 

How do you identify and challenge microaggressions safely and effectively. This essential skill not only aids in protecting one’s dignity and mental health, but also promotes a more inclusive and respectful professional environment for all. Discover practical tools and strategies at Body Swaps: Let’s Talk About Race. 

 

 

Career support for ethnic underrepresented students 

Access tailored support for ethnic underrepresented students seeking professional development and networking. Utilise our University Career Services Library to identify your institution’s career services and explore comprehensive resources for skills training, career advancement, building a supportive professional network and more.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.

Theme: Universities’ and business’ shared role in regional development; Collaborating with industry for teaching and learning; Knowledge exchange; Research; Graduate employability and recruitment.

Author: Prof Matt Boyle OBE (Newcastle University).

Keywords: Electrification; Collaboration Skills; Newcastle.

Abstract: Driving the Electric Revolution is led by Newcastle and is a collaborative R&D project to build supply chains in Power Electronics Machines and Drives. The University led the bid and as we amass supply chain capability we will generate £ Billions in GVA.

 

Newcastle University has been embedded in the academic and industrial development of the North East of England since 1834. Recently, one of its core competencies, Machines and Drives research, has been used to attract investment to the region from Industry and Government helping to increase the economic prospects for the North East region.

Newcastle University is the national lead organisation for Driving the Electric Revolution Industrialisation Centres an Industrial Strategy Challenge Fund Wave 3 competition. The centres serve two purposes,

  1. A focal point for development of manufacturing processes in Power Electronics, Machines and Drives (PEMD) through investment in cutting edge manufacturing equipment.
  2. The training of researchers, students, employees of industrial partners on these important new processes.

The Driving the Electric Revolution (DER) Industrialisation Centres (DERIC) project aims to accelerate UK industrialisation of innovative and differentiated PEMD manufacturing and supply chain solutions. They are doing this by creating a national network to coordinate and leverage the capabilities of 35 Research and Technology Organisations (RTO) and academic establishments, based within four main centres.  Supported by 166 industrial partners it represents the largest coordinated industrialisation programme the UK PEMD sector has ever seen.

Newcastle University has, in living memory, always been at the forefront of Electric Machines and Drives innovation globally. It was inevitable that Newcastle would lead the DER project given its pedigree, reputation and the fact that it was supported by several companies in several sectors, Automotive, Aerospace and domestic products who undertake product research in the North East and who seek to manufacture in the UK if possible.

Newcastle did recognise however that it couldn’t deliver the government programme alone. There were four institutions which formed a consortium to bid into the competition, Newcastle University, University of Strathclyde, Warwick Manufacturing Group and the Compound Semiconductor Applications Catapult in Newport South Wales. Over time they have been joined by University of Nottingham, University of Birmingham, Swansea University and University of Warwick. Letters of support were received from 166 Industry partners, 27 FE and HE organisations expressed support as did 13 RTOs. Although the national bid was led by Newcastle, it took a more North East regional view in development of its delivery model.

Therefore, in addition to this national work, Newcastle extended their DERIC application beyond Newcastle to Sunderland where they worked with Sunderland council to establish a DERIC research facility in the area. Sunderland city council worked with Newcastle to acquire, fit out and commission the lab which received equipment from the project and is due to open in 2022.

Nationally the primary outcome is the establishment of the Driving the Electric Revolution Industrialisation Centres and the network.

The four DERIC act as focal points for the promotion of UK PEMD capabilities. They design develop and co-sponsor activities at international events. They send industrial representatives to meet with clients and research partners from UK, Europe and Asia, as well as developing a new UK event to attract leading PEMD organisations from around the globe.

In Newcastle the university’s sponsorship of both the national project as well as the DERIC in the North East is helping attract, retain and develop local innovation and investment. The equipment granted by the DER Challenge to the centre includes a Drives assembly line as well as an advanced Machines line. The DERIC is focused primarily in the development of manufacturing processes using the granted equipment. The equipment was selected specifically with these new processes in mind. The success of the DERIC program already means that the country and the region have attracted substantial inward investment.

Investments by three companies came to the North East because of the capability developed in the region. They have all agreed partnerships with the university in the process of establishing, acquiring and investing in the North East. The three companies are:

  1. British Volt mission is to accelerate the electrification of society. They make battery cells. Their Gigaplant in Northumberland will be the second Gigaplant in the UK. They are investing £1Bn into the region creating around 5,000 jobs both at the plant and in the supply chain.
  2. Envision also make batteries. Unlike British volt the Envision cell is a Gel pack. Envision has the first Gigaplant in the UK at Sunderland. They are investing a further £450M to expand the plant in Sunderland and potentially another £1.8Bn by 2030.
  3. Turntide Technologies invested £110M into the region acquiring three businesses. These have all in some fashion been supported by and supportive of the PEMD capability at Newcastle over the past six decades.

The university has worked tirelessly to help create an ecosystem in the region for decarbonisation and electrification.

The last stage of this specific activity is the creation of the trained employees for this new North East future. The university, collaborating across the country with DER partners, is embarking on an ambitious plan to help educate, train and upskill the engineers, scientists and operators to support these developments. It is doing this by collaborating, for the North East requirement, with the other universities and further education colleges in the region. Industry is getting involved by delivering a demand signal for its requirements. The education, training and up skilling of thousands of people over the next few years will require substantial investments by both the educators in the region as well as industry.

As the pace of electrification of common internally combusted applications accelerates the need for innovation in the three main components of electrification, power source, drive and machine will grow substantially. The country needs more electrification expertise. The North East region has many of the basic building blocks for a successful future in electrification. Newcastle University and its Academic and Industrial partners have shown the way ahead by collaborating, leading to substantial inward investment which will inevitably lead to greater economic prosperity for the region. Further information is available from the Driving the Electric Revolution Industrialisation Centres website. In addition, there are annual reports and many events hosted, sponsored or attended by the centres.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Knowledge exchange, Universities’ and businesses’ shared role in regional development, Collaborating with industry for teaching and learning

Authors: Ben Ricketts (NMITE), Prof Beverley Gibbs (NMITE) and Harriet Dearden (NMITE)

Keywords: Challenge-based Learning, Timber Technology, Levelling-up, Skills, Future of Work

Abstract: NMITE is a greenfield engineering-specialist HEI in Herefordshire which welcomed its first students in September 2021. Partnership is key to our growth, from both necessity and choice. Our MEng Integrated Engineering is infused with partners who facilitate a challenge-based learning pedagogy, and our Centre for Advanced Timber Technology (opening September 2022) works in national partnership to deliver a curriculum developed by – and for – the timber engineering industry. Alongside a rich educational offer, NMITE’s greenfield status brings with it the responsibility to contribute to civic and economic growth. We are a named partner in Western Power Distribution’s Social Contract as we pursue shared goals for regional development and reduced economic inequality. Key to our goals is our role in in Hereford’s Town Plan, leading an initiative called The Skills Foundry which will promote community engagement around individual skills, and with businesses in the changing nature of work.

 

NMITE is a greenfield HEI founded to make a difference to the people of Herefordshire and to its economy. Herefordshire is  characterised by lower-than-average wages, lower-than-average skills, higher proportions of part-time work, a GVA gap of £1.75bn[1], and is categorised as a social mobility coldspot [2].  Into this context, NMITE was launched in 2021 without any antecedent or parent organisation, and with an engineering and technology focus whose graduates would help address the national shortfall of engineers.  We see ourselves as educators, educational innovators, a catalyst for upskilling, and agents for regional change.

An HEI founded in partnership

From NMITE’s earliest days, building strong relationships with partners has been a core part of our culture.  NMITE’s first supporters were industry partners, a mixture of local SMEs and national and international companies with a regional presence, united by the need for access to a talent pipeline of engineering graduates. The urgency of this need was evidenced in the raising of over £1M of seed funding, from a range of businesses and individuals. This early investment demonstrated to Government and other stakeholders that the concept of an engineering higher education institution in Hereford had industrial support. In turn, this unlocked significant Government funding which has subsequently been matched through donations and sponsorship to NMITE.

Over the last five years, the portfolio of partners has continued to grow. The nature of the support spans equipment, expertise and financial donations. Our Pioneer Fund raised money to support NMITE’s first students, with donations recognised through naming opportunities. For NMITE, this enabled us to offer universal bursaries to our students joining in our first two years of operation – a powerful tool in student recruitment, and with a longer-term outcome for those early investors in their ability to develop relationships with students, increase their brand awareness and achieve their own recruitment targets in the future.

Curriculum Partnerships

NMITE welcomed its first MEng students in September 2021, and this has provided new opportunities for industrial partnership in the curriculum. The MEng Integrated Engineering is a challenge-led pedagogy where learners work in teams to address real engineering challenges provided by an industrial (and occasionally community) partner. During the process, learners have direct contact with professionals to understand commercial pressures and engineering value, apply theoretical knowledge and develop professional capabilities.

In the sprint-based MEng, NMITE learners tackle around 20 different challenges in this way. Since September, our first students have helped re-engineer the material on a torque arm, designed and built a moisture sensor for a timber-framed house, visualised data from a geotechnical survey, and validated/optimised their own designs for a free-standing climbing structure. Students are already building their portfolio of work, and employers are building relationships with our student body.

Amplifying Innovation

Whilst NMITE is comfortable in its positioning as a teaching-focused HEI, we are mindful of the contribution we can make to the regional economy. NMITE has benefitted from LEP investment to support regional skills and productivity [3], and we have identified opportunities in advanced timber technology, automated manufacturing and skills for a changing future of work.

The Centre for Advanced Timber Technology (CATT) will open in September 2022 on Skylon Park, Hereford’s Enterprise Zone. Drawing on insight from a series of round table meetings with global and national businesses in timber, we came to understand that the UK timber industry needed to be much better connected, with more ambitious collaboration across the industry both vertically (seed to end product) and horizontally (between architects, engineers and construction managers, for example). In pursuing these aims we once again opted for a partnerships-based approach, forging close relationships with Edinburgh Napier University – internationally recognised for timber construction and wood science – and with TDUK – the timber industry’s central trade body. Founded in this way, CATT is firmly rooted in industrial need, actively engaged with industrial partners across the supply chain, and helps join up activity between Scotland, England and Wales. 

CATT’s opening in 2022 will spearhead NMITE’s offer for part-time, work-based learners (including professionals, reskillers and degree apprentices) and provide a progressive curriculum for a sustainable built environment. In keeping with NMITE’s pedagogical principals, the CATT’s curriculum will be infused with a diverse portfolio of industrial partners who will provide challenges and context for the CATT curriculum. In future years, the Centre for Automated Manufacturing will provide educational options for comparable learners in the manufacturing industry.

Our initial research in establishing need in these areas pointed not only to skills shortages, but to technological capacity. Herefordshire has a very high proportion of SME’s who report difficulties in horizon scanning new technologies, accessing demonstrations, attracting and retaining graduates with up-to-date knowledge. In this space, and an HEI can play a key role in amplifying innovation; activities to support this will be integral to NMITE’s work at Skylon Park.

The Changing Nature of Work

NMITE is active in two further projects that support the regional economy and social mobility, founded in the knowledge that today’s school leavers will face very different career paths and job roles to those we have enjoyed. Automation, globalisation and AI are hugely disruptive trends that will change opportunities and demand new skills.

NMITE’s ‘Herefordshire Skills for the Future’ project is funded by the European Social Fund and helps SMEs, micro-businesses and young people to develop and secure the skills needed to flourish in the economy of 2030. Activities include:

NMITE’s Future Skills Hub is a central element of the Hereford Stronger Towns bid [4] to the Government’s Towns Fund, a flagship levelling-up vehicle. The overarching goal of the hub is to provide access to skills and improve employment opportunities for Herefordians, in the context of changing job roles and opportunities.

Conclusion

Our core mission of innovation in engineering education is enhanced by our civic commitment to regional growth and individual opportunity. From the outset, NMITE has been clear that to meet business demand for work-ready engineers, business must contribute meaningfully to their development. We aim to contribute to closing the gap in regional, national and global demand for engineers, but without that critical early investment from partners we would not have been in the position to establish the radical institution that NMITE is today, that remains so close to the original vision of the Founders.

 

[1] Herefordshire Council. Understanding Herefordshire: Productivity and Economic Growth, 2022. Available online at Productivity and economic growth – Understanding Herefordshire [accessed 17th January 2022].

[2] [1] Herefordshire Council. Understanding Herefordshire: Topics Related to Social Mobility, 2022. Available online at Topics relating to social mobility – Understanding Herefordshire [accessed 17th January 2022].

[3] Marches Local Economic Partnership. Marches LEP backs NMITE project with £5.66m funding deal. Available online at Marches LEP backs NMITE project with £5.66m funding deal – Marches LEP [accessed 17th January 2022].

[4] Stronger Hereford. #StrongerHereford – The independent Towns Fund Board for Hereford

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Gareth Thomson (Aston University, Birmingham), Dr Jakub Sacharkzuk (Aston University, Birmingham) and Paul Gretton (Aston University, Birmingham)

Keywords: Industry, Engineering Education, Authenticity, Collaboration, Knowledge exchange, Graduate employability and recruitment.

Abstract: This paper describes the work done within the Mechanical, Biomedical and Design Engineering group at Aston University to develop an Industry Club with the aim to enhance and strategically organise industry involvement in the taught programmes within the department. A subscription based model has been developed to allow the hiring of a part-time associate to manage the relationship with industry, academic and student partners and explore ways to develop provision. This paper describes the approach and some of the activities and outcomes achieved by the initiative.

 

Introduction

Industry is a key stakeholder in the education of engineers and the involvement of commercial engineering in taught programmes is seen as important within degrees but may not always be particularly optimised or strategically implemented.

Nonetheless, awareness of industry trends and professional practice is seen as vital to add currency and authenticity to the learning experience [1,2]. This industry involvement can take various forms including direct involvement with students in the classroom or in a more advisory role such as industrial advisory or steering boards [3] designed to support the teaching team in their development of the curriculum.

Direct input into the curriculum from industry normally involves engagement in dissertations, final year ‘capstone’ project exercises [4], visits [5], guest lectures [6,7], internships [8,9] or design projects [10,11]. These are very commonly linked to design type modules [12,13] or projects where the applied nature of the subject makes industrial engagement easier and are more commonly centred toward later years when students are perceived to have accrued the underpinning skills and intellectual maturity needed to cope with the challenges posed.

These approaches can however be ad hoc and piecemeal. Industry contacts used to directly support teaching are often tied into specific personal relationships through previous research or consultancy or through roles such as the staff involved also being careers or placement tutors. This means that there is often a lack of strategic thinking or sharing of contacts to give a joined up approach – an academic with research in fluid dynamics may not have an easy way to access industrial support or guidance if allocated a manufacturing based module to teach.

This lack of integration often gives rise to fractured and unconnected industrial involvement (Figure 1) with lack of overall visibility of the extent of industrial involvement in a group and lack of clarity on where gaps exist or opportunities present themselves.

 

Figure 1 : Industry involvement in degrees is often not as joined up as might be hoped.

 

As part of professional body accreditation it is also generally expected that Industrial Advisory Boards are set-up and meet regularly to help steer curriculum planning. Day to day pressures however often mean that these do not necessarily operate as effectively as they could and changes or suggestions proposed by these can be slow to implement.

Industry Club

To try to consolidate and develop engagement with industry a number of institutions have developed Industry Clubs [14,15] as a way of structuring and strategically developing industrial engagement in industry.

For companies, such a scheme offers a low risk, low cost involvement with the University, access to students to undertake projects and can also help to raise awareness in the students minds of companies and sectors which may not have the profile of the wider jobs market beyond the big players in the automotive, aerospace or energy sectors. At Aston University industry clubs have been running for several years in Mechanical Engineering, Chemical Engineering and Computer Science.

The focus in this report is the setting up and development of the industry club in the Mechanical, Biomedical and Design Engineering (MBDE) department.

Recruitment of companies was via consolidation of existing contacts from within the MBDE department and engagement with the wider range of potential partners through the University’s ‘Research and Knowledge Exchange’ unit.

The industry focus within the club has been on securing SME partners. This is a sector which has been found to be very responsive. Feedback from these partners has indicated that often getting access to University is seen as ‘not for them’ but when an easy route in is offered, it becomes a viable proposition. By definition SMEs do not have the visibility of multi-nationals and so they can struggle to attract good graduates so the ability to raise brand awareness is seen as positive. From the perspective of academics, the very flat and localised management structure also makes for a responsive partner able to make decisions relatively quickly. Longer term this opens up options to explore more expansive relationships such as KTPs or other research projects and also sets up a network of different but compatible companies able to share knowledge among themselves.

Within MBDE the industry club initially focussed on placing industrially linked projects for final year dissertation students. This was considered relatively ‘low hanging fruit’ with a simple proposition for companies, academics and students.

While this proposal is straightforward it is not entirely without difficulty with matching of academics to projects, expectation management and practical logistics of diary mapping between partners all needing attention.

To support this, an Industry Club Associate was recruited to help manage the initiative, funding for this being drawn from industry partner subscriptions and underwritten by the department.

This has allowed the Industry Club to move beyond its initial basis of final year projects to have a much wider remit to oversee much of the involvement of industry in both the teaching programmes directly and in their advising and steering of the curriculum.

Figure 2 shows schematically the role and activities of the industry club within the group.

Impact Beyond Projects

The use of the Industry Club to co-ordinate and bolster other industry activity within the department has gone beyond final year projects. These can be seen in Figure 2.

The Industrial Advisory Board has now become linked to the Industry Club and so with partners now involved in the wider activities of the club involvement is now not exclusively limited to twice yearly meeting but is an active ongoing partnership using the projects, other learning and teaching activity and a LinkedIn group to create a more dynamic and responsive consultation body. A subset of the IAB is now also made up entirely of recent alumni to act as a bridge between the students and practising industry to help spot immediate gaps and opportunities to support students in this important transition.

 

Figure 2 : Industry Club set-up and Activity

 

The club has also developed a range of other industrially linked activities in support of teaching and learning.

While industrial involvement is relatively easy to embed in project or design type modules this is not so easy in traditional underpinning engineering science type activity.

To address the lack of industrial content in traditional engineering science modules a pilot interactive online case studies be developed to help show how fundamental engineering science can be applied in authentic industrial problems. A small team consisting of an academic, the industry club associate and an industrialist was assembled.

This team developed an online pump selection tool which combined interactive masterclasses and activities, introduced and explained by the industrialist to show how the classic classroom theory could be used and adapted in real world scenarios (Figure 3). This has been well-received by students, added authenticity to the curriculum and raised awareness in student minds of the perhaps unfashionable but important and rewarding water services sector.

 

Figure 3 : Online Interactive Activity developed as part of industry club activity

Further interactions developed by the Industry Club, and part of its remit to embed industrial links at all stages of the degree, include the involvement of an Industrial Partner on a major wind turbine design, build and test project engaged in as group exercises by all students in year one. Here the industrialist, a wind energy professional, contextualises work while his role is augmented by a recent alumni member of the Industrial board who is currently working as a graduate engineer on offshore wind and who completed the same module as the students four years or so previously.

Conclusion

While the development of the Industry Club and its associated activity can not be considered a panacea, it has significantly developed the level of industry involvement within programmes. More crucially it moves away from an opaque and piecemeal approach to industry engagement and offers a more transparent framework and structure on which to hang industry involvement to support academics and industry in developing and maximising the competencies of graduates.

References

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Graduate employability and recruitment, Collaborating with industry for teaching and learning, Knowledge exchange

Authors: Dr Corrina Cory (University of Exeter), Nick Russill (University of Exeter and Managing Director TerraDat UK Ltd.) and Prof Steve Senior (University of Exeter and Business Development Director at Signbox Ltd.)

Keywords: Gold Standard Project Based Learning, EntreComp, 21st Century Skills, Entrepreneur in Residence, Collaboration

Abstract: We have recently updated our engineering programmes at the University of Exeter (E21 – Engineering the Future) with a USP of Entrepreneurship at the core of the first two years to prepare students for research led learning and the future of jobs. We have worked closely with our Royal Society Entrepreneurs in Residence (EiR) to ensure authenticity in our ‘real-world’ Gold Standard Project Based Learning (GSPBL) activities. We would like to share this great collaboration experience with our EPC colleagues.

 

Introduction

We have recently updated our engineering programmes at The University of Exeter (E21 – Engineering the Future). The Unique Selling Point (USP) of Entrepreneurship is embedded through Stage 1 and 2 using a new methodology combining Gold Standard Project Based Learning (GSPBL)[1] [image: Picture_1.jpg]) and EntreComp[2] ([image: Picture_2.png], the European Entrepreneurship Competence Framework).[3-5]

Gold Standard PBL – Seven Essential Project Design Elements [4]. Creative Commons License. Reference [1] – pblworks.org (2019). Gold Standard PBL: Essential Project Design Elements. [online] Available at: www.pblworks.org/what-is-pbl/gold-standard-project-design (Accessed 16 February 2022).

 

The EntreComp wheel: 3 competence areas and 15 competences [5]. Creative Commons License. Reference [2] – McCallum, E., Weicht, R., McMullan, L., Price, A. (2018). EntreComp into Action: get inspired, make it happen, M. Bacigalupo & W. O’Keeffe Eds., EUR 29105 EN, Publications Office of the European Union, Luxembourg, pg.13, pg. 15 & pg. 20.

 

The 21st Century Skills developed in the early stages of the programmes prepare students for research-led learning in later stages and future graduate employment.

The Royal Society Entrepreneur in Residence (EiR) scheme, aims to increase the knowledge and awareness of cutting-edge industrial science, research and innovation in UK universities. The scheme enables highly experienced industrial scientists and entrepreneurs to spend one day a week at a university developing a bespoke project.

In this context, the EiR scheme has grown ‘confidence in, and understanding of business and entrepreneurship among staff and students’ and we have collaborated with our EiRs to ensure authenticity in our ‘real-world’ project-based learning activities.[6] They have inspired students to pursue their own ideas and bring them to reality in ways that bring sustained regional and global benefit.

Aims

Plan

The Engineering Department worked with venture capitalist Alumni, Adam Boyden to create a MEng in Engineering & Entrepreneurship. The education team seized the opportunity during curriculum development to make the Stage 1 and 2 Entrepreneurship modules common to all engineering programmes to embed a USP of Entrepreneurship in E21.

Both our EiRs are natural educators and thrive on sharing their rich experiences and stories to mentor others through their entrepreneurship journeys.

They provide on-site technology demonstrations, prizes for 21st Century Skills and interactive workshops on entrepreneurship. This integration of EiRs into teaching and learning adds variety, and through the power of story, the students engage to a high level. Furthermore, their curiosity prompts them to construct and ask challenging questions.

The open-ended GSPBL driving questions allow groups to develop unique ideas. Most of the projects yielded excellent and highly original themes, some of which could have real value in the future should they be further developed.  

We have observed learning opportunities for inclusivity, listening, improvements in self-confidence and more free-thinking and ideation as a direct result of our methodology combining GSPBL and EntreComp.

Using this method and mapping competences using EntreComp should improve outcomes for graduates who gain the top employability skills required by 2025 e.g., critical thinking and analysis, problem-solving, self-management, active learning, resilience, stress tolerance and flexibility.[7] Students develop an appreciation and understanding of business start-ups, ideation and successful implementation of innovative research and development through their experiential learning.

Outcomes

Our EiRs have provided insights into what it takes to be an entrepreneur and have introduced energy, enthusiasm, creativity and innovative thought processes throughout both Entrepreneurship modules.

Nick Russill’s specific contributions include team building, planning, branding, entrepreneurial skills, innovation, business development, co-hosting project launch seminars, innovation workshops, project-based learning support sessions and mock investment pitch panels.

Steve Senior’s lectures Q&As and workshops include the beauty of failure, advanced Computer Aided Design (CAD)/Computer Aided Manufacturing (CAM), marketing and e-commerce. He mentors student teams on how to capitalise on limited resources during growth and explains risk analysis with case studies from his own companies.

The digital materials created for our blended updated programmes will remain a longer-term legacy of their involvement and provide resources available to be called on in future to sustain the impact of EiRs at Exeter.

Nick has commented that ‘my time as EiR with the Exeter engineering students has convinced me that GSPBL takes education to another level, and I wish it were more widespread in education curricula … The close association of learning with real-life applications and case studies has proved that students retain far more technical and theoretical information than they may do from more traditional methods’.

Students are surveyed at the start of Entrepreneurship 1 and the end of Entrepreneurship 2 in terms of their self-assessed ability to evidence aspects of EntreComp on their CV. Previous publications have illustrated an increase in competence over the 2 years of Entrepreneurship and we will continue to collect this data to evidence outcomes.[5]

Entrepreneurs in residence share their real-world experience and then stick around to build relationships with the staff, researchers and students. They become an integral part of the team. Student Feedback definitely proves that we’re helping to ignite sparks for a new generation of entrepreneurs. Student feedback includes:

‘Gain skills in areas concerning self-motivation and creativity’… ‘become comfortable with risk and uncertainty … a really good learning experience’ …’developing confidence and being able to trust yourself and take the initiative’… ‘good innovation and technical skills’ … ‘learning by doing is the only way for entrepreneurship and this course has given us a great environment and support to learn, fail, pivot and learn again’.

Staff and students have commented on the value of injecting ad hoc real-life anecdotes of problem-solving stories and learnings from experienced entrepreneurs which is unique, valuable and significantly enriches learning experiences.

Lessons and Future Work

An individual reflective work package report is submitted by all students at the completion of two years of entrepreneurship modules. This provides a period of reflection for students and a chance to showcase their journey including valuable learning through failure, personal contributions to the group’s success and professional development in terms of 21st Century Skills as defined by EnreComp.

Following panel Q&A at the EPC Crucible Project, future refinement includes reviewing possible additions to the reflective report and illustrating links between engineering competence and EntreComp to clearly signpost students to the relevance of Entrepreneurial 21st Century Skills for graduate employment, chartership and intrapreneurship. 

References

  1. pblworks.org, 2019. Gold Standard PBL: Essential Project Design Elements. [online] PBLWorks. Available at: https://www.pblworks.org/blog/gold-standard-pbl-essential-project-design-elements (Accessed 18 February 2022).
  2. European Commission, Joint Research Centre, Price, A., McCallum, E., McMullan, L., et al. (2018) EntreComp into action : get inspired, make it happen. Publications Office. https://data.europa.eu/doi/10.2760/574864, pp.13, 15 & 20.
  3. Cory, C., Carroll, S. and Sucala, V., 2019. Embedding project-based learning and entrepreneurship in engineering education. In: New Approaches to Engineering Higher Education in Practice. Engineering Professors’ Council (EPC) and Institution of Engineering and Technology (IET) joint conference.
  4. Cory, C., Sucala, V. and Carroll, S., 2019. The development of a Gold Standard Project Based Learning (GSPBL) engineering curriculum to improve Entrepreneurial Competence for success in the 4th industrial revolution. In: Complexity is the new Normality.. Proceedings of the 47th SEFI Annual Conference, pp.280-291.
  5. Cory, C. and Cory, A., 2021. Blended Gold Standard Project Based Learning (GSPBL) and the development of 21st Century Skills – an agile teaching style for future online delivery. In: Teaching in a Time of Change. AMPS Proceedings Series 23.1., pp.207-217.
  6. Royalsociety.org, 2022. Entrepreneur in Residence | Royal Society. (online) Royalsociety.org. Available at: https://royalsociety.org/grants-schemes-awards/grants/entrepreneur-in-residence/ (Accessed 18 February 2022).
  7. World Economic Forum. 2020. The Future of Jobs Report 2020. [online] Available at: https://www.weforum.org/reports/the-future-of-jobs-report-2020 (Accessed 18 February 2022).

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Dr Goudarz Poursharif (Aston University), Dr Panos Doss (Aston University) and Bill Glew (Aston University)

Keywords: WBL, Degree Apprenticeship, Engineering

Abstract: This case study presents our approach in the design, delivery, and assessment of three UG WBL Engineering Degree Apprenticeship programmes launched in January 2020 at Aston University’s Professional Engineering Centre (APEC) in direct collaboration with major industrial partners. The case study also outlines the measures put in place to bring about added value for the employers and the apprentices as well as the academics at Aston University through tripartite collaboration opportunities built into the teaching and learning methods adopted by the programme team.

This case study is presented as a video which you can view below: 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning, Universities’ and businesses’ shared role in regional development, Knowledge exchange, Graduate employability and recruitment

Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)

Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure

Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.

 

The opportunity

Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.

Seed funded taster projects

In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.

Knowledge Transfer Partnership (KTP) Projects

KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.

The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.

The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.

First of a kind (FOAK) projects

The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.

The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.

The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.

The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.

The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.

Additional benefits to University of Huddersfield

In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.

 

Figure 1. Head-span showing span-wires and span-wire clamp.

 

Figure 2. Old (left) and new (right) span-wire clamps.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website