Objectives: This activity amplifies the stories of underrepresented individuals overcoming barriers in their careers, highlighting resilience, diversity, and inclusion. This challenge aims to inspire action and illustrate how diversity drives innovation and growth. By sharing success stories from diverse engineering professionals, we aim to motivate and guide students on similar paths.

Introduction: Voices of Change is an activity designed to highlight the powerful stories of underrepresented individuals in engineering and STEM. Through a collection of personal narratives, including those of Black researchers, this resource showcases the challenges they’ve overcome, the contributions they’ve made, and the importance of diversity in driving innovation. By exploring these stories, students are encouraged to reflect on issues of equity and inclusion, gain insight into diverse career pathways, and feel empowered to pursue their own ambitions within an inclusive engineering community.

Topic: Inspiring diversity and resilience: stories of underrepresented engineers driving innovation and inclusion.

Keywords: Equity, Diversity and Inclusion; Students; Employability and skills; Mentoring; Job or career impact; Early careers; Higher education institutions; Engineering professionals; Curriculum or course; Social responsibility; Societal impact; Corporate social responsibility; Apprenticeships or work based learning; Personal or professional reputation

 

Voices of change

IntroductionJanetLeonetteSamuelLewisLeonPurvi

Click on each accordion tab to discover inspiring success stories from a diverse range of engineering professionals, showcasing their journeys and achievements. Let their experiences motivate and empower you to reach new heights in your career.

Video summary:

Janet shares her journey from a hesitant industry worker to a successful engineer, highlighting the importance of education, networking, and self-improvement. 

Key insights:

🚀 Career transformation: Janet’s shift from a technical operator to an engineer illustrates the potential for personal and professional growth through unexpected opportunities. Her journey shows that initial discomfort can lead to fulfilling careers. 

📚 Importance of education: Pursuing further education, such as her BTech and bachelor’s degree, was crucial for Janet. This highlights the value of continuous learning in adapting to industry demands and personal aspirations. 

🤝 Networking matters: Joining groups like “Women in STEM” helped Janet connect with others and gain valuable insights. Networking can provide support and open doors in competitive fields. 

💡 Embrace uniqueness: Janet’s willingness to present herself authentically during interviews exemplifies how being true to oneself can set candidates apart and lead to unexpected success. 

🌱 Growth mindset: Janet’s commitment to continuous improvement and lifelong learning reflects a growth mindset that is essential in rapidly evolving industries, showcasing that education is an ongoing journey. 

👩‍🔧 Advocacy for diversity: Janet’s observations about the lack of female engineers in her workplace highlight the need for diversity. Her passion for inclusivity can inspire change and encourage young women to pursue engineering careers. 

🛠️ Real-world experience: Janet’s technical background provided her with practical skills that helped in job interviews. This emphasiszes the importance of gaining hands-on experience in any field, as it can enhance employability and confidence

Video summary:

Leonette emphasizes the importance of networking and mentorship in her journey from chemical engineering to data science, highlighting diversity and empowerment.

Key insights:

🤝 The power of networking: Building professional relationships can significantly enhance job prospects. Networking opens doors that might otherwise remain closed.

🎓 Mentorship impact: Guidance from mentors, such as professors, can provide invaluable insights and job referrals in your field.

💬 Active engagement: Participating in events and volunteering fosters visibility and rapport with key industry players.

🌈 Diversity matters: A commitment to diversity and inclusion can drive positive change in the workplace and society.

🌟 Role model influence: Being a visible success for underrepresented groups can inspire future generations to pursue their dreams.

🌱 Empowerment through change: Actively working to reduce gaps in representation fuels personal motivation and broader societal progress.

🛡️ Resilience is key: Perseverance through challenges is essential for long-term success and personal growth.

Video summary:

Samuel is a biomedical engineering graduate from Canterbury Christ Church University, emphasizes the importance of EDI in engineering and shares his experiences at ICU Medical.  

Key insights:

🎓 Education’s role in EDI: Samuel’s education at Canterbury Christ Church University shaped his understanding of equality, diversity, and inclusion, highlighting how universities can instil these values early on. 

💼 Career impact: Working at ICU Medical, Samuel experiences first-hand how EDI initiatives can create a supportive work environment, demonstrating EDI’s influence on professional development. 

🌍 Importance of EDI events: By participating in EDI events, organisations can foster a culture of inclusion, encouraging diverse participation in engineering fields. 

🤝 Diversity in problem-solving: Different perspectives lead to innovative solutions, proving that EDI is crucial for effective teamwork and project success in engineering. 

🗣️ Listening to diverse voices: Brooks emphasizes the significance of hearing different viewpoints, suggesting that diversity in thought is essential for addressing complex challenges. 

📈 Future of EDI: The need for increased awareness and opportunities in EDI is vital for fostering an inclusive environment, ensuring everyone has equal chances for success. 

🌟 Organisational responsibility: Companies should prioritise creating EDI teams and strategies, making inclusivity a fundamental part of their operational framework. 

Video summary:

Lewis a former transport manager, transitioned to teaching computer science, aiming to inspire diverse students in computing and engineering fields.  

Key insights:

🚀 Diverse backgrounds enhance innovation: Engaging individuals from various backgrounds can lead to more innovative solutions in tech. Diverse teams bring different perspectives, critical for problem-solving in engineering and computing. 

🏫 Importance of early education: Introducing computing concepts at a young age can inspire future interest and career paths among students. Early exposure is key to nurturing talent from diverse demographics. 

🔍 Awareness of gender & racial gaps: Understanding existing disparities in education allows educators to implement targeted strategies. 

Video summary:  

Leon is a Computing graduate from East London, is a grassroots football coach passionate about technology and inclusivity in sports. 

Key insights  

🌐 Diversity and inclusion: Leon highlights the importance of fostering an inclusive environment in sports, which can positively influence players’ development and teamwork. Embracing diversity enriches the community within the club. 

Passion for football: His love for football not only drives his coaching but also builds resilience. The challenges faced in sports translate into valuable life lessons applicable in various contexts. 

💡 Technology enthusiasm: Leon’s interest in technology reflects a growing trend where tech plays a crucial role in sports and society, indicating the need for professionals to adapt and innovate. 

🛠️ Work-life balance: By learning to separate work from personal life, Leon emphasizes self-care, which is essential for maintaining mental health and productivity in high-pressure environments. 

Video summary:

Final-year mechanical engineering student Purvi shares insights on job offers, the value of practical experience, and leadership skills from his projects. 

Key insights:

🎓 Practical experience matters: Purvi emphasized that hands-on experience, such as internships and projects, can set candidates apart in competitive industries. This underscores the importance of seeking practical opportunities during academic studies. 

🚀 Diverse skill application: The realisation that skills from various experiences, not just academic knowledge, can be leveraged in interviews showcases the value of a well-rounded background in job applications. 

🔍 Importance of leadership: Participation in projects like the Formula Student provided Purvi with leadership experiences that he effectively communicated during interviews. This highlights how extracurricular activities can enhance employability. 

⚖️ Health and safety knowledge: Understanding industry-specific regulations, such as health and safety in aviation and defence, can significantly strengthen a candidate’s position in interviews, demonstrating readiness for real-world challenges. 

🤝 Support systems matter: Purvi’s positive experience with university support in navigating job offers illustrates the role of academic institutions in preparing students for the workforce. 

🌟 Expectations vs. reality: The contrast between Purvi’s initial expectations of the industry and the actual diversity he encountered suggests a shift in perception is possible through direct experience. 

📈 Utilising unique skills: Purvi’s insight that uniqueness stems from skill utilisation rather than background alone promotes the notion that every candidate has something valuable to offer, regardless of their starting point. 

 

Stories of Black Researchers in STEM

Explore the inspiring journeys of Black researchers in STEM, highlighting their achievements and contributions despite challenges. Their stories showcase resilience and the vital role of diversity in science, technology, engineering, and mathematics. Initiatives like #BlackBirdersWeek and #BlackInSciComm emphasize the importance of community and representation, celebrating successes while addressing systemic obstacles.

Explore these narratives and learn more about the experiences of Black researchers in STEM through Science News’ feature on the diversity, equity, and inclusion efforts within the science community.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives: This activity aims to raise awareness of language’s impact in professional settings, particularly for underrepresented groups. Students will explore verbal and non-verbal communication to foster an inclusive environment. Students will receive strategies for handling challenging situations and building confidence in interactions with leaders, and managing conflicts.

Introduction: This activity explores how language, both verbal and non-verbal, impacts professional settings, particularly for underrepresented groups. Through video insights and practical strategies, students will learn to navigate difficult conversations, address microaggressions, and build confidence in communicating with leaders. The activity also highlights the role of gendered language in interviews and recruitment, encouraging inclusive and self-aware communication in the workplace.

Topic: Building confidence and inclusion through mindful communication in the workplace.

Keywords: Equity, Diversity and Inclusion; Communication; Students; Mentoring; Job or career impact; Early careers; Engineering professionals; Curriculum or course; Personal or professional reputation; Societal impact; Social responsibility; Corporate social responsibility; Higher education institutions; Apprenticeships or work based learning; Leadership or management; Gender.

 

Navigating difficult workplace conversations 

In the video below, Abisola Ajani, a process technology engineer and founder of BW, highlights the critical role of communication skills in effectively navigating challenging workplace conversations.

Video summary: 

Abisola Ajani, a process technology engineer and founder of BW, emphasises the importance of skills for navigating difficult workplace conversations. 

Key insights:

💡 Importance of communication skills: Effective communication in engineering helps convey expertise and resolve conflicts, making it vital for career success. 

⏸️ Power of pausing: Taking a moment to pause during tough conversations allows for clearer thinking and more productive responses, promoting better outcomes. 

🤝Role of mentorship: Seeking guidance from mentors equips individuals with strategies and confidence to tackle challenging discussions, enhancing professional growth. 

🤔 Valuing past experiences: Skills gained from previous jobs, even in unrelated fields, can be leveraged in engineering roles, demonstrating that every experience contributes to personal development. 

 Growth through mistakes: Embracing the inevitability of mistakes in difficult conversations encourages continuous improvement and resilience in professional settings. 

🌍 Diversity and inclusion: An inclusive environment empowers individuals to express their authentic selves, leading to greater innovation and collaboration within teams. 

💪 Empowerment through visibility: Initiatives like BW highlight the importance of representation in engineering, inspiring future generations of diverse engineers to thrive. 

 

 

Resources: 

Thriving Together Series:  Strengthening Diversity and Inclusion through Communication 

This resource emphasizes communication’s role in fostering diversity and inclusion at work. It covers: 

 

 

“I” versus “We” 

Interviews can be stressful, often reinforcing learned gender habits in language use. Women tend to use “We” instead of “I” for work they have done, and use hedge words like “think” due to societal expectations of modesty and humility. Men, on the other hand, typically use “I” and fewer hedge words, reflecting societal norms of assertiveness and leadership. 

If you catch yourself using “We” when you mean “I,” pause and correct it, but explain it’s a habit from societal norms. Both “We” and “I” answers are important: “We” for teamwork, “I” for leadership and initiative. 

Employers we recommend you recognise that “We” and “I” can be interchangeable for many women and some cultures, and understand the biases involved. 

 

 

Gender Decoder

The Gender Decoder analyses job descriptions to identify and correct gendered language, promoting gender-neutrality and inclusivity in recruitment. Try it to see how small language changes can foster a more inclusive work environment. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.


Objectives:   Networking is an important career tool as it enables you to: 

Introduction: Networking is a vital career skill that helps you access opportunities, build meaningful connections, and grow professionally. This activity explores how strategic networking – especially for underrepresented students, can enhance visibility, open doors, and foster resilience in STEM fields. Through real stories and practical guidance, you’ll learn how to develop social capital, navigate professional spaces, and promote inclusivity in your industry journey.

Topic: Building social capital: networking strategies for underrepresented students in STEM

Keywords: Equity, Diversity and Inclusion; Students; Job or career impact; Early Careers; Engineering professionals; Apprenticeships or Work based learning; Mentoring; Personal or professional reputation; Social responsibility; Corporate Social Responsibility; Higher Education Institutions; Gender; Networking; STEM.

 

The importance of networking and inclusivity in the industry

In the video below, Donna Otchere discusses her path from engineering graduate to PhD student, stressing the importance of networking and promoting inclusivity in the industry. 

Video summary: 

Donna Otchere shares her journey from engineering graduate to PhD student, emphasizing the importance of networking and inclusivity in the industry. 

Key insights: 

🎉Networking is a vital skill: Donna highlights that networking isn’t just about professional connections; it’s about forming friendships and support systems that can enhance career growth. 

💪 The power of resilience: Rejection in networking is normal and should be viewed as a stepping stone rather than a setback, encouraging a mindset of perseverance. 

🌟Utilise online platforms: Leveraging LinkedIn and other online resources can significantly expand one’s professional network and visibility in the industry. 

🤗 Community involvement is key: Engaging with communities focused on shared interests fosters a sense of belonging and opens doors to new opportunities. 

🎯Goal-oriented networking: Having a clear objective when attending networking events can lead to more meaningful interactions and outcomes. 

🌈 Importance of diversity: Diverse teams bring various perspectives, which are critical in engineering problem-solving, thus promoting inclusivity in the field. 

🛠️ Engineering is for everyone: Donna stresses that engineering is a universal field where everyone, regardless of background, can thrive and contribute. 

 

 

Stories of resilience in STEM  

Explore the inspiring stories of Black and Latinx STEM professionals at the Broad Institute who overcame systemic barriers through mentorship, resilience, and strategic networking. These narratives highlight the challenges and the power of diversity in driving success and innovation in science. 

 

 

Building social capital for underrepresented students  

Social capital is the ability to build networks and relationships to enhance educational, career, and business opportunities. For underrepresented students, building social capital is crucial to you accessing opportunities and advancing your career. 

Video summary: 

Our Cultivating Connections Centre defines social capital as access to resources and relationships to help students achieve their goals, alongside educating them on mobilising these assets. 

Key insights: 

🌍 Access to resources: Students who can tap into various resources have a greater chance of pursuing their educational and career goals. This access is foundational in creating opportunities. 

👥 Importance of relationships: Building strong relationships is essential for students. These connections can provide support, advice, and opportunities that enhance their learning journey. 

📖 Educating on mobilisation: It’s not enough to have resources; students must learn how to effectively mobilise these assets. This knowledge is vital for achieving long-term success. 

🎯 Goal achievement: The combination of access to resources and the ability to mobilise them is what enables students to reach their aspirations, making both aspects equally important. 

🛠️ Providing tools: The Centre plays a crucial role in equipping students with the necessary tools to navigate their social capital, ensuring they can leverage their networks effectively. 

🌱 Fostering growth: Social capital is not just about immediate access; it fosters long-term personal and professional growth, helping students adapt and thrive in various environments. 

🔑 Empowerment through knowledge: Educating students about social capital empowers them, allowing for greater agency in their educational and career journeys, ultimately leading to more fulfilling outcomes. 

 

 

Navigating microaggressions in professional settings 

How do you identify and challenge microaggressions safely and effectively. This essential skill not only aids in protecting one’s dignity and mental health, but also promotes a more inclusive and respectful professional environment for all. Discover practical tools and strategies at Body Swaps: Let’s Talk About Race. 

 

 

Career support for ethnic underrepresented students 

Access tailored support for ethnic underrepresented students seeking professional development and networking. Utilise our University Career Services Library to identify your institution’s career services and explore comprehensive resources for skills training, career advancement, building a supportive professional network and more.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Please note: Discussions around discrimination, prejudice and bias are highly complex and part of a much wider national and international debate, including contested histories. As such, we have limited the scope of our resources to educating and supporting students.

The resources that the EPC and its partners are producing in this area will continue to expand and, if you feel there is an issue that is currently underrepresented in our content, we would be delighted to work with you to create more. Please get in touch.

Authors: Paola Seminara (Edinburgh Napier University); Alasdair Reid (Edinburgh Napier University).

Topic: Sustainable materials  in construction.

Engineering disciplines: Civil engineering; Manufacturing; Construction.

Ethical issues: Sustainability; Respect for the environment; Future generations; Societal impact; Corporate Social Responsibility.

Professional situations: EDI; Communication; Conflicts with leadership/management; Quality of work; Personal/professional reputation.

Educational level: Intermediate.

Educational aim: Practising Ethical Analysis: engaging in a process by which ethical issues are defined, affected parties and consequences are identified, so that relevant moral principles can be applied to a situation in order to determine possible courses of action.

 

Learning and teaching notes:

This case involves an early-career consultant engineer working in the area of sustainable construction. She must negotiate between the values that she, her employer, and her client hold in order to balance sustainability goals and profit. The summary involves analysis of personal values and technical issues, and parts one and two bring in further complications that require the engineer to decide how much to compromise her own values.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use the Summary and Part one in isolation, but Part two develops and complicates the concepts presented in the Summary and Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

News articles:

Business:

Journal articles:

Educational institutions:

Citizen engagement organisation:

Professional organisation:

NGOs:

 

Suggested pre-reading:

Learners and teachers might benefit from pre-reading the above resources about EDI and enacting global responsibility, as well as introductory material on construction with mass timber such as information from Transforming Timber or the “How to Build a Wood Skyscraper” video.

 

Summary:

Originally from rural Pakistan, Anika is a construction engineer who has recently finished her postgraduate degree, having been awarded a fully funded scholarship. During her studies, Anika was introduced to innovative projects using mass timber and off-site methods of construction. After completing her studies, she was inspired to start her own consultancy practice in the UK, aiming to promote the use of sustainable materials within the construction industry.

James is the director of a well-established, family-owned architectural firm, originally started by his great-grandfather who was also a prominent societal figure. In the last year, James and his colleagues have sought to develop a sustainability policy for the firm. A key feature of this new policy is a commitment to adopt innovative, sustainable construction solutions wherever possible. James has been contacted by an important client who wants to commission his firm to work on a new residential development.

James first met Anika at university when they were both studying for the same postgraduate degree. Having a high regard for Anika’s capability and professionalism, James contacts Anika to propose working together to develop a proposal for the new residential development.

James hopes that Anika’s involvement will persuade the client to select construction solutions that are aligned with the new sustainability policy adopted by his firm. However, the important client has a reputation for prioritising profit over quality, and openly admits to being sceptical about environmental issues.

Anika schedules a meeting with the client to introduce herself and discuss some initial ideas for the project.

 

Optional STOP for questions and activities:

1. Discussion: Personal values – What are the different personal values for Anika, James, and the client? How might they conflict with each other?

2. Activity: Professional communication – Elevator pitch activity part 1 – Working in groups of 2-3 and looking at the three different stakeholders’ personal values, each group will create a persuasive pitch of 1 minute used by Anika to convince the client to focus on sustainability.

3. Activity: Technical Analysis – Assemble a bibliography of relevant projects using mass timber and off-site methods of construction, and identify the weaknesses and strengths of these projects in terms of sustainability and long- and short-term costs and benefits.

4. Activity:  Professional communication – Elevator pitch activity part 2 – After conducting your technical analysis, work in groups of 2-3 to revise your elevator pitch and role play the meeting with the client. How should Anika approach the meeting?

 

Dilemma – Part one:

After the first meeting, the client expresses major concerns about Anika’s vision. Firstly, the client states that the initial costings are too high, resulting in a reduced profit margin for the development. Secondly, the client has serious misgivings about the use of mass timber, citing concerns about fire safety and the durability of the material.

Anika is disheartened at the client’s stance, and is also frustrated by James, who has a tendency to contradict and interrupt her during meetings with the client. Anika is also aware that James has met with the client on various occasions without extending the invitation to her, most notably a drinks and dinner reception at a luxury hotel. However, despite her misgivings, Anika knows that being involved in this project will secure the future of her own fledgling consulting company in the short term – and therefore, reluctantly, suspects she will have to make compromises.

 

Optional STOP for questions and activities:

1. Discussion: Leadership and Communication – Which global responsibilities does Anika face as an engineer? Are those personal or professional responsibilities, or both? How should Anika balance her ethical duties, both personal and professional, and at the same time reach a decision with the client?

2. Activity: Research – Assemble a bibliography of relevant projects where mass timber has been used. How might you design a study to evaluate its structural and environmental credentials? What additional research needs to be conducted in order for more acceptance of this construction method?

3. Activity: Wider impact – Looking at Anika’s idea of using mass timber and off-site methods of construction, students will work in groups of 3-4 to identify the values categories of the following capital models: Natural, Social, Human, Manufactured and Financial.

4. Activity: Equality, Diversity, and Inclusion – Map and analyse qualities and abilities in connection with women and how these can have a positive and negative impact in the construction industry.

5. Discussion: Leadership and Communication – Which are the competitive advantages of women leading sustainable businesses and organisations? Which coping strategy should Anika use for her working relationship with James?

 

Dilemma – Part two:

Despite some initial misgivings, the client has commissioned James and Anika to work on the new residential development. Anika has begun researching where to locally source mass timber products. During her research, Anika discovers a new off-site construction company that uses homegrown mass timber. Anika is excited by this discovery as most timber products are imported from abroad, meaning the environmental impact can be mitigated.

 

Optional STOP for questions and activities:

1. Activity: Environmental footprint – Research the Environmental Product Declaration of different construction materials and whole life carbon assessment.

2. Discussion: Is transportation the only benefit of using local resources? Which other values (Natural, Social, Human, Manufactured and Financial) can be maximised with the use of local resources? How should these values be weighted?

3. Discussion: Professional responsibility – How important is Corporate Social Responsibility (CSR) in Construction? How could the use of local biogenic materials and off-site methods of construction be incorporated into a strategic CSR business plan?

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr. Natalie Wint (UCL). 

Topic: Responsibility for micro- and nano-plastics in the environment and human bodies.  

Engineering disciplines: Chemical Engineering; Environmental Engineering; Materials Engineering; Mechanical Engineering. 

Ethical issues: Corporate social responsibility; Power; Safety; Respect for the Environment. 

Professional situations: Whistleblowing; Company growth; Communication; Public health and safety. 

Educational level: Intermediate. 

Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others. 

 

Learning and teaching notes: 

This case study involves a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The student has been working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation. They are involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. When they notice a potential problem with the new formulation, they must balance their commitment towards environmental sustainability with their desire to work for the company upon graduation.  

This dilemma can be addressed from a micro-ethics point of view by analysing personal ethics, intrinsic motivations and moral values. It can also be analysed from a macro-ethics point of view, by considering corporate responsibility and intergenerational justice. The dilemma can also be framed to emphasise global responsibility and environmental justice whereby the engineers consider the implications of their decisions on global communities and future generations.  

This case study addresses two of the themes from the Accreditation of Higher Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities, as desired.

Learners have the opportunity to:   

Teachers have the opportunity to:    

 

Learning and teaching resources: 

Professional organisations: 

EU agencies: 

Industry publications: 

EU law: 

 

Dilemma – Part one: 

Microplastics are solid plastic particles composed of mixtures of polymers and functional additives; they also contain residual impurities. Microplastics generally fall into two groups: those that are unintentionally formed as a result of the wear and tear of larger pieces of plastic, and those that are deliberately manufacturedand added to products for specific purposes (primary microplastics). Microplastics are intentionally added to a range of products including cosmetics, in which they act as abrasives and can control the thickness, appearance, and stability of a product.  

Legislation pertaining to the use of microplastics varies worldwide and several loopholes in the regulations have been identified. Whilst many multinational companies have fought the introduction of such regulations, other stakeholders have urged for the use of the precautionary principle, suggesting that all synthetic polymers should be regulated in order to prevent significant damage to both the environment and human health. 

Recently, several changes to the regulation of microplastics have been proposed within Europe. One that affects the cosmetics industry particularly concerns the intentional addition of microplastics to cosmetics. Manufacturers, especially those who export their products, have therefore been working to change their products. 

 

Optional STOP for questions and activities:  

1. Discussion: Professional values – What ethical principles and codes of conduct are applicable to the use of microplastics? Should these change or be applied differently when the microplastics are used in products that may be swallowed or absorbed through the eyes or skin?

2. Activity: Research some of the current legislation in place surrounding the use of microplastics. Focus on the strengths and limitations of such legislation.  

3. Activity: Technical integration – Research the potential health and environmental concerns surrounding microplastics. Investigate alternative materials and/or technological solutions to the microplastic ‘problem’.  

4. Discussion: Familiarise yourself with the precautionary principle. What are the advantages and disadvantages of applying the precautionary principle in this situation?  

 

Dilemma – Part two: 

Alex is a young engineering student on an industrial placement year at a firm that manufactures cosmetics. The company has been commended for their sustainable approach and Alex is really excited to have been offered a role that involves work aligned with their passion. They are working hard to impress the company as they are aware that this may lead to them being offered a job upon graduation.  

Alex is involved in a big project that focuses on alternative, more environmentally friendly cosmetic chemistries. Whilst working in the formulation laboratory, they notice that some of the old filler material has been left near the preparation area. The container is not securely fastened, and residue is visible in the surrounding area. The filler contains microplastics and has recently been taken out of products. However, it is still in stock so that it could be used for comparative testing, during which the performance of traditional, microplastic containing formulations are compared to newly developed formulations. It is unusual for the old filler material to be used outside of the testing laboratory and Alex becomes concerned about the possibility that the microplastics have been added to a batch of the new product that had been made the previous day. They raise the issue to their supervisor, asking whether the new batch should be quarantined.  

“We wouldn’t ever hold such a large, lucrative order based on an uncertainty like that,” the supervisor replies, claiming that even if there was contamination it wasn’t intentional and would therefore not be covered by the legislation. “Besides, most of our products go to countries where the rules are different.” 

Alex mentions the health and environmental issues associated with microplastics, and the reputation the company has with customers for being ethical and sustainable. They suggest that they bring the issue up with the waste and environmental team who have expertise in this area.  

Their supervisor replies: “Everyone knows that the real issue is the microplastics that are formed from disintegration of larger plastics. Bringing up this issue is only going to raise questions about your competence.”  

 

Optional STOP for questions and activities: 

1. Discussion: Personal values – What competing personal values or motivations might trigger an internal conflict for Alex? 

2. Activity: Research intergenerational justice and environmental justice. How do they relate to this case? 

3. Activity: Identify all potential stakeholders and their values, motivations, and responsibilities. 

4. Discussion: Consider both the legislation in place and the RAEng/Engineering Council Ethical Principles. What should Alex do according to each of these? Is the answer the same for both? If not, which set of guidance is more important? 

5. Discussion: How do you think the issue of microplastics should be controlled? 

6. Activity: Alex and their boss are focused on primary microplastics. Consider the lifecycle of bulk plastics and the various stakeholders involved. Who should be responsible for the microplastics generated during the disintegration of plastic products?

7. Discussion: What options for action does Alex have available to them? What are the advantages and disadvantages of each approach? What would you do if you were Alex? 

8. Activity: Technical integration related to calculations or experiments on microplastics. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.

Topic: Materials sourcing and circularity.

Engineering disciplines: Materials engineering; Manufacturing; Environmental engineering; Construction.

Ethical issues: Respect for the environment; Risk.

Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.

Educational level: Intermediate.

Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.

 

Learning and teaching notes:

This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

NGOs:

Government site:

Business:

Journal articles:

Professional organisations:

 

Dilemma – Part one:

Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.

Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.

Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.

 

Optional STOP for questions and activities:

1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?

2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.

3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?

  

Dilemma: Part two:

After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.

When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.

At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.

 

Optional STOP for questions and activities:

1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.

2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?

3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?

 

Dilemma – Part three:

In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.

She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.

Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.

 

Optional STOP for questions and activities:

1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.

2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.

3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation? 

4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?

5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Diana Martin (Eindhoven University of Technology); Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).

Topic:  Participatory approaches for engaging with a local community about the development of risky technologies. 

Engineering disciplines: Nuclear engineering; Energy; Chemical engineering. 

Ethical issues: Corporate Social Responsibility; Risk; Accountability; Respect for the Environment. 

Professional situations: Conflicts of interest; Public health and safety; Communication. 

Educational level: Advanced.  

Educational aim: Engaging in ethical judgement: reaching moral decisions and providing the rationale for those decisions.  

 

Learning and teaching notes:  

This case study involves an early career engineer tasked with leading the development of plans for the construction of the first nuclear plant in a region. The case can be customised by instructors when specifying the name of the region, as to whether the location of the case study corresponds to the location of the educational institution or if a more remote context is preferred. The case incorporates several components, including stakeholder mapping, participatory methods for assessing risk perception and community engagement, qualitative risk analysis, and policy-making.  

The case study asks students to identify and define an open-ended risk problem in engineering and develop a socially acceptable solution, on the basis of limited and possibly contradictory information and differing perspectives. Additionally, students can gain awareness of broader responsibilities of engineers in the development of risky technologies, as well as the role of engineers in public debates and community engagement related to the adoption or development of risky technologies. 

This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37. 

The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Part two and Part three develop and complicate the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.

 Learners have the opportunity to: 

Teachers have the opportunity to:  

 

Learning and teaching resources: 

Journal articles: 

Community engagement organisations: 

 

Dilemma – Part one:

You are an early career engineer working in the civil nuclear industry for Ultra Nuclear. This is a major company overseeing the construction of new power stations that has a strong reputation as a leader in the field with no controversies associated with its activity. Indeed, you have been impressed with Ultra Nuclear’s vision that the transition to using more nuclear energy can significantly reduce carbon emissions, and their development of next-generation nuclear technologies. After two years of working on the strictly technical side of the business, you have been promoted to a project manager role which requires you to do more public engagement. Your manager has assigned your first major project which involves making the plans for the development of a new power plant.  

 

Optional STOP for questions and activities: 

1. Activity: Societal context – What is the context in which Ultra Nuclear operates? Identify the national and supranational policies and regulation in your country related to the adoption of nuclear energy. Reflect on the broader rationale given for the adoption of nuclear energy. Research the history of nuclear technological developments (including opposition and failures) in your country. When tracing the context, you may consider:

2. Discussion: Personal values – What is your initial position on the adoption of nuclear energy? What are the advantages and disadvantages that you see for the adoption of nuclear energy in your country? What alternatives to nuclear energy do you deem more suitable and why?

3. Discussion: Risk perception – How do you perceive the risk of nuclear energy? How do your family and friends see this risk? How is nuclear energy portrayed in the media? Do you see any differences in how people around you see these risks? Why do you think this is so?

4. Activity: Risk mapping – Using a qualitative risk matrix, map the risks of a nuclear power plant.

 

Dilemma – Part two:

As it happens, this will be the first power plant established in the region where you were born, and your manager counts on your knowledge of the local community in addition to your technical expertise. To complete your project successfully, you are expected to ensure community approval for the new nuclear power plant. In order to do this, you will have to do some research to understand different stakeholders and their positions.  

 

Optional STOP for questions and activities:

1. Activity: Stakeholder mapping – Who are all the groups that are involved in the scenario? 

1.a. Activity: Read the article by Sven Ove Hansson, which puts forward a method for categorising stakeholders as risk-exposed, beneficiaries, or decision-makers (including overlaps of the three categories). Place each stakeholder group in one of these categories.

1.b. Discussion: Why are some groups risk-exposed, others beneficiaries, and others decision-makers? Why is it undesirable to have stakeholder groups solely in one of the categories? 

1.c. Discussion: What needs to change for some stakeholder groups to be not only in the category of risk-exposed, but also in the category of beneficiaries or decision-makers?  

2. Activity: Stakeholder mapping – How does each stakeholder group view nuclear energy? For each stakeholder group identified, research the arguments they put forward, their positions and preferences in regard to the adoption of nuclear energy. In addition to the stakeholder groups previously identified, you may consider:

For your research, you may consult the webpage of the stakeholder group (if it exists); any manifesto they present; mass media features (including interviews, podcasts, news items or editorials); flyers and posters. 

3. Discussion: How convincing are these arguments according to you? Do you see any contradictions between the arguments put forward by different groups? 

3.a. Discussion: Which group relies most on empirical data when presenting their position? Which stakeholders take the most extreme positions, according to you (radical either against or for nuclear energy), and why do you think this is so?  

3.b. Discussion: In groups of five students, rank the stakeholders from those that provide the most convincing to the least convincing arguments, then discuss these rankings in plenary. 

3.c. Roleplay (with students divided into groups): Each group is assigned a stakeholder, and gets to prepare and make the case for why their group is right, based on the empirical data and position put forward publicly by the group. The other groups grade on different criteria for how convincing the group is (such as 1. reliability of data, 2. rhetoric, 3. soundness of argument). 

4. Guest speaker activity: The instructor can invite as a guest speaker a representative of one of the stakeholder groups to talk with students about the theme of nuclear energy. Students can prepare a written reflection after the session on the topic of “What I learned about risks from the guest speaker” or “What I learned about my responsibility as a future engineer in regard to the adoption of nuclear energy.” 

 

Dilemma – Part three:

You arrive at the site of the intended power plant. You are received with mixed emotions. Although you are well liked and have many friends and relatives here, you are also warned that some residents are against the plans for the development of nuclear energy in the area. Several people with whom you’ve had informal chats have significant concerns about the power plant, and whether their health or safety will be negatively affected. At the same time, many people from the surrounding area do not yet know anything about the plans for building the nuclear site. In addition, in the immediate vicinity of the power plant site, the community hosts a small number of refugees who, having just arrived, are yet to be proficient in the language, and whose communication relies mostly on a translator. How will you ensure that this community is well informed of the plans for developing the power plant in their region and approves the plans of Ultra Nuclear? How will you engage with the community and towards what aims? 

 

Optional STOP for questions and activities: 

1. Activity: Research empirical data on the risk awareness and risk perception of public attitudes about nuclear energy, and sum up any findings that you find interesting or relevant for the case study. 

1.a. Discussion: According to you, is risk awareness and perception the same thing? How do they differ as concepts? Considering the research you just did, is there a relation between people’s risk awareness and perception? What does this imply? 

1.b Discussion: Do you identify any differences in the risk perception of the public (based on gender, age, geographical location, educational level)? Why do you think this is so?  

1.c. Discussion: Does the public see the same risks about nuclear energy as technical experts do? Why is this so? 

1.d. Activity: Read Sheila Jasanoff – The political science of risk perception. What is the key takeaway message for you?

2. Group activity: Compose a survey to understand the risk awareness and risk perception of members of the local community.

2.a. Discussion: What are the key questions for the survey? 

2.b. Discussion: How will you distribute the survey and to how many people? 

2.c. Discussion: Do you need to make any special arrangements to ensure that the views of all relevant groups are represented in the survey? 

2.d. Discussion: How will you use the data from the survey and how do you plan to follow-up on the survey?

3. Group activity: Develop a method for engaging with the community in the stages of developing and operating the nuclear plant.

3.a. Discussion: What values and principles do you highlight by engaging with the community? 

3.b. Discussion: How do you choose which participatory methods to use? 

You can use the following resources: Participation toolkit  or Performing Participatory Foresight Methods, Mazzurco and Jesiek, Bertrand, Pirtle and Tomblin. 

 

Annex:  

Localised case study: The development of Nuclear Energy in Ireland. 

Context description: Wikipedia entry for Nuclear power in Ireland and the Carnsore Point protests. 

Summary: 

The entire island of Ireland, comprising The Republic of Ireland and Northern Ireland (part of the UK), has never produced any electricity from nuclear power stations. Previous plans have been opposed as early as the 1970s through large public rallies, concerts, and demonstrations against the production of nuclear energy on the island. At the time, Carnsore Point was proposed as a site for the development of four nuclear reactors by the Electricity Supply Board. Public opposition led to the cancelling of this nuclear project and its replacement with a coal burning power station at Moneypoint. Since the 2000s there has been a renewed interest in the possibilities for producing nuclear energy on the island, in response to climate change and the need to ensure energy security. Surveys for identifying public acceptance and national forums have been proposed as ways to identify current perceptions and prospects for the development of nuclear energy. Nevertheless, nuclear energy in the Republic of Ireland is still prohibited by law, through the Electricity Regulation Act (1999). Nuclear energy is currently a contentious topic of debate, with many involved parties holding varying positions and arguments. 

Example of stakeholders: The Irish government; the UK government; political parties; electricity supply board (state owned electricity company); BENE – Better Environment with Nuclear Energy (lobby group); Friends of the Irish Environment (environmental group), Friends of the Earth – Ireland (environmental group); The Union of Concerned Scientists; Wind Aware (lobby group); local community (specified further based on demographic characteristics, such as the Traveller community); scientists in the National Centre for Plasma Science & Technology at Dublin City University (university researchers). 

Sources used for the description of the roles: Policy documents; official websites; institutional or group manifestos; news articles, editorials and other appearances in the media. 

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.


Case enhancement:
Business growth models in engineering industries within an economic system

Activity: Defending a profit-driven business versus a non-profit-driven business.

Author: Dr Sandhya Moise (University of Bath).

 

Overview:

This enhancement is for an activity found in the Dilemma Part one, Point 4 section of the case: “In a group, split into two sides with one side defending a profit-driven business and the other defending a non-profit driven business. Use Maria’s case in defending your position.” Below are several prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.

 

Session structure:

1. As pre-class work, the students can be provided the case study in written format.

2. During class, the students will need to be introduced to the following concepts, for which resources are provided below (~20 min):

3. Group activity (15 min +)

4. Whole class discussion/debate (15 min +)

 

Learning resources:

Ethics in Engineering resources:

Professional Codes of Conduct resources:

Corporate Social Responsibility Resources:

ESG Mandate Resources:

In recent years, there have been calls for more corporate responsibility in environmental and socioeconomic ecosystems globally. For example:

In 2017, the economist Kate Raworth set out to reframe GDP growth to a different indicator system that reflects on social and environmental impact. A Moment for Change?

Further reading:

 

Group Activity – Structure:

Split the class into two or more groups. One half of the class is assigned as Group 1 and the other, Group 2. Ask students to use Maria’s case in defending their position.

 

Group activity 1:

Group 1: Defend a profit-driven business model – Aims at catalysing the company’s market and profits by working with big corporations as this will enable quicker adoption of technology as well as economically benefit surrounding industries and society.

Group 2: Defend a non-profit driven business – Aims at preventing the widening of the socioeconomic gap by working with poorly-funded local authorities to help ensure their product gets to the places most in need (opportunities present in Joburg).

 

Pros and Cons of each approach:

Group 1: Defend a profit-driven business model:

Advantages and ethical impact:

Disadvantage and ethical impacts:

Group 2: Defend a non-profit driven business:

Advantages and ethical impact:

Disadvantage and ethical impacts:

 

Relevant ethical codes of conduct examples:

Royal Academy’s Statement of Ethical Principles:

Both of the above statements can be interpreted to mean that engineers have a professional duty to not propagate social inequalities through their technologies/innovations.

 

Discussion and summary:

This case study involves very important questions of profit vs values. Which is a more ethical approach both at first sight and beyond? Both approaches have their own set of advantages and disadvantages both in terms of their business and ethical implications.

If Maria decides to follow a profit-driven approach, she goes against her personal values and beliefs that might cause internal conflict, as well as propagate societal inequalities.

However, a profit-driven model will expand the company’s business, and improve job opportunities in the neighbourhood, which in turn would help the local community. There is also the possibility to establish the new business and subsequently/slowly initiate CSR activities on working with local authorities in Joburg to directly benefit those most in need. However, this would be a delayed measure and there is a possible risk that the CSR plans never unfold.

If Maria decides to follow a non-profit-driven approach, it aligns with her personal values and she might be very proactive in delivering it and taking the company forward. The technology would benefit those in most need. It might improve the reputation of the company and increase loyalty of its employees who align with these values. However, it might have an impact on the company’s profits and slow its growth. This in turn would affect the livelihood of those employed within the company (e.g. job security) and risks.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Theme: Collaborating with industry for teaching and learning

Authors: Prof Lucy Rogers (RAEng Visiting Professor at Brunel University, London and freelance engineering consultant) and Petra Gratton (Associate Dean of Professional Development and Graduate Outcomes in the College of Engineering, Design and Physical Science at Brunel University London, and Lecturer in the Department of Mechanical and Aerospace Engineering)

Keywords: Industry, Interview, Video, Real Life, Engineers

Abstract: A number of short videos that can be re-used in teaching undergraduate modules in Engineering Business, instead of inviting guest presentations. The interview technique got each individual to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment, finance and creativity. They also drew attention to their professional development.

 

Project outcomes

The outcomes of this project are a number of short videos that were used, and can be re-used, in teaching delivery of an undergraduate module in Engineering Business in the Department of Mechanical and Aerospace Engineering at Brunel University London instead of having guest presentations from invited speakers.  Lucy’s interview technique got the individuals featured in each film to talk about their life experiences and topics in engineering business that are often considered mundane (or challenging) for engineers, such as ethics, risks and regulation, project management, innovation, intellectual property, life-cycle assessment and finance; and drew attention to their professional development. 

The shorter videos were inspirational for students to make videos of themselves as part of the assessment of the module, which required them to carry out a personal professional reflection exercise and report upon what they had learned from the exercise in a simple 90-second video using their smartphone or laptop. 

Having used the videos with Brunel students, Lucy has made them available on her YouTube channel: Dr Lucy Rogers – YouTube. Each of the videos are listed in the following table:

 

Topic Who Video Link
Creativity in Engineering: Your CV Reid Derby https://youtu.be/qQILO4uXJ24
Creativity in Engineering: Your CV Leigh-Ann Russell https://youtu.be/LJLG2SH0CwM
Creativity in Engineering: Your CV Richard Hopkins https://youtu.be/tLQ7lZ3nlvg
Corporate Social Responsibility Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/N7ojL6id_BI
Ethics and Diversity Alexandra Knight
(Amey Strategic Consulting)
https://youtu.be/Q4MhkLQqWuI
Project Management and Engineers Fiona Neads (Rolls Royce) https://youtu.be/-TZlwk6HuUI
Project Management – Life Cycle Paul Kahn
(Aerospace and Defence Industry)
https://youtu.be/1Z4ZXMLRPt4
Ethics at Work Emily Harford (UKAEA) https://youtu.be/gmBq9FIX6ek
Communication Skills at Work Emily Harford (UKAEA) https://youtu.be/kmgAlyz7OhI
Client Brief Andy Stanford-Clark (IBM) https://youtu.be/WNYhDA317wE
Intellectual Property from Artist’s Point of View Dave Corney
(Artist and Designer)
https://youtu.be/t4pLkletXIs
Intellectual Property Andy Stanford-Clark (IBM) https://youtu.be/L5bO0IdxKyI
Project Management Fiona Neads – Rolls Royce https://youtu.be/XzgS5SJhiA0

 

Lessons learned and reflections

We learned that students generally engaged with the videos that were used.  Depending which virtual learning environment (VLE) was being used, using pre-recorded videos in synchronous online lectures presents various challenges.  To avoid any unplanned glitches, in future we know to use the pre-recorded videos as part of the teaching-delivery preparation (e.g. in a flipped classroom mode). 

As part of her legacy, Lucy is going to prepare a set of simple instructions on producing video interviews that can be carried out by both staff and students in future.

 

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Authors: Professor Sarah Hitt SFHEA (NMITE); Professor Chike Oduoza (University of Wolverhampton); Emma Crichton (Engineering Without Borders UK); Professor Mike Sutcliffe (TEDI-London); Dr Sarah Junaid (Aston University); Isobel Grimley (Engineering Professors’ Council).

Topic: Monitoring and resolving industrial pollution.

Engineering disciplines: Chemical engineering; Civil engineering; Manufacturing; Mechanical engineering.

Ethical issues: Environment, Health, Public good.

Professional situations: Bribery, Whistleblowing, Corporate social responsibility, Cultural competency.

Educational level: Advanced.

Educational aim: To encourage ethical motivation. Ethical motivation occurs when a person is moved by a moral judgement, or when a moral judgement is a spur to a course of action. 

 

Learning and teaching notes:

This case requires an engineer to balance multiple competing factors including: economic pressure, environmental sustainability, and human health. It introduces the perspective of corporate social responsibility (CSR) as a lens through which to view the dilemma. In this case study, the engineer must also make decisions that will affect their professional success in a new job and country.  

This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.

The dilemma in this case is presented in two parts. If desired, a teacher can use Part one in isolation, but Part two develops and complicates the concepts presented in Part one to provide for additional learning. The case allows teachers the option to stop at multiple points for questions and/or activities as desired.

Learners have the opportunity to:

Teachers have the opportunity to:

 

Learning and teaching resources:

 

Summary:

Yasin is a pipeline design engineer who has been employed to manage the wastewater pipeline for MMC Textile Company in Gujarat. The company has a rapidly growing business contributing to one of India’s most important industries for employment and export. Yasin was hired through a remote process during the pandemic – he had never been to the industrial site or met his new colleagues in person until he relocated to the country. For 10 years, Yasin worked for the Water Services Regulation Authority in the UK as a wastewater engineer; this is the first time he has been employed by a private company and worked within the textile industry.

The production of textiles results in highly toxic effluent that must be treated and disposed of. A sludge pipeline takes wastewater away from MMC’s factory site and delivers it to a treatment plant downstream. On arrival at MMC, Yasin undertakes an initial inspection of the industrial site and the pipeline. He conducts some testing and measurements, then reviews the company’s documents and specifications related to the pipeline. This pipeline was built 30 years ago when MMC first began operations. In the last five years, MMC has partnered with a fast fashion chain and invested in advanced production technologies, resulting in a 50% increase in its yearly output. Yasin soon realises that as production has increased, the pipeline sometimes carries nearly double its registered capacity. Yasin was hired because MMC’s managers were aware that the pipeline capacity might be stretched and needed his expertise to develop a solution. However, Yasin suspects they are unaware of the real extent of the problem, and is nervous about how they will react to confirmation of this suspicion. Yasin is due to provide an informal verbal report on his initial inspection to the factory managers. This will be his first official business meeting since arriving in India.

 

Optional STOP for questions and activities:

1. Discussion: Although Yasin is a qualified and experienced engineer, what professional challenges might he encounter at MMC?

2. Discussion: What preparation does Yasin need to make for this informal meeting? What data or evidence should he present?

3. Activity: Role-play Yasin’s first meeting with the factory managers.

4. Activity: Research the environmental effects of textile production and / or India’s policies on textile waste management.

 

Dilemma – Part one:

At the meeting, Yasin is tasked with developing a menu of proposals to mitigate the problem. The options he puts forward include retrofitting the original pipeline, replacing it with a new one, eliminating the pipeline entirely and focusing on on-site water treatment technology, as well as other solutions. He is directed to consider the risks and benefits of the alternatives. These include the economic burdens, both the cost of the intervention as well as the decline in production necessitated while the intervention takes place, and the environmental consequences of action or inaction.  

During his research, Yasin discovers that informal housing has sprung up in the grey zone between the area’s formal zoned conurbation and the MMC industrial site. This is because there is little local regulation or enforcement as to where people are allowed to erect temporary or permanent dwellings. He estimates that there are several thousand people living in impoverished conditions on the edges of MMC’s property. Indeed, many of the people living in the informal settlement work in the lowest-skilled jobs at the textile factory. The informal settlement is located around a well that Yasin suspects may be polluted by effluent that seeps into the soil and groundwater when the pipeline overflows. He can find no information in company records about data related to this potential pollution.

 

Optional STOP for questions and activities:

1. Discussion: Does Yasin have a responsibility to do anything about the potential groundwater pollution at the informal settlement?

2. Discussion: Should Yasin advocate for the solution with the lowest cost?

3. Activity: Practise problem definition. What are the parameters and criteria Yasin should use in defining the issues at stake? What elements of the problem is he technically or ethically obligated to resolve? Why?

4. Activity: Create a tether diagram mapping the effects of each potential solution on the company, the local people, and the environment.

5. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering related to groundwater pollution.

 

Dilemma – Part two:

As Yasin learns more about MMC, he discovers that as the company grew rapidly in the last five years,  and has boosted its CSR initiatives, MMC started a programme to hire and upskill local labourers and began a charitable foundation to make donations to local schools and charities. For these activities, MMC has recently received a government commendation for its community commitments. Yasin is concerned about how to make sense of these activities on the one hand, and the potential groundwater contamination on the other. He speaks to his supervisor about MMC’s CSR initiatives and learns that company directors believe that their commendation will pave the way for an even better relationship with the government and perhaps enable a favourable decision on a permit to build another textile factory site nearby. At the end of the conversation, his supervisor indicates that if a new factory is built, it will need a chief site engineer. “That position would be double your current salary,” the supervisor says, “a good job on fixing this pipeline situation would make you look like a very attractive candidate.” Yasin is due to formally present his proposal about the pipeline next week to the factory manager and company directors.

 

Optional STOP for questions and activities:

1. Discussion: How should Yasin respond to the suggestion of a job offer?

2. Discussion: Should Yasin report any of MMC’s actions or motivations to an external authority?

3. Activity: Research CSR and its ethical dimensions, both in the UK and in India.

4. Activity: Undertake a technical activity in the areas of chemical, civil, manufacturing and / or mechanical engineering, related to pipeline design and flow rates.

5. Activity: Debate whether or not Yasin should become a whistleblower, either about the groundwater pollution or the job offer.

 

Enhancements:

An enhancement for this case study can be found here.

 

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.

Let us know what you think of our website