Author: Dr Irene Josa (University College London). The author would like to acknowledge Colin Church (IOM3) who provided valuable feedback during the development of this case.
Ethical issues: Respect for the environment; Risk.
Professional situations: Conflicts of interest; Public health and safety; Legal implications; Whistleblowing; Power; Corporate social responsibility.
Educational level: Intermediate.
Educational aim: Gaining ethical knowledge. Knowing the sets of rules, theories, concepts, frameworks, and statements of duty, rights, or obligations that inform ethical attitudes, behaviours, and practices.
Learning and teaching notes:
This case involves an engineer responsible for verifying the source of recycled construction material to ensure it is not contaminated. The case is presented in three parts. Part one focuses on the environmental, professional, and social contexts and may be used in isolation to allow students to explore both micro-ethical and macro-ethical concerns. Parts two and three bring in a dilemma about public information and communication and allows students to consider their positions and potential responses. The case allows teachers the option to stop at multiple points for questions and / or activities as desired.
This case study addresses two of AHEP 4’s themes: The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
Learners have the opportunity to:
identify legal, professional, and ethical rules and guidance;
investigate technical and environmental components of circularity;
consider professional roles and associated responsibilities;
practice preparing for a public interview.
Teachers have the opportunity to:
introduce or provide practice in Life Cycle Assessment;
highlight relevant ethical codes and quality standards;
address approaches to professional and/or interpersonal conflict;
informally evaluate critical thinking and analysis.
Charlie is a junior environmental engineer who started working at Circle Mat after graduating. Circle Mat is a construction products company that takes pride in using recycled materials from waste in their products, such as mortars and concretes. In fact, Circle Mat was recently nominated by the National Sustainability Association in the prize for the most innovative and sustainable production chains.
Charlie’s role is to ensure that the quality standards of the recycled waste used in the products are met. She is sent a report every two weeks from the factories receiving the waste and she checks the properties of this waste. While she is also supposed to visit all the factories once a month, her direct supervisor, Sam, advised her to visit only those factories where data shows that there are problems with the quality. While it is Charlie’s responsibility to verify the quality and to create the factory visit plan, she trusts her line manager as to how best approach her work.
Among all the factories with which they are working, the factory in Barretton has always had the highest quality standards, and since it is very far from where Charlie is based, she has postponed for months her visit to that factory.
Optional STOP for questions and activities:
1. Discussion: Charlie is responsible for checking the quality from the data she receives, but what about the quality/reliability of the data? Where does her responsibility begin and end? What ethical guidance, codes, or frameworks can help her decide?
2. Activity: Research the issue of asbestos, including current science, potential risks, and legal implications.
3. Discussion: Macroethical context – What is circularity, and how does it relate to climate goals or environmental practice?
Dilemma: Part two:
After several months, she finally goes to the town where the factory is located. Before getting to the factory, she stops for a coffee at the town’s café. There, she enquires of the waiter about the impacts of the factory on the town. The waiter expresses his satisfaction and explains that since Circle Mat started operations there, the town has become much more prosperous.
When Charlie reaches the factory, she notices a pile of waste that, she assumes, is the one that is being used as recycled aggregate in concrete. Having a closer look, she sees that it is waste from demolition of a building, with some insulation walls, concrete slabs and old pipes. At that moment, the head of the factory arrives and kindly shows Charlie around.
At the end of the visit, Charlie asks about the pile, and the head says that it is indeed demolition waste from an old industrial building. By the description, Charlie remembers that there are some buildings in the region that still contain asbestos, so asks whether the demolition material could potentially have asbestos. To Charlie’s surprise, the head reacts aggressively and says that the visit is over.
Optional STOP for questions and activities:
1. Activity: Use an environmental and social Life Cycle Assessment tool to assess the environmental and social impacts that the decision that Charlie makes might have.
2. Discussion: Map possible courses of action regarding the approach that Charlie could adopt when the factory head tries to shut down the visit. Discuss which is the best approach and why. Some starting questions would be: What should Charlie do? What feels wrong about this situation?
3. Discussion: if she reports her suspicions to her manager, what data or evidence can she present? Should she say anything at all at this point?
Dilemma – Part three:
In the end, Charlie decides not to mention anything, and after writing her report she leaves Barretton. A few days later, Circle Mat is announced to be the winner of the prize by the National Sustainability Association. Circle Mat organises a celebration event to be carried out in Barretton. During the event, Charlie discovers that Circle Mat’s CEO is a relative of the mayor of Barretton.
She is not sure if there really is asbestos in the waste, and also she does not know if other factories might be behaving in the same way. Nonetheless, other junior engineers are responsible for the other factories, so she doesn’t have access to the information.
Some days after the event, she receives a call from a journalist who says that they have discovered that the company is using waste from buildings that contain asbestos. The journalist is preparing an article to uncover the secret and wants to interview her. They ensure that, if she wants, her identity will be kept anonymous. They also mention that, if she refuses to participate, they will collect information from other sources in the company.
Optional STOP for questions and activities:
1. Activity: Technical integration related to measuring contaminants in waste products used for construction materials.
2. Discussion: What ethical issues can be identified in this scenario? Check how ethical principles of the construction sector inform the ethical issues that may be present, and the solutions that might be possible.
3. Discussion: What interpersonal and workplace dynamics might affect the approach taken to resolve this situation?
4. Discussion: Would you and could you take the interview with the journalist? Should Charlie? Why or why not?
5. Activity: In the case of deciding to take the interview, prepare the notes you would take to the interview.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Topic: Balancing personal values and professional conduct in the climate emergency.
Engineering disciplines: Civil engineering; Energy and Environmental engineering; Energy.
Ethical issues:Respect for the environment; Justice; Accountability; Social responsibility; Risk; Sustainability; Health; Public good; Respect for the law; Future generations; Societal impact.
Professional situations:Public health and safety; Communication; Law / Policy; Integrity; Legal implications; Personal/professional reputation.
Educational level: Intermediate.
Educational aim:Practicing Ethical Reasoning: the application of critical analysis to specific events in order to evaluate and respond to problems in a fair and responsible way.
Learning and teaching notes:
This case study involves an engineer who has to weigh personal values against professional codes of conduct when acting in the wake of the climate crisis. This case study allows students to explore motivations and justifications for courses of action that could be considered morally right but legally wrong.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4 here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in three parts. If desired, a teacher can use Part one in isolation, but Parts two and three develop and complicate the concepts presented in Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
identify underlying values of professional situations;
practise developing, defending, and delivering arguments;
debate the potential options of an ethical decision;
make and justify an ethical decision;
identify and define positions on an ethical issue;
apply codes of ethics to an engineering ethics dilemma;
consider different perspectives on an ethical issue and what values inform those perspectives;
practise professional communication related to ethical dilemmas;
identify professional responsibilities of engineers in an ethical dilemma;
determine and defend a course of action in response to an ethical dilemma;
consider how they would act in an ethical situation.
Teachers have the opportunity to:
evaluate critical thinking, argumentation, and communication skills;
highlight professional codes of ethics and their relevance to an engineering situation;
Kelechi is a civil engineer in a stable job, working on the infrastructure team of a County Council that focuses on regeneration and public realm improvements. Kelechi grew up in an environment where climate change and its real impacts on people was discussed frequently. She was raised with the belief that she should live as ethically as possible, and encourage others to consider their impact on the world. These beliefs were instrumental in leading Kelechi into a career as a civil engineer, in the hope that she could use her skills and training to create a better world. In one of her engineering modules at university, Kelechi met Amanda, who encouraged her to join a student group pushing for sustainability within education and the workplace. Kelechi has had some success with this within her own job, as her employer has been willing to participate in ongoing discussions on carbon and resilience, and is open to implementing creative solutions.
But Kelechi is becoming frustrated at the lack of larger scale change in the wake of the climate emergency. Over the years she has signed petitions and written to her representatives, then watched in dismay as each campaign failed to deliver real world carbon reduction, and as the government continued to issue new licenses for fossil fuel projects. Even her own employers have failed to engage with climate advocates pushing for further changes in local policy, changes that Kelechi believes are both achievable and necessary. Kelechi wonders what else she can do to set the UK – if not the world – on a path to net zero.
Dilemma – Part one:
Scrolling through a news website, Kelechi is surprised to see a photo of her friend and ex-colleague Amanda, in a report about climate protesters being arrested. Kelechi messages Amanda to check that she’s ok, and they get into a conversation about the protests. Amanda is part of a climate protest group of STEM professionals that engages in non-violent civil disobedience. The group believes that by staging direct action protests they can raise awareness of the climate emergency and ultimately effect systemic change.
Amanda tries to convince Kelechi to join the group and protest with them. Amanda references the second principle of the Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering: “Respect for life, law, the environment and public good.” Amanda believes that it is ok to ignore the tenet about respect for the law in an effort to safeguard the other three, and says that there have been plenty of unjust laws throughout history that have needed to be protested in order for them to be changed for the public good. She also references another part of the Statement: that engineers should ”maximise the public good and minimise both actual and potential adverse effects for their own and succeeding generations”. Amanda believes that by protesting she is actually fulfilling her duty to uphold these principles.
Kelechi isn’t sure. She has never knowingly broken the law before, and is worried about being arrested. Kelechi consults her friend Max, who is a director of a professional engineering institution, of which Kelechi is a member. Max, whilst she has some sympathies for the aims of the group, immediately warns Kelechi away from the protests. “Forget about being arrested; you could lose your job and end your career.”
Optional STOP for questions and activities:
1. Discussion: What personal values will Kelechi have to weigh in order to decide whether or not to take part in a civil disobedience protest?
2. Discussion: Consider the tenet of the Statement of Ethical Principles “Respect for life, law, the environment and public good.” To what extent (if at all) do the four tenets of this ethical principle come into conflict with one another in this situation? Can you think of other professional situations in which they might conflict?
3. Discussion: Is breaking the law always unethical? Are there circumstances when breaking the law might be the ethical thing to do in the context of engineering practice? What might these circumstances be?
4. Discussion: To what extent (if at all) does the content of the Statement of Ethical Principles make a case for or against being part of a protest where the law is broken?
5. Discussion: Following on from the previous question – does it make a difference what is being protested, if a law is broken? For example, is protesting fossil fuels that lead to climate change different from protesting unsafe but legal building practices, such as cladding that causes a fire risk? Why?
6. Activity: Research other professional codes of engineering: do these have clear guidelines for this situation? Assemble a bibliography of other professional codes or standards that might be relevant to this scenario.
7. Discussion: What are the potential personal and professional risks or benefits for Kelechi if she takes part in a protest where the law is broken?
8. Discussion: From a professional viewpoint, should Kelechi take part in the protest? What about from a personal viewpoint?
Dilemma – Part two:
After much deliberation, Kelechi decides to join the STEM protest group. Her first protest is part of a direct action to blockade a busy London bridge. To her own surprise, she finds herself volunteering to be one of two protesters who will climb the cables of the bridge. She is reassured by the risk assessment undertaken by the group before selecting her. She has climbing experience (although only from her local leisure centre), and safety equipment is provided.
On the day of the protest, Kelechi scales the bridge. The police are called and the press arrive. Kelechi stays suspended from the bridge for 36 hours, during which time all traffic waiting to cross the bridge is halted or diverted. Eventually, Kelechi is convinced that she should climb down, and the police arrest all of the protesters.
Later on, Kelechi is contacted by members of the press, asking for a statement about her reason for taking part in the protest. Kelechi has seen that press coverage of the protest is so far overwhelmingly negative, and poll results suggest that the majority of the public see the protesters’ actions as selfish, inconvenient, and potentially dangerous, although some have sympathy for their cause. “What if someone died because an ambulance couldn’t use the bridge?” asks someone via social media. “What about the five million deaths a year already caused by climate change?” asks another, citing a recent news article.
Kelechi would like to take the opportunity to make her voice heard – after all, that’s why she joined the protest group – but she isn’t sure whether she should mention her profession. Would it add credibility to her views? Or would she be lambasted because of it?
Optional STOP for questions and activities:
1. Discussion: What professional principles or codes is Kelechi breaking or upholding by scaling the bridge?
2. Activity: Compare the professional and ethical codes for civil engineers in the UK and elsewhere. How might they differ in their guidance for an engineer in this situation?
3. Activity: Conduct a risk assessment for a) the protesters who have chosen to be part of this scenario, and b) members of the public who are incidentally part of this scenario.
4. Discussion: Who would be responsible if, as a direct or indirect result of the protesters blocking the bridge, a) a member of the public died, or b) a protester died? Who is responsible for the excess deaths caused directly or indirectly by climate change?
5. Discussion: How can Kelechi best convey to the press and public the quantitative difference between the short-term disruption caused by protests and the long-term disruption caused by climate change?
6. Discussion: Should Kelechi give a statement to the press? If so, should she discuss her profession? What would you do in her situation?
7. Activity: Write a statement for Kelechi to release to the press.
8. Discussion: Suggest alternative ways of protesting that would have as much impact in the news but potentially cause less disruption to the public.
Dilemma – Part three:
Kelechi decides to speak to the press. She talks about the STEM protest group, and she specifically cites the Statement of Ethical Principles as her reason for taking part in the protest: “As a professional civil engineer, I have committed to acting within our code of ethics, which requires that I have respect for life, the environment and public good. I will not just watch lives be destroyed if I can make a difference with my actions.”
Whilst her statement gets lots of press coverage, Kelechi is called out by the media and the public because of her profession. The professional engineering institution of which Kelechi is a member receives several complaints about her actions, some from members of the public and some from other members of the institution. “She’s bringing the civil engineering profession into disrepute,” says one complaint.“She’s endangering the public,” says another.
It’s clear that the institution must issue a press release on the situation, and it falls to Kelechi’s friend Max, as a director of the institution, to decide what kind of statement to put out, and to recommend whether Kelechi’s membership of the institution could – or should – be revoked. Max looks closely at the institution’s Code of Professional Conduct. One part of the Code says that “Members should do nothing that in any way could diminish the high standing of the profession. This includes any aspect of a member’s personal conduct which could have a negative impact upon the profession.” Another part of the Code says: “All members shall have full regard for the public interest, particularly in relation to matters of health and safety, and in relation to the well-being of future generations.”
As well as the institution’s Code of Conduct, Max considers the historic impact of civil resistance in achieving change, and how those engaging in such protests – such as the suffragettes in the early 1900s – could be viewed negatively at the time, whilst later being lauded for their efforts. Max wonders at what point the tide of public opinion begins to turn, and what causes this change. She knows that she has to consider the potential impacts of the statement that she puts out in the press release; how it might affect not just her friend, but the institution’s members, other potential protesters, and also her own career.
Optional STOP for questions and activities:
1. Discussion: Historically, has civil resistance been instrumental or incidental in achieving systemic change? Research to find out if and when engineers have been involved in civil resistance in the past.
2. Discussion: Could Kelechi’s actions, and the results of her actions, be interpreted as having “a negative impact on the profession”?
3. Discussion: Looking at Kelechi’s actions, and the institution’s code of conduct, should Max recommend that Kelechi’s membership be revoked?
4. Discussion: Which parts of the quoted code of conduct could Max emphasise or omit in her press release, and how might this affect the tone of her statement and how it could be interpreted?
5. Activity: Debate which position Max should take in her press release: condemning the actions of the protesters as being against the institution’s code of conduct; condoning the actions as being within the code of conduct; remaining as neutral as possible in her statement.
6. Discussion: What are the wider impacts of Max’s decision to either remain neutral, or to stand with or against Kelechi in her actions?
7. Activity: Write a press release for the institution, taking one of the above positions.
8. Discussion: Which other authorities or professional bodies might be impacted by Max’s decision?
9. Discussion: What are the potential impacts of Max’s press release on the following stakeholders, and what decisions or actions might they take because of it? Kelechi; Kelechi’s employer; members of the STEM protest group; the institution; institution members; government policymakers; the media; the public; the police; fossil fuel businesses; Max’s employers; Max herself.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Dr J.L. Rowlandson (University of Bristol).
Ethical issues: Sustainability; Social responsibility.
Professional situations: Public health and safety; Conflicts of interest; Quality of work; Conflicts with leadership/management; Legal implication.
Educational level: Intermediate.
Educational aim: Becoming Ethically Sensitive: being broadly cognizant of ethical issues and having the ability to see how these issues might affect others.
Learning and teaching notes:
This case study considers not only the environmental impacts of a clean technology (the heat pump) but also the social and economic impacts on the end user. Heat pumps form an important part of the UK government’s net-zero plan. Our technical knowledge of heat pump performance can be combined with the practical aspects of implementing and using this technology. However, students need to weigh the potential carbon savings against the potential economic impact on the end user, and consider whether current policy incentivises consumers to move towards clean heating technologies.
This case study offers students an opportunity to practise and improve their skills in making estimates and assumptions. It also enables students to learn and practise the fundamentals of energy pricing and link this to the increasing issue of fuel poverty. Fundamental thermodynamics concepts, such as the second law, can also be integrated into this study.
This case study addresses two of the themes from the Accreditation of Higher Education Programmes fourth edition (AHEP4): The Engineer and Society (acknowledging that engineering activity can have a significant societal impact) and Engineering Practice (the practical application of engineering concepts, tools and professional skills). To map this case study to AHEP outcomes specific to a programme under these themes, access AHEP 4here and navigate to pages 30-31 and 35-37.
The dilemma in this case is presented in six parts. If desired, a teacher can use the Summary and Part one in isolation, but Parts two to six develop and complicate the concepts presented in the Summary and Part one to provide for additional learning. The case study allows teachers the option to stop at multiple points for questions and/or activities, as desired.
Learners have the opportunity to:
understand how the current energy system works;
relate the implementation of new technologies to real-world impacts on the consumer;
improve their zeroth order approximation skills and use these back of the envelope calculations to inform decisions;
consider how to weigh the benefits and burdens of ethical decisions;
consider the influence of policy on technology uptake and consumer behaviour.
Teachers have the opportunity to:
introduce concepts related to energy pricing;
integrate technical content about energy and thermodynamics;
informally evaluate students’ research skills and zeroth order approximation.
Summary – Heating systems and building requirements:
You are an engineering consultant working for a commercial heat pump company. The company handles both the manufacture and installation of heat pumps. You have been called in by a county council to advise and support a project to decarbonise both new and existing housing stock. This includes changes to social housing (either directly under the remit of the council or by working in partnership with a local housing association) and also to private housing, encouraging homeowners and landlords to move towards net zero emissions. In particular, the council is interested in the installation of clean heating technologies with a focus on heat pumps, which it views as the most technologically-ready solution. Currently most heating systems rely on burning natural gas in a boiler to provide heat. By contrast, a heat-pump is a device that uses electricity to extract heat from the air or ground and transfer it to the home, avoiding direct emission of carbon dioxide.
The council sets your first task of the project as assessing the feasibility of replacing the existing gas boiler systems with heat pumps in social housing. You are aware that there are multiple stakeholders involved in this process you need to consider, in addition to evaluating the suitability of the housing stock for heat pump installation.
Optional STOP for questions and activities:
1. Discussion: Why might the council have prioritised retrofitting the social housing stock with heat pumps as the first task of the project? How might business and ethical concerns affect this decision?
2. Activity: Use stakeholder mapping to determine who are the main stakeholders in this project and what are their main priorities? In which areas will these stakeholders have agreements or disagreements? What might their values be, and how do those inform priorities?
3. Discussion: What key information about the property is important for choosing a heating system? What does the word feasibility mean and how would you define it for this project?
4. Activity: Research the Energy Performance Certificate (EPC): what are the main factors that determine the energy performance of a building?
5. Discussion: What do you consider to be an ‘acceptable’ EPC rating? Is the EPC rating a suitable measure of energy efficiency? Who should decide, and how should the rating be determined?
Technical pre-reading for Part one:
It is useful to introduce the thermodynamic principles on which heat pumps operate in order to better understand the advantages and limitations when applying this engineering technology in a real-world situation. A heat pump receives heat (from the air, ground, or water) and work (in the form of electricity to a compressor) and then outputs the heat to a hot reservoir (the building you are heating). We recommend covering:
the second law of thermodynamics and how a heat pump works;
Dilemma – Part one – Considering heat pump suitability:
You have determined who the main stakeholders are and how to define the project feasibility. A previous investigation commissioned by the council into the existing housing stock, and one of the key drivers for them to initiate this project, has led them to believe that most properties will not require significant retrofitting to make them suitable for heat pump installation.
Optional STOP for question and activities:
1. Activity: Research how a conventional gas boiler central heating system works. How does a heat pump heating system differ? What heat pump technologies are available? What are the design considerations for installing a heat pump in an existing building?
Dilemma – Part two – Inconsistencies:
You spot some inconsistencies in the original investigation that appear to have been overlooked. On your own initiative, you decide to perform a more thorough investigation into the existing housing stock within the local authority. Your findings show that most of the dwellings were built before 1980 and less than half have an EPC rating of C or higher. The poor energy efficiency of the existing housing stock causes a potential conflict of interest for you: there are a significant number of properties that would require additional retrofitting to ensure they are suitable for heat pump installation. Revealing this information to the council at this early stage could cause them to pull out of the project entirely, causing your company to lose a significant client. You present these findings to your line manager who wants to suppress this information until the company has a formal contract in place with the council.
Optional STOP for question and activities:
1. Discussion: How should you respond to your line manager? Is there anyone else you can go to for advice? Do you have an obligation to reveal this information to your client (the council) when it is they who overlooked information and misinterpreted the original study?
2. Activity: An example of a factor that causes a poor EPC rating is how quickly the property loses heat. A common method for significantly reducing heat loss in a home is to improve the insulation. Estimate the annual running cost of using an air-source heat pump in a poorly-insulated versus a well-insulated home to look at the potential financial impact for the tenant (example approach shown in the Appendix, Task A).
3. Discussion: What recommendations would you make to the council to ensure the housing is heat-pump ready? Would your recommendation change for a new-build property?
Dilemma – Part three – Impact of energy costs on the consumer:
Your housing stock report was ultimately released to the council and they have decided to proceed, though for a more limited number of properties. The tenants of these dwellings are important stakeholders who are ultimately responsible for the energy costs of their properties. A fuel bill is made up of the wholesale cost of energy, network costs to transport it, operating costs, taxes, and green levies. Consumers pay per unit of energy used (called the unit cost) and also a daily fixed charge that covers the cost of delivering energy to a home regardless of the amount of energy used (called the standing charge). In the UK, currently the price of natural gas is the main driver behind the price of electricity; the unit price of electricity is typically three to four times the price of gas.
Your next task is to consider if replacing the gas boiler in a property with a heat pump system will have a positive or negative effect on the running costs.
Optional STOP for questions and activities:
1. Activity: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler (see Appendix Task B for an example approach).
2. Discussion: Energy prices are currently rising and have seen drastic changes in the UK over the past year. The lifetime of a new heat pump system is around 20 years. How would rising gas and electric prices affect the tenant? Does this impact the feasibility of using a gas boiler versus a heat pump? How can engineering knowledge and expertise help inform pricing policies?
Dilemma – Part four – Tenants voice concerns:
After a consultation, some of the current tenants whose homes are under consideration for heat pump installation have voiced concerns. The council is planning to install air-source heat pumps due to their reduced capital cost compared to a ground-source heat pump. The tenants are concerned that the heat pump will not significantly reduce their fuel bills in the winter months (when it is most needed) and instead could increase their bills if the unit price and standing charge for electricity continue to increase. They want a guarantee from the council that their energy bills will not be adversely affected.
Optional STOP for questions and activities:
1. Discussion: Why would air-source heat pumps be less effective in winter? What are the potential effects of increased energy bills on the tenants? How much input should the tenants have on the heating system in their rented property?
2. Discussion: Do the council have any responsibility if the installation does result in an increased energy bill in the winter for their tenants? Do you and your company have any responsibility to the tenants?
Dilemma – Part five – The council consultation:
The council has hosted an open consultation for private homeowners within the area that you are involved in. They want to encourage owners of private dwellings to adopt low-carbon technologies and are interested in learning about the barriers faced and what they can do to encourage the adoption of low carbon-heating technologies. The ownership of houses in the local area is similar to the overall UK demographic: around 20% of dwellings are in the social sector (owned either by the local authority or a housing association), 65% are privately owned, and 15% are privately rented.
Optional STOP for questions and activities:
1. Activity: Estimate the lifetime cost of running an air-source heat pump and ground-source heat pump versus a natural gas boiler. Include the infrastructure costs associated with installation of the heating system (see Appendix Task C for an example approach). This can be extended to include the impact of increasing energy prices.
2. Activity: Research the policies, grants, levies, and schemes available at local and national levels that aim to encourage uptake of net zero heating.
3. Discussion: From your estimations and research, how suitable are the current schemes? What recommendations would you make to improve the uptake of zero carbon heating?
Dilemma – Part six – Recommendations:
Energy costs and legislation are important drivers for encouraging homeowners and landlords to adopt clean heating technologies. There is a need to weigh up potential cost savings with the capital cost associated with installing a new heat system. Local and national policies, grants, levies, and bursaries are examples of tools used to fund and support adoption of renewable technologies. Currently, an environmental and social obligations cost, known as the ‘green levies,’ are added to energy bills which contribute to a mixture of social and environmental energy policies (including, for example, renewable energy projects, discounts for low-income households, and energy efficiency improvements).
Your final task is to think more broadly on encouraging the uptake of low-carbon heating systems in private dwellings (the majority of housing in the UK) and to make recommendations on how both councils locally and the government nationally can encourage uptake in order to reduce carbon emissions.
Optional STOP for questions and activities:
1. Discussion: In terms of green energy policy, where does the ethical responsibility lie – with the consumer, the local government, or the national government?
2. Discussion: Should the national Government set policies like the green levy that benefit the climate in the long-term but increase the cost of energy now?
3. Discussion: As an employee of a private company, to what extent is the decarbonisation of the UK your problem? Do you or your company have a responsibility to become involved in policy? What are the advantages or disadvantages to yourself as an engineer?
Appendix:
The three tasks that follow are designed to encourage students to practise and improve their zeroth order approximation skills (for example a back of the envelope calculation). Many simplifying assumptions can be made but they should be justified.
Task A: Impact of insulation
Challenge: Estimate the annual running cost for an air-source heat pump in a poorly insulated home. Compare to a well-insulated home.
Base assumptions around the heat pump system and the property being heated can be researched by the student as a task or given to them. In this example we assume:
The air source heat-pump has a COP of 2.5
The air-source heat pump runs for 8 hours a day to maintain a temperature of 21 °C
The average UK property size is 82 m2
A poorly insulated property (Victorian, single-glazed, no loft insulation) has an average heat loss of 110 W/m2
A well-insulated property (recent new build, post-2006) has an average heat loss of 30 W/m2
The unit price of electricity is 33.8 p per kWh
Example estimation:
1. Estimate the overall heat loss for a poorly- and well-insulated property.
Note: heat loss is greater in the poorly insulated building.
2. Calculate the work input for the heat pump.
Assumption: heat pump matches the heat loss to maintain a consistent temperature.
Note: a higher work input is required in the poorly insulated building to maintain a stable temperature.
3. Determine the work input over a year.
Assumption: heat pump runs for 8 hours per day for 365 days.
4. Determine the running cost
For an electricity unit price of 33.8 p per kWh.
Note: running cost is higher for the poorly insulated building due to the higher work input required to maintain temperature.
Task B: Annual running cost estimation
Challenge: Estimate the annual running cost for a property when using a heat pump versus a natural gas boiler.
Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume:
The building requires 15,000 kWh for heating every year
A boiler has an efficiency of 85 %
An air-source heat pump (ASHP) has a COP of 2.5
A ground-source heat pump (GSHP) has a COP of 4.0
Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount:
Domestic energy tariffs
Electric standing charge
51.0p per day
Unit price of electricity
33.8p per kWh
Gas standing charge
26.8p per kWh
Unit price of gas
10.4p per kWh
Example estimation:
1. Calculate the annual power requirement for each case.
Assumed heating requirement is 15,000 kWh for the year.
2. Calculate the annual cost for each case:
Note: the higher COP of the ground-source heat pump makes this the more favourable option (dependent on the fuel prices).
Task C: Lifetime cost estimation
Challenge: Estimate the total lifetime cost for a property when using a heat pump versus a natural gas boiler.
Base assumptions around the boiler system, heat pump system, and property can be researched by the student as a task or given to them. In this example we assume:
Identical assumptions to Task B on the heating requirement (15,000 kWh), boiler efficiency (85%), and heat pump COP (2.5 for air-source and 4.0 for ground-source)
The average boiler lifetime is 10 years
The average heat pump lifetime (air-source and ground source) is 20 years
The infrastructure cost for boiler installation is £1,500, for an ASHP is £7,000, and for a GSHP is £14,000
Energy tariffs (correct at time of writing) for the domestic consumer including the energy price guarantee discount:
Domestic energy tariffs
Electric standing charge
51.0p per day
Unit price of electricity
33.8p per kWh
Gas standing charge
26.8p per kWh
Unit price of gas
10.4p per kWh
1. Calculate the lifetime running cost for each case.
2. Calculate the total lifetime cost for each case.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Prompts to facilitate discussion activities.
Author: Sarah Jayne Hitt, Ph.D. SFHEA (NMITE, Edinburgh Napier University).
Overview:
There are several points in this case during which an educator can facilitate a class discussion about relevant issues. Below are prompts for discussion questions and activities that can be used. These correspond with the stopping points outlined in the case. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Case Summary – Discussion prompts:
1. Professional Contexts. The question listed in the case study is meant to elicit students’ consideration of working as an engineer in a professional culture different from the one they are familiar with. To answer this question, educators could have students reflect quietly and make notes for a few minutes, or discuss with a partner before sharing with the class. If students are hesitant to engage in questions of cultural differences, they could be prompted to examine why they have that discomfort. Educators might also want to prepare for conversations like this by reviewing the guidance article Tackling tough topics in discussion.
2. Meeting Preparation. The question listed in the case study focuses on the choices that engineers make when presenting data; that is, should they show managers a complete or incomplete picture of the situation in question? What implications does that have in terms of managers’ ability to make decisions? The question also is meant to help students consider aspects of professional communication. Students could be tasked with actually doing a version of the meeting preparation as pairs in the classroom, or they could do this as a reflective exercise as well.
Dilemma – Part one – Discussion prompts:
1. Personal and Professional Responsibility. Here, students are being asked to explore their own personal responses to the informal housing situation outside the factory and interrogate whether or not that response could or should affect their professional actions. The question also investigates the scope of professional responsibility, and at what point an engineer has fulfilled this or fallen short. To engage students in this discussion, educators could split the class in half, with half the room discussing the position that Yasin does NOT have a responsibility, and why; and the other half discussing the position that Yasin DOES have a responsibility and why. Alternatively, students could be asked to write down their own answer to this question along with reasoning why or why not, and then the educator could ask volunteers to share responses in order to open up the discussion.
2. Economic Contexts. Students can use this question to expand on question 1 of this section, and in fact they may already have drawn cost into their reasoning. One way to open up this discussion is to think of the broader costs, meaning: is there a social or environmental cost that the company externalises through its polluting activities? Another way into the question is to go back to the question of responsibility, because engineers are routinely responsible for making budgets and judgements related to costs. Through this financial activity, are they able to advocate for more ethical practices, and should they?
Dilemma – Part two – Discussion prompts
1. Job Offer. This question is meant to point to the issue of bribery, and have students wrestle with the situations presented in the case. Educators could have students review various definitions of bribery, including the one in the RAEng’s Statement of Ethical Principles. They could compare this with the Engineering Council of India’s Code of Ethics. What do these two codes say about Yasin’s case? If they don’t give clear guidance, what should Yasin do? Students could discuss why or why not they think this is bribery in small or large groups, and could debate what Yasin’s action should be and why.
2. External Reporting. This question addresses whistleblowing, and what responsibilities engineers have for reporting unethical actions to professional or legal entities. Students could be asked individually to answer the question and give reasons why, based on the codes of ethics relevant to the case. They could also answer the question based on their own personal values. Then they could discuss their responses in small groups and interrogate whether or not the codes conflict with their values. Educators could at this point raise the question of whether or not there may be different cultural expectations in this area that Yasin might have to navigate, and if so, if this should make any difference to the action he should take. Students could also be asked to chart out the personal and professional repercussions Yasin could experience for either action. This discussion could be good preparation for activity #5, the debate.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Do engineers have a responsibility to warn the public if there is a chance of risk?
Author: Cortney Holles (Colorado School of Mines, USA).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 1 section of this case: Debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties (“of matters . . . which are of potential detriment to others who may be adversely affected by them” – The Society of Construction Law’s Statement of Ethical Principles).
After introducing or studying the Glass Safety case, teachers may want students to dig deeper into the ethical issues in the case through a debate. The resources and lesson plan below guide teachers through this lesson.
1. Introduce the debate assignment:
Students will debate whether or not Krystyna has an ethical or professional responsibility to warn relevant parties. Build in some time for students to prepare their arguments in small groups (either during class or as a homework assignment). Create small groups of 2-5 students that can develop positions on each of the following positions on the question of the debate:
Does Krystyna have a responsibility to warn Sir Robert or future residents of the buildings about the glass?
YES, according to the Society of Construction Laws (or other professional society’s) ethical codes or standards;
YES, according to a personal and ethical obligation of Krystyna as a young professional;
NO, according to the standards of the company and expectations by superiors and/or professional norms or standards;
NO, according to personal or ethical obligations and needs of Krystyna as a young professional.
2. Supporting the arguments in the debate with texts:
Provide students with resources that offer support for the different positions in the debate, listed below. Perhaps you have assigned readings in the class they can be asked to reference for support in the debate. Teachers could also assign students to conduct independent research on these stakeholders and positions if that matches the goals of the class.
In a previous class session or at the start of the debate, ask students to record or anonymously report their personal response to the debate question for comparison and discussion after the debate. These responses could serve as a basis for personal reflection, a progress check, or even as a component of an assessment. You could ask them to report on this question in several different ways: Do engineers have a responsibility to warn? When do engineers have a responsibility to warn? Why do engineers have a responsibility to warn? Who do engineers have a responsibility to warn?
Give students time to talk in their groups before the in-class debate begins so that they can compare notes on their argument and evidence/reasoning, and decide who will speak. You may want to direct how students in the groups will divide the speaking responsibilities for their position, especially for time management or participation according to the limitations or requirements of your teaching situation.
Consider what amount of time you have for the debate and provide students with a structure with time limits for each argument and response. For example, let each of the four positions present their case for 2-3 minutes, followed by a minute for each other position to offer rebuttals and ask questions of that position.
Teachers could also give themselves a minute or two to ask questions or offer insights or ethical issues the groups may have missed in between. At the least, the teacher should monitor the time, provide transitions between positions, and moderate the debate.
As a comprehension and application activity during the debate, you could ask students to take notes on the other positions’ presentations as they listen – you might ask them to restate the positions, identify the underlying values presented, or describe which ethical issues or stakeholders they find most compelling for each position. This could also be done via a “live blog”, or via a role play scenario where other students act as journalists reporting on what is happening in the debate.
After all sides have been presented, allow time for students to revisit their original positions on the debate. They could cast their votes on a web platform anonymously or you can collect paper ballots. In class or as homework, students could reflect on what arguments and values impacted their personal stance on the debate.
Take time to debrief the positions and the ethical decisions presented at the end of this class session or in a subsequent class session. Teachers could ask students to discuss how they navigated conflicting values and needs of stakeholders and which ethical principles were most compelling to them.
Key concepts this debate can cover:
environmental ethics concepts
power dynamics between managers, clients, and engineers
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Role-play the council meeting, with students playing different characters representing different perspectives.
Author: Cortney Holles (Colorado School of Mines, USA).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 6 section: “Role-play the council meeting, with students playing different characters representing different perspectives.” Below are several prompts for discussion questions and activities that can be used. Each prompt could take up as little or as much time as the educator wishes, depending on where they want the focus of the discussion to be.
Prompts for questions:
After discussing the case in class, and completing the stakeholder mapping activity (Dilemma Part one, Point 4 – repeated below) from the Water Wars case study, this lesson guides teachers through conducting a role-play of the council meeting scenario.
1. Discuss the stakeholder mapping activity: Who are all the characters in the scenario? What are their positions and perspectives? How can you use these perspectives to understand the complexities of the situation more fully?
2. To prepare for the council meeting role-play activity, assign students in advance to take on different stakeholder roles (randomly or purposefully), or let them self-assign based on their interests. Roles can include any of the following:
Suggestions from Stakeholder mapping activity:
Data Storage Solutions
Farmers’ union
Local Green party
Local council
Member of the public
Stakeholders who use DSS’s data storage services (such as the local hospital and schools)
Non-human stakeholders – for example, the fish, birds and insects.
Additional stakeholders to consider:
Councillors – you can choose to have them represent different political stances in your area
Environmental representatives or activists – speaking on behalf of the ecosystem and the species within it
Local citizens worried about their water supply
Local citizens in support of DSS and its economic importance in the area
DSS employee representatives – arguing on behalf of the company and their jobs
Farmers who are worried about their crops and the water supply
Clients of DSS who use data storage (hospitals, schools)
Others you or your students want to include (businesses, community groups, local politicians).
3. Before the class session in which the role-play will occur, students should research their stakeholder to get a sense of their values and motivations in regard to the case. Where no information is available, students can imagine the experiences and perspectives of the stakeholder with the goal of articulating what the stakeholder values and what motivates them to come to the council meeting to be heard on this issue. Students should prepare some statements about the stakeholder position on the water use by DSS, what the stakeholder values, and what the stakeholder proposes the solution should be. Students assigned to be council members will prepare for the role-play by learning about the conflict and writing potential questions they would want to ask of the stakeholders representing different views on the conflict.
4. In class, students prepare to role-play the council meeting by first connecting with others in the same stakeholder role (if applicable – you may have few enough students to have only one student assigned to a stakeholder) and deciding who can speak (you may want to require each student to speak or ask that one person be nominated to speak on behalf of the stakeholder group).
5. As the session begins, remind students to jot down notes from the various perspectives’ positions so there can be a debrief conversation at the end. Challenge students to consider their personal biases and position at the outset and reflect on those positions and biases at the end of the council meeting. If they were a lead member of the council, what solution would they propose or vote for?
6. As the Council Meeting begins, the teacher should act as a moderator to guide students through the session. First the teacher will briefly highlight the issue up for discussion, then pass it to the students representing the Council members. Council members will open the meeting with their description of the matter at hand between DSS and other local parties. They set the tone for the meeting with a call for feedback from the community members. The teacher can help the Council members call up the stakeholders in turn. Each stakeholder group will have a chance to state their argument, values, and reasons for or against DSS’ water use. Each stakeholder will have an opportunity to suggest a proposed solution and Council members can engage in discussion with each stakeholder to clarify anything about their position that was unclear.
7. At the end of the meeting, the council members privately confer and then publicly vote on a resolution for the community. All students, no matter their role, end the class by reflecting on the outcome and their original position on the case. Has anything shifted in their position or rationale after the council meeting? Why or why not?
8. The whole class could then engage in a discussion about the outcome of the council meeting. Teachers could focus on an analysis of how the process went, a discussion about the persuasiveness of different values and positions, and/or an exploration of the internal thinking students went through to arrive at their positions.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Author: Professor Manuela Rosa (Algarve University).
Keywords: Societal impact; Equity; Equality, diversity and inclusion (EDI); Design; Justice; Equity; Communication; Global responsibility.
Who is this article for?: This article should be read by educators at all levels in higher education who wish to integrate social sustainability, EDI, and ethics into the engineering and design curriculum or module design. It will also help to prepare students with the integrated skill sets that employers are looking for.
Premise:
The Declaration on the Rights of Disabled Persons, adopted by the General Assembly of United Nations on 9 December 1975, stipulated protection of the rights of people with disabilities. The United Nations 2030 Agenda for Sustainable Development, a plan of action for people, planet, and prosperity, demands that all stakeholders, acting in collaborative partnership, must recognise that the dignity of the human person is fundamental and so the development of the 17 Sustainable Development Goals must meet all segments of society in a way that “no one will be left behind”.
In relation to engineering, The Statement of Ethical Principles published by the Engineering Council and the Royal Academy of Engineering in 2005 and revised in 2017, articulates one of its strategic challenges to be positioning engineering at the heart of society, enhancing its wellbeing, improving the quality of the built environment, and promoting EDI. To uphold these principles, engineering professionals are required to promote social equity, guaranteeing equal opportunities to access the built environment and transportation systems, enabling the active participation of all citizens in society, including vulnerable groups. The universal design approach is one method that engineers can use to ensure social sustainability.
The challenges of universal and inclusive design:
Every citizen must have the same equality of opportunities in using spaces because the existence of an accessible built environment is fundamental to guarantee vitality, safety, and sociability. These ethical values associated with the technical decision-making process were considered by the American architect Ronald Lawrence Mace (1941-1998) who defined the universal design concept as “designing all products, buildings and exterior spaces to be usable by all people to the greatest extent possible” (Mace et al., 1991), thus contributing to social inclusion.
Universal accessibility according to this universal design approach is “the characteristic of an environment or object which enables everybody to enter into a relationship with, and make use of, that object or environment in a friendly, respectful and safe way” (Aragall et al., 2003). It focuses on people with reduced mobility, such as people with disabilities (mobility, vision, hearing and cognitive dimensions), children and elderly people. Built environment and transport systems must be designed considering this equity attribute which is associated with social sustainability and inclusion.
The Center for Universal Design of the North Carolina State University developed seven principles of universal design (Connell et al., 1997):
1. Equitable use
2. Flexibility in use
3. Simple and intuitive use
4. Perceptible information
5. Tolerance for error
6. Low physical effort
7. Size and space for approach and use.
These principles must always be incorporated in the conception of products and physical environments, so as to create a ‘fair built’ environment, where all have the right to use it, in the same independent and natural way. This justice design must guarantee autonomy in the use of spaces and transport vehicles, contributing to the self-determination of citizens.
The perceptions of the space users are fundamental to be considered in the design process to achieve the usability of the built environment and transport systems. Pedestrian infrastructure design and modal interfaces demand user-centred approaches and therefore processes of co-design and co-creation with communities, where people are effectively involved as collaborators and participants.
Achieving an inclusive society is a great challenge because there are situations where the needs of users are divergent: technical solutions created for a specific group of people are inadequate for others. For example, wheelchair users and elderly people need smooth surfaces and, on the contrary, blind people need tactile surfaces.
Consequently, in the process of universal design, some people can feel excluded because they need other technical solutions. It is then necessary to consider precise inclusive design when projecting urban spaces for all.
Universal design is linked with designing one-space-suits-almost-all, and inclusive design focuses on one-space-suits-one, for example design a space for everyone (collective perspective) versus design a space for one specific group (particular perspective). As the built environment must be understandable to and usable by all people, both are important for social sustainability. Universal design contributes to social inclusion, but added inclusive design is needed, matching the excluded users to the object or space design.
In order to promote social inclusion and quality of life, to which everyone is entitled, universal and inclusive co-design of the built environment and the transportation systems demands specific approaches that have to be integrated in engineering education:
Universal and inclusive co-design aims at considering human diversity and that “it is normal to be different”.
Universal and inclusive co-design requires strong collaborative approaches, through surveys, face to face interviews, walking with people with disabilities, elderly people, and other vulnerable groups.
Universal and inclusive co-design must consider different components of the built environment and transportation systems, and requires connectivity and a strategic value chain approach.
Universal and inclusive co-design demands cross-sectorial and interdisciplinary work, in transdisciplinary approaches.
Universal and inclusive co-design benefits all the population.
Universal and inclusive co-design is a fundamental tool for sustainable design.
Conclusion:
Universal and inclusive co-design of the built environment and transportation systems must be seen as an ethical act in engineering. Co-design for social sustainability can be strengthened through engineering acts. Ethical responsibility must be assumed to create inclusive solutions considering human diversity, empowering engineers to act and design justice.
There is a strong need for engineers to possess a set of skills and competencies related to the ability to work with other professionals (for example from the social sciences), users, or collaborators. In the 21st century, beyond the use of technical knowledge to solve problems, engineers need communication skills to achieve the sustainable development goals, requiring networking, cooperating in teams, and working with communities.
Engineering education must consider transdisciplinary approaches which make clear progress in tackling urban challenges and finding human-centred solutions. Universal and inclusive co-design must be incorporated routinely into the practice of engineers and assumed in Engineering Ethics Codes.
References:
Aragall, F. and EuCAN members, (2003) European Concept for Accessibility: Technical Assistance Manual. Luxemburg: EuCAN – European Concept for Accessibility Network.
Connell, B. R., Jones, M., Mace, R., Mueller, J., Mullick, A., Ostroff, E., Sanford, J., Steinfeld, E., Story, M. and Vanderheiden, G. (1997) The Principles of Universal Design, Version 2.0. Raleigh: North Carolina State University, The Center for Universal Design. USA.
Mace, R. L., Hardie G. J. and Place, J. P. (1991) ‘Accessible environments: Toward universal design,’in W.E. Preiser, J.C. Vischer, E.T. White (Eds.). Design Intervention: Toward a More Human Architecture. New York: Van Nostrand Reinhold, pp. 155-180.
Declaration on the Rights of Disabled Persons. (1975). Proclaimed by G/A/RES 3447 of 9 December 1975.
United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution adopted by the United Nations General Assembly on 25 September 2015, New York.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Activity: Technical integration – Practical investigation of electrical energy.
Author: Mr Neil Rogers (Independent Scholar).
Overview:
This enhancement is for an activity found in the Dilemma Part two, Point 1 section of the case: “Technical integration – Undertake an electrical engineering technical activity related to smart meters and the data that they collect.”
This activity involves practical tasks requiring the learner to measure parameters to enable electrical energy to be calculated in two different scenarios and then relate this to domestic energy consumption. This activity will give technical context to this case study as well as partly address two AHEP themes:
AHEP: SM1m – A comprehensive knowledge and understanding of scientific principles and methodology necessary to underpin their education in their engineering discipline, and an understanding and know-how of the scientific principles of related disciplines, to enable appreciation of the scientific and engineering context, and to support their understanding of relevant historical, current and future developments and technologies.
AHEP: EA1m – Understanding of engineering principles and the ability to apply them to undertake critical analysis of key engineering processes.
This activity is in three parts. To fully grasp the concept of electrical energy and truly contextualise what could be a remote and abstract concept to the learner, it is expected that all three parts should be completed (even though slight modifications to the equipment list are acceptable).
Learners are required to have basic (level 2) science knowledge as well as familiarity with the Multimeters and Power Supplies of the institution.
Learners have the opportunity to:
solve given technical tasks relating to the operation of electronic circuits (AHEP: SM1m);
assess the performance of a given electronic circuit (AHEP: EA1m).
Teachers have the opportunity to:
introduce concepts related to electrical circuit theory;
develop learners’ practical abilities and confidence in the use of electronic equipment;
develop learners’ mathematical skills in a practical context.
Suggested pre-reading:
To prepare for these practical activities, teachers may want to explain, or assign students to pre-read articles relating to electrical circuit theory with respect to:
Voltage and Current Power
Energy
Learning and teaching resources:
Bench Power Supply Unit (PSU) & multimeters;
High intensity LEDs and incandescent lamps (and associated data-sheets);
Energy monitor/plug in Power Meter (240V) and stopwatch;
Access to a kettle, fan heater and dishwasher or washing machine.
Activity: Practical investigation of electrical energy:
Task A: Comparing the energy consumed by incandescent bulbs with LEDs.
1. Power in a circuit.
By connecting the bulbs and LEDs in turn to the PSU with a meter in series:
a. Compare the wattage of the two devices.
b. On interpretation of their data sheets compare their luminous intensities.
c. Equate the quantity of each device to achieve a similar luminous intensity of approximately 600 Lumens (a typical household bulb equivalent).
d. now equate the wattages required to achieve this luminous intensity for the two devices.
2. Energy = Power x Time.
The units used by the energy providers are kWh:
a. Assuming the devices are on for 6 hours/day and 365 days/year, calculate the energy consumption in kWh for the two devices.
b. Now calculate the comparative annual cost assuming 1 kWh = 27p ! (update rate).
3. Wider implications.
a. Are there any cost-benefit considerations not covered?
b. How might your findings affect consumer behaviour in ways that could either negatively or positively impact sustainability?
c. Are there any ethical factors to be considered when choosing LED lightbulbs? For instance, you might investigate minerals and materials used for manufacturing and processing and how they are extracted, or end-of-life disposal issues, or fairness of costs (both relating to production and use).
Task B: Using a plug-in power meter.
1. Connect the power meter to a dishwasher or washing machine and run a short 15/30 minute cycle and record the energy used in kWh.
2. Connect the power meter to a ½ filled kettle and turn on, noting the instantaneous power (in watts) and the time taken. Then calculate the energy used and compare to the power meter.
3. Connect the power meter to the fan heater and measure the instantaneous power. Now calculate the daily energy consumption in kWh for a fan heater on for 6 hours/day.
4. Appreciation of consumption of electrical energy over a 24 hour period (in kWh) is key. What are the dangers in reading instantaneous energy readings from a smart meter?
Task C: Calculation of typical domestic electrical energy consumption.
1. Using the list of items in Appendix A, calculate the typical electrical energy usage/day for a typical household.
2. Now compare the electrical energy costs per day and per year for these three suppliers, considering how suppliers source their energy (i.e. renewable vs fossil fuels vs nuclear etc).
Standing charge cost / day
Cost per kWh
Cost / day
Cost / year
A)
48p
28p
B)
45p
31p
C)
51p
27p
3. Does it matter that data is collected every 30 minutes by your energy supplier? What implications might changing the collection times have?
4. With reference to Sam growing marijuana in the case, how do you think this will show up in his energy bill?
Appendix A: Household electrical devices power consumption:
Typical power consumption of electrical devices on standby (in Watts).
Wi-Fi router
10
TV & set top box
20
Radios & alarms
10
Dishwasher
5
Washing machine
5
Cooker & heat-ring controls
10
Gaming devices
10
Laptops x2
10
Typical consumption of electrical devices when active (in Watts) and assuming Gas central heating.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Ben Ricketts (NMITE), Prof Beverley Gibbs (NMITE) and Harriet Dearden (NMITE)
Keywords: Challenge-based Learning, Timber Technology, Levelling-up, Skills, Future of Work
Abstract: NMITE is a greenfield engineering-specialist HEI in Herefordshire which welcomed its first students in September 2021. Partnership is key to our growth, from both necessity and choice. Our MEng Integrated Engineering is infused with partners who facilitate a challenge-based learning pedagogy, and our Centre for Advanced Timber Technology (opening September 2022) works in national partnership to deliver a curriculum developed by – and for – the timber engineering industry. Alongside a rich educational offer, NMITE’s greenfield status brings with it the responsibility to contribute to civic and economic growth. We are a named partner in Western Power Distribution’s Social Contract as we pursue shared goals for regional development and reduced economic inequality. Key to our goals is our role in in Hereford’s Town Plan, leading an initiative called The Skills Foundry which will promote community engagement around individual skills, and with businesses in the changing nature of work.
NMITE is a greenfield HEI founded to make a difference to the people of Herefordshire and to its economy. Herefordshire is characterised by lower-than-average wages, lower-than-average skills, higher proportions of part-time work, a GVA gap of £1.75bn[1], and is categorised as a social mobility coldspot [2]. Into this context, NMITE was launched in 2021 without any antecedent or parent organisation, and with an engineering and technology focus whose graduates would help address the national shortfall of engineers. We see ourselves as educators, educational innovators, a catalyst for upskilling, and agents for regional change.
An HEI founded in partnership
From NMITE’s earliest days, building strong relationships with partners has been a core part of our culture. NMITE’s first supporters were industry partners, a mixture of local SMEs and national and international companies with a regional presence, united by the need for access to a talent pipeline of engineering graduates. The urgency of this need was evidenced in the raising of over £1M of seed funding, from a range of businesses and individuals. This early investment demonstrated to Government and other stakeholders that the concept of an engineering higher education institution in Hereford had industrial support. In turn, this unlocked significant Government funding which has subsequently been matched through donations and sponsorship to NMITE.
Over the last five years, the portfolio of partners has continued to grow. The nature of the support spans equipment, expertise and financial donations. Our Pioneer Fund raised money to support NMITE’s first students, with donations recognised through naming opportunities. For NMITE, this enabled us to offer universal bursaries to our students joining in our first two years of operation – a powerful tool in student recruitment, and with a longer-term outcome for those early investors in their ability to develop relationships with students, increase their brand awareness and achieve their own recruitment targets in the future.
Curriculum Partnerships
NMITE welcomed its first MEng students in September 2021, and this has provided new opportunities for industrial partnership in the curriculum. The MEng Integrated Engineering is a challenge-led pedagogy where learners work in teams to address real engineering challenges provided by an industrial (and occasionally community) partner. During the process, learners have direct contact with professionals to understand commercial pressures and engineering value, apply theoretical knowledge and develop professional capabilities.
In the sprint-based MEng, NMITE learners tackle around 20 different challenges in this way. Since September, our first students have helped re-engineer the material on a torque arm, designed and built a moisture sensor for a timber-framed house, visualised data from a geotechnical survey, and validated/optimised their own designs for a free-standing climbing structure. Students are already building their portfolio of work, and employers are building relationships with our student body.
Amplifying Innovation
Whilst NMITE is comfortable in its positioning as a teaching-focused HEI, we are mindful of the contribution we can make to the regional economy. NMITE has benefitted from LEP investment to support regional skills and productivity [3], and we have identified opportunities in advanced timber technology, automated manufacturing and skills for a changing future of work.
The Centre for Advanced Timber Technology (CATT) will open in September 2022 on Skylon Park, Hereford’s Enterprise Zone. Drawing on insight from a series of round table meetings with global and national businesses in timber, we came to understand that the UK timber industry needed to be much better connected, with more ambitious collaboration across the industry both vertically (seed to end product) and horizontally (between architects, engineers and construction managers, for example). In pursuing these aims we once again opted for a partnerships-based approach, forging close relationships with Edinburgh Napier University – internationally recognised for timber construction and wood science – and with TDUK – the timber industry’s central trade body. Founded in this way, CATT is firmly rooted in industrial need, actively engaged with industrial partners across the supply chain, and helps join up activity between Scotland, England and Wales.
CATT’s opening in 2022 will spearhead NMITE’s offer for part-time, work-based learners (including professionals, reskillers and degree apprentices) and provide a progressive curriculum for a sustainable built environment. In keeping with NMITE’s pedagogical principals, the CATT’s curriculum will be infused with a diverse portfolio of industrial partners who will provide challenges and context for the CATT curriculum. In future years, the Centre for Automated Manufacturing will provide educational options for comparable learners in the manufacturing industry.
Our initial research in establishing need in these areas pointed not only to skills shortages, but to technological capacity. Herefordshire has a very high proportion of SME’s who report difficulties in horizon scanning new technologies, accessing demonstrations, attracting and retaining graduates with up-to-date knowledge. In this space, and an HEI can play a key role in amplifying innovation; activities to support this will be integral to NMITE’s work at Skylon Park.
The Changing Nature of Work
NMITE is active in two further projects that support the regional economy and social mobility, founded in the knowledge that today’s school leavers will face very different career paths and job roles to those we have enjoyed. Automation, globalisation and AI are hugely disruptive trends that will change opportunities and demand new skills.
NMITE’s ‘Herefordshire Skills for the Future’ project is funded by the European Social Fund and helps SMEs, micro-businesses and young people to develop and secure the skills needed to flourish in the economy of 2030. Activities include:
skills audits for SMEs and creation of bespoke action plans
early career leadership development courses and networking
upskilling in entre- and intrapreneurship capabilities
significant upscaling of high-quality work experience for school and college students and careers advice
NMITE’s Future Skills Hub is a central element of the Hereford Stronger Towns bid [4] to the Government’s Towns Fund, a flagship levelling-up vehicle. The overarching goal of the hub is to provide access to skills and improve employment opportunities for Herefordians, in the context of changing job roles and opportunities.
Conclusion
Our core mission of innovation in engineering education is enhanced by our civic commitment to regional growth and individual opportunity. From the outset, NMITE has been clear that to meet business demand for work-ready engineers, business must contribute meaningfully to their development. We aim to contribute to closing the gap in regional, national and global demand for engineers, but without that critical early investment from partners we would not have been in the position to establish the radical institution that NMITE is today, that remains so close to the original vision of the Founders.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.
Authors: Prof Simon Barrans (University of Huddersfield), Harvey Kangley (Associated Utility Supplies Ltd), Greg Jones (University of Huddersfield) and Mark Newton (Associated Utility Supplies Ltd)
Keywords: Knowledge Transfer Partnership, Design and Innovation, Student Projects, Railway Infrastructure
Abstract: A six year collaboration between the University of Huddersfield and Associated Utility Supplies Ltd has resulted in one completed and one ongoing KTP project, two successfully completed First of a Kind projects for the rail industry and the development of a new design department in the company. Benefits to the University include, graduate and placement student employment, industrially relevant final year and masters projects and the application of University research. Continued collaboration will generate a case study for the next REF. In this paper we explore the various mechanisms that have been used to facilitate this work.
The opportunity
Network Rail felt that their current supply chain was vulnerable with many parts being single source, some from overseas. They addressed this issue by engaging with SMEs who could develop alternative products. A local company, AUS, believed they could tackle this challenge but needed to develop their design and analysis capability. Their collaboration with the University of Huddersfield enabled this.
Seed funded taster projects
In 2016 AUS approached regional development staff at the 3M Buckley Innovation Centre, the University‘s business and innovation centre, with two immediate needs. These were: an explanation as to why a cast iron ball swivel clamp had failed in service, and a feasibility study to determine if a cast iron cable clamp could be replaced with an aluminium equivalent. Both these small projects were funded using the University’s Collaborative Venture Fund, an internal funding scheme to deliver short feasibility projects for industry. This incentivises staff to only engage in collaborations where there is a high expectation of significant external future funding, and which are low risk to an industry partner.
Knowledge Transfer Partnership (KTP) Projects
KTPs are managed by Innovate UK and are one of the few Innovate UK grants that are designed to have a university as the lead organisation. They are particularly attractive to SMEs as Innovate UK funds 67% of the project cost. The costs cover: the employment costs for a graduate, known as the Associate, who typically works full time at the company; an academic supervisor who meets with the Associate for half a day a week; and administrative support. The key measure of success of a KTP project is that it leaves the company generating more profit and hence, paying more tax. Increased employment is also desirable.
The first, three-year KTP project, applied for in January 2017 and started in June 2017, aimed to provide the company with a design and analysis capability. A Mechanical Engineering graduate from Huddersfield was recruited as the Associate and the Solidworks package was introduced to the company. A product development procedure was put in place and a number of new products brought to market. The Associate’s outstanding performance was recognised in the KTP Best of the Best Awards 2020 and he has stayed with the company to lead the Product Innovation team.
The second, two-year KTP project started in November 2020 with the aim of expanding the company’s capability to use FRP materials. Whilst the company had some prior product experience in this area, they were not carrying out structural analysis of the products. FRP is seen as an attractive material for OLE structures as it is non-conductive (hence removing the need for insulators) and reduces mass (compared to steel) which reduces the size of foundations needed.
First of a kind (FOAK) projects
The Innovate UK FOAK scheme provides 100% funding to develop products at a high technology readiness level and bring them to market. They are targeted at particular industry areas and funding calls are opened a month to two months before they close. It is important therefore to be prepared to generate a bid before the call is made. FOAKs can and have been led by universities. In the cases here, the company was the lead as they could assemble the supply chain and route to market. The entire grant went to the company with the university engaged as a sub-contractor.
The first FAOK to support development of a new span-wire clamp was initially applied for in 2019 and was unsuccessful but judged to be fundable. A grant writing agency was employed to rewrite the bid and it was successful the following year. Comparing the two bids, re-emphasis of important points between sections of the application form and emphasising where the bid met the call requirements, appeared to be the biggest change.
The span-wire clamp is part of the head-span shown in figure 1. The proposal was to replace the existing cast iron, 30 component assembly with an aluminium bronze, 14 component equivalent, as shown in figure 2. The FOAK project was successful with the new clamp now approved for deployment by Network Rail.
The University contributed to the project by testing the load capacity of the clamps, assessing geometric tolerances in the cast parts and determining the impact that the new clamp would have on the pantograph-contact wire interface. This latter analysis used previous research work carried out by the University and will be an example to include in a future REF case study.
The second FOAK applied for in 2020 was for the development of a railway footbridge fabricated from pultruded FRP sections. This bid was developed jointly by the University and the company, alongside the resubmission of the span-wire FOAK bid. This bid was successful and the two projects were run in parallel. The footbridge was demonstrated at RailLive 2021.
Additional benefits to University of Huddersfield
In addition to the funding attracted, the collaboration has provided material for two MSc module assignments, six MSc individual projects and 12 undergraduate projects. The country of origin of students undertaking these projects include India, Sudan, Bangladesh, Egypt, Syria and Qatar. A number of these students intend to stay in the UK and their projects should put them in a good position to seek employment in the rail industry. A number of journal and conference papers based on the work are currently being prepared.
Figure 1. Head-span showing span-wires and span-wire clamp.
Figure 2. Old (left) and new (right) span-wire clamps.
Any views, thoughts, and opinions expressed herein are solely that of the author(s) and do not necessarily reflect the views, opinions, policies, or position of the Engineering Professors’ Council or the Toolkit sponsors and supporters.